1
|
Ebrahimi A, Ak G, Özel C, İzgördü H, Ghorbanpoor H, Hassan S, Avci H, Metintaş M. Clinical Perspectives and Novel Preclinical Models of Malignant Pleural Mesothelioma: A Critical Review. ACS Pharmacol Transl Sci 2024; 7:3299-3333. [PMID: 39539262 PMCID: PMC11555512 DOI: 10.1021/acsptsci.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Pleural mesothelioma (PM), a rare malignant tumor explicitly associated with asbestos and erionite exposures, has become a global health problem due to limited treatment options and a poor prognosis, in which the median life expectancy varies depending on the method of treatment. However, the importance of early diagnosis is emphasized, and the practical methods have not matured yet. This study provides a critical overview of PM, addressing various aspects like epidemiology, etiology, diagnosis, treatment options, and the potential use of advanced technologies like microfluidic chip-based models for research and diagnosis. It initially begins with fundamentals of clinical aspects and then discusses the identification of disease-specific biomarkers in patients' serum or plasma samples, which could potentially be used for early diagnosis. A detailed investigation of the sophisticated preclinical models is highlighted. Recent three-dimensional (3D) model accomplishments, including microarchitecture modeling by transwell coculture, spheroids, organoids, 3D bioprinting constructs, and ex vivo tumor slices, are discussed comprehensively. On-chip models that imitate physiological processes, such as detection chips and therapeutic screening chips, are assessed as potential techniques. The review concludes with a critical and constructive discussion of the growing interest in the topic and its limitations and suggestions.
Collapse
Affiliation(s)
- Aliakbar Ebrahimi
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Güntülü Ak
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Ceren Özel
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Hüseyin İzgördü
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
| | - Hamed Ghorbanpoor
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Biomedical Engineering, Eskişehir
Osmangazi University, Eskişehir 26040, Turkey
| | - Shabir Hassan
- Department
of Biological Sciences, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Huseyin Avci
- Cellular
Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Stem Cell, Institute of Health Sciences, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Department
of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| | - Muzaffer Metintaş
- Eskisehir
Osmangazi University, Faculty of Medicine, Department of Pulmonary
Diseases, Lung and Pleural Cancers Research
and Clinical Center, Eskisehir 26040, Turkey
- Translational
Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey
| |
Collapse
|
2
|
Sammut Bartolo N, Gallo LL, Szyrner K, Buhagiar PI, Vella Szijj J. Greenness assessment of analytical methods for determination of cannabinoids in oils using NEMI, Analytical Eco-Scale, AGREE and GAPI. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5931-5942. [PMID: 39161240 DOI: 10.1039/d4ay01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The cannabis plant is being increasingly researched due to its numerous therapeutic properties leading to the need for analytical techniques to assess substances present in extracts of the cannabis plant in carrier oils, such as medium chain triglycerides (MCT) oil. Awareness of the environmental impact of activities related to analysis led to the development of greenness assessment metrics. This study aimed to assess the environmental impact of analytical techniques applied in the analysis of cannabinoids in oil using Green Analytical Chemistry metrics. The first phase of the study consisted of a systematic literature review to identify high performance liquid chromatography and ultra high performance liquid chromatographic methods of analysis for cannabinoids in oil. In the second phase, the identified methods were assessed using the National Environmental Method Index (NEMI), Analytical Eco-scale, Analytical Greenness Calculator (AGREE) and Green Analytical Procedure Index (GAPI). Out of 124 identified studies, 8 were considered for the comparative analysis. The identified analytical methods consisted of high performance liquid chromatography (HPLC) using high resolution MS (n = 1), DAD (n = 2), UV (n = 1), UV and MS (n = 2) and MS/MS (n = 2) as detectors. When the analytical methods were assessed using the Analytical Eco-Scale, 7 out of 8 methods achieved a score ranging between 50 and 73, categorising them as acceptable green methods of analysis. One method achieved a total score of 80, categorising the method as an excellent green analysis. The application of Green Analytical Chemistry and respective metrics during the development of analytical methods contributes towards a reduction in the environmental footprint which results from related activities.
Collapse
Affiliation(s)
- Nicolette Sammut Bartolo
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
| | - Lovely L Gallo
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
| | - Karolina Szyrner
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
| | - Paul I Buhagiar
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
| | - Janis Vella Szijj
- Department of Pharmacy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD 2080, Malta.
| |
Collapse
|
3
|
Ahmadi F, Zanganeh FZ, Amani Tehrani I, Shoaee S, Choobin H, Bozorg A, Taghipoor M. Evaluating an extraction-free sample preparation method for multiplex detection of SARS-Cov-2, influenza A/B, and RSV with implementation on a microfluidic chip. Diagn Microbiol Infect Dis 2024; 109:116325. [PMID: 38688146 DOI: 10.1016/j.diagmicrobio.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Following the relaxation of COVID-19 restrictions, other respiratory viruses such as influenza and respiratory syncytial virus (RSV), whose transmission were decreased due to COVID-19 precautions, are rising again. Because of similar clinical features and reported co-infections, multiplex detection of SARS-CoV-2, influenza A/B, and RSV is required to use specific treatments. This study assessed an extraction-free sample preparation (heat treatment at 95°C for 3 minutes) for multiplex detection using rRT-PCR. Despite an observed Ct-delay (∆Ct) averageing 1.26 compared to the standard method, an acceptable total sensitivity of 92 % and a negative predictive value (NPV) of 96 % were obtained. Moreover, Implementation on a microfluidic chip demonstrated efficiency, maintaining an excellent correlation (R2=0.983) with the standard method. Combining this extraction-free procedure with rRT-PCR on a microfluidic chip seems promising, because it simplifies the design and reduces the cost and complexity of the integrated assay for multiplex detection of SARS-CoV-2, influenza A/B, and RSV.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, I.R., Iran
| | - Fatemeh Zahra Zanganeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, I.R., Iran
| | - Iman Amani Tehrani
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Saeed Shoaee
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Bozorg
- Department of Biotechnology, College of Science, University of Tehran, Tehran, I.R., Iran
| | - Mojtaba Taghipoor
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Malik FK, Panteli C, Goel K, Moser N, Georgiou P, Fobelets K. Improved Stability of Graphene-Coated CMOS ISFETs for Biosensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:1293-1304. [PMID: 37399150 DOI: 10.1109/tbcas.2023.3292002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
A polymer-assisted graphene transfer method is used to transfer sheets of monolayer and multilayer graphene onto the passivation layer of ion-sensitive field effect transistor arrays. The arrays are fabricated using commercial 0.35 μm complementary metal-oxide-semiconductor (CMOS) technology and contain 3874 pixels sensitive to pH changes on the top silicon nitride surface. By inhibiting dispersive ion transport and hydration of this underlying nitride layer, the transferred graphene sheets help address non-idealities in the sensor response while retaining some pH sensitivity due to the presence of ion adsorption sites. Improvements in hydrophilicity and electrical conductivity of the sensing surface after graphene transfer, as well as in-plane molecular diffusion along the graphene-nitride interface, also greatly improve spatial consistency across an array, allowing for ∼20% more pixels to remain within operating range and enhancing sensor reliability. Multilayer graphene offers a better performance trade-off than monolayer graphene, reducing drift rate by ∼25% and drift amplitude by ∼59% with minimal reduction in pH sensitivity. Monolayer graphene offers slightly better temporal and spatial uniformity in performance of a sensing array, which is associated with the consistency in layer thickness and a lower defect density.
Collapse
|
5
|
Jóskowiak A, Nogueira CL, Costa SP, Cunha AP, Freitas PP, Carvalho CM. A magnetic nanoparticle-based microfluidic device fabricated using a 3D-printed mould for separation of Escherichia coli from blood. Mikrochim Acta 2023; 190:356. [PMID: 37594644 PMCID: PMC10439042 DOI: 10.1007/s00604-023-05924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/18/2023] [Indexed: 08/19/2023]
Abstract
Herein, A microfluidic device is described, produced with a 3D-printed master mould that rapidly separates and concentrates Escherichia coli directly from whole blood samples, enabling a reduction in the turnaround time of bloodstream infections (BSIs) diagnosis. Moreover, it promotes the cleansing of the blood samples whose complexity frequently hampers bacterial detection. The device comprises a serpentine mixing channel with two inlets, one for blood samples (spiked with bacteria) and the other for magnetic nanoparticles (MNPs) functionalized with a (bacterio)phage receptor-binding protein (RBP) with high specificity for E. coli. After the magnetic labelling of bacteria throughout the serpentine, the microchannel ends with a trapping reservoir where bacteria-MNPs conjugates are concentrated using a permanent magnet. The optimized sample preparation device successfully recovered E. coli (on average, 66%) from tenfold diluted blood spiked within a wide range of bacterial load (102 CFU to 107 CFU mL-1). The non-specific trapping, tested with Staphylococcus aureus, was at a negligible level of 12%. The assay was performed in 30 min directly from diluted blood thus presenting an advantage over the conventional enrichment in blood cultures (BCs). The device is simple and cheap to fabricate and can be tailored for multiple bacterial separation from complex clinical samples by using RBPs targeting different species. Moreover, the possibility to integrate a biosensing element to detect bacteria on-site can provide a reliable, fast, and cost-effective point-of-care device.
Collapse
Affiliation(s)
- Agnieszka Jóskowiak
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Catarina L Nogueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Susana P Costa
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Alexandra P Cunha
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, Braga and Guimarães, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
| | - Paulo P Freitas
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN) and IN - Institute of Nanoscience and Nanotechnolnology, Rua Alves Redol, 9, 1000-029, Lisbon, Portugal
| | - Carla M Carvalho
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga S/N, 4715-330, Braga, Portugal.
| |
Collapse
|
6
|
Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, Das B. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon 2023; 9:e15848. [PMID: 37206035 PMCID: PMC10189192 DOI: 10.1016/j.heliyon.2023.e15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Biosensors, in particular nanobiosensors, have brought a paradigm shift in the detection approaches involved in healthcare, agricultural, and industrial sectors. In accordance with the global expansion in the world population, there has been an increase in the application of specific insecticides for maintaining public health and enhancing agriculture, such as organophosphates, organochlorines, pyrethroids, and carbamates. This has led to the contamination of ground water, besides increasing the chances of biomagnification as most of these insecticides are non-biodegradable. Hence, conventional and more advanced approaches are being devised for the routine monitoring of such insecticides in the environment. This review walks through the implications of biosensors and nanobiosensors, which could offer a wide range of benefits for the detection of the insecticides, quantifying their toxicity status, and versatility in application. Unique eco-friendly nanobiosensors such as microcantilevers, carbon nanotubes, 3D printing organic materials and nylon nano-compounds are some advanced tools that are being employed for the detection of specific insecticides under different conditions. Furthermore, in order to implement a smart agriculture system, nanobiosensors could be integrated into mobile apps and GPS systems for controlling farming in remote areas, which would greatly assist the farmer remotely for crop improvement and maintenance. This review discusses about such tools along with more advanced and eco-friendly approaches that are on the verge of development and could offer a promising alternative for analyte detection in different domains.
Collapse
Affiliation(s)
- Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Rashmi Priya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Priti Sundar Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751024, India
- Corresponding author.
| | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- Corresponding author.
| |
Collapse
|
7
|
Annese VF, Hu C. Integrating Microfluidics and Electronics in Point-of-Care Diagnostics: Current and Future Challenges. MICROMACHINES 2022; 13:1923. [PMID: 36363944 PMCID: PMC9699090 DOI: 10.3390/mi13111923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Point-of-Care (POC) diagnostics have gained increasing attention in recent years due to its numerous advantages over conventional diagnostic approaches. As proven during the recent COVID-19 pandemic, the rapidity and portability of POC testing improves the efficiency of healthcare services and reduces the burden on healthcare providers. There are hundreds of thousands of different applications for POC diagnostics, however, the ultimate requirement for the test is the same: sample-in and result-out. Many technologies have been implemented, such as microfluidics, semiconductors, and nanostructure, to achieve this end. The development of even more powerful POC systems was also enabled by merging multiple technologies into the same system. One successful example is the integration of microfluidics and electronics in POC diagnostics, which has simplified the sample handling process, reduced sample usage, and reduced the cost of the test. This review will analyze the current development of the POC diagnostic systems with the integration of microfluidics and electronics and discuss the future challenges and perspectives that researchers might have.
Collapse
Affiliation(s)
- Valerio Francesco Annese
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, 20133 Milan, Italy
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chunxiao Hu
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
8
|
Lovecchio N, Costantini F, Nascetti A, de Cesare G, Caputo D. Thin-Film-Based Multifunctional System for Optical Detection and Thermal Treatment of Biological Samples. BIOSENSORS 2022; 12:bios12110969. [PMID: 36354478 PMCID: PMC9688047 DOI: 10.3390/bios12110969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 05/31/2023]
Abstract
In this work, we present a multifunctional Lab-on-Chip (LoC) platform based on hydrogenated amorphous silicon sensors suitable for a wide range of application in the fields of biochemical and food quality control analysis. The proposed system includes a LoC fabricated on a 5 cm × 5 cm glass substrate and a set of electronic boards for controlling the LoC functionalities. The presented Lab-on-Chip comprises light and temperature sensors, a thin film resistor acting as a heating source, and an optional thin film interferential filter suitable for fluorescence analysis. The developed electronics allows to control the thin film heater, a light source for fluorescence and absorption measurements, and the photosensors to acquire luminescent signals. All these modules are enclosed in a black metal box ensuring the portability of the whole platform. System performances have been evaluated in terms of sensor optical performances and thermal control achievements. For optical sensors, we have found a minimum number of detectable photons of 8 × 104 s-1·cm-2 at room temperature, 1.6 × 106 s-1·cm-2 in presence of fluorescence excitation source, and 2.4 × 106 s-1·cm-2 at 90 °C. From a thermal management point of view, we have obtained heating and cooling rates both equal to 2.2 °C/s, and a temperature sensor sensitivity of about 3 mV/°C even in presence of light. The achieved performances demonstrate the possibility to simultaneously use all integrated sensors and actuators, making promising the presented platform for a wide range of application fields.
Collapse
Affiliation(s)
- Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Francesca Costantini
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
- CREA-DC Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, 00138 Rome, Italy
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy
| |
Collapse
|
9
|
Multiplexed Prostate Cancer Companion Diagnostic Devices. SENSORS 2021; 21:s21155023. [PMID: 34372259 PMCID: PMC8347987 DOI: 10.3390/s21155023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
Prostate cancer (PCa) remains one of the most prominent forms of cancer for men. Since the early 1990s, Prostate-Specific Antigen (PSA) has been a commonly recognized PCa-associated protein biomarker. However, PSA testing has been shown to lack in specificity and sensitivity when needed to diagnose, monitor and/or treat PCa patients successfully. One enhancement could include the simultaneous detection of multiple PCa-associated protein biomarkers alongside PSA, also known as multiplexing. If conventional methods such as the enzyme-linked immunosorbent assay (ELISA) are used, multiplexed detection of such protein biomarkers can result in an increase in the required sample volume, in the complexity of the analytical procedures, and in adding to the cost. Using companion diagnostic devices such as biosensors, which can be portable and cost-effective with multiplexing capacities, may address these limitations. This review explores recent research for multiplexed PCa protein biomarker detection using optical and electrochemical biosensor platforms. Some of the novel and potential serum-based PCa protein biomarkers will be discussed in this review. In addition, this review discusses the importance of converting research protocols into multiplex point-of-care testing (xPOCT) devices to be used in near-patient settings, providing a more personalized approach to PCa patients’ diagnostic, surveillance and treatment management.
Collapse
|
10
|
Silva MLS. Microfluidic devices for glycobiomarker detection in cancer. Clin Chim Acta 2021; 521:229-243. [PMID: 34273337 DOI: 10.1016/j.cca.2021.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
During oncogenesis, several alterations occur within cells, one of them being the abnormal glycosylation of proteins, resulting in the formation of glycoproteins with aberrant glycan structures, which can be secreted into the blood stream. Their specific association to tumour cells makes them useful indicators (biomarkers) of the oncogenic process and their detection in blood can be employed in different stages of tumour development for early detection, prognosis and therapeutic drug monitoring. Due to the importance of detecting cancer-associated glycoproteins with aberrant glycosylation in blood or serum, analytical methodologies with improved performance are required to ameliorate the laboratorial tests currently used for the detection of these analytes. Microfluidics was created to facilitate the implementation of simple and point-of-care analysis, away from a centralized laboratory. The massive use of microfluidic systems in clinical settings can be seen in pregnancy tests and diabetes control, for example. But what about other clinical domains, such as the detection of glycoproteins with aberrant glycans secreted by tumour cells? Are microfluidic systems helpful in this case? This review analyses the requirements of a microfluidic assay for the detection of low-abundant blood/serum cancer-associated glycoproteins with abnormal glycans and the progresses that have been made in the last years to develop integrated microfluidic devices for this particular application. The diverse microfluidic systems found in literature present, in general, the same analytical performance as the conventional assays but have additional advantages, namely a reduction in assay times, a decrease of sample and reagent consumption and lower costs. The review will also focus on the improvements that are still needed for better biosensing of this type of cancer biomarkers using microfluidic devices.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Carr. Pachuca-Tulancingo km 4.5, Pachuca, Hidalgo 42076, Mexico.
| |
Collapse
|
11
|
Vitorino R, Guedes S, da Costa JP, Kašička V. Microfluidics for Peptidomics, Proteomics, and Cell Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1118. [PMID: 33925983 PMCID: PMC8145566 DOI: 10.3390/nano11051118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Microfluidics is the advanced microtechnology of fluid manipulation in channels with at least one dimension in the range of 1-100 microns. Microfluidic technology offers a growing number of tools for manipulating small volumes of fluid to control chemical, biological, and physical processes relevant to separation, analysis, and detection. Currently, microfluidic devices play an important role in many biological, chemical, physical, biotechnological and engineering applications. There are numerous ways to fabricate the necessary microchannels and integrate them into microfluidic platforms. In peptidomics and proteomics, microfluidics is often used in combination with mass spectrometric (MS) analysis. This review provides an overview of using microfluidic systems for peptidomics, proteomics and cell analysis. The application of microfluidics in combination with MS detection and other novel techniques to answer clinical questions is also discussed in the context of disease diagnosis and therapy. Recent developments and applications of capillary and microchip (electro)separation methods in proteomic and peptidomic analysis are summarized. The state of the art of microchip platforms for cell sorting and single-cell analysis is also discussed. Advances in detection methods are reported, and new applications in proteomics and peptidomics, quality control of peptide and protein pharmaceuticals, analysis of proteins and peptides in biomatrices and determination of their physicochemical parameters are highlighted.
Collapse
Affiliation(s)
- Rui Vitorino
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, 4785-999 Porto, Portugal
- iBiMED, Department of Medical Sciences, University of Aveiro, 00351234 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 00351234 Aveiro, Portugal;
| | - João Pinto da Costa
- Department of Chemistry & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 00351234 Aveiro, Portugal;
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemigovo n. 542/2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
12
|
Przystupski D, Górska A, Michel O, Podwin A, Śniadek P, Łapczyński R, Saczko J, Kulbacka J. Testing Lab-on-a-Chip Technology for Culturing Human Melanoma Cells under Simulated Microgravity. Cancers (Basel) 2021; 13:402. [PMID: 33499085 PMCID: PMC7866167 DOI: 10.3390/cancers13030402] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023] Open
Abstract
The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.
Collapse
Affiliation(s)
- Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agata Górska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Agnieszka Podwin
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | - Patrycja Śniadek
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; (A.P.); (P.Ś.)
| | | | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.G.); (J.S.); (J.K.)
| |
Collapse
|
13
|
Microcantilever: Dynamical Response for Mass Sensing and Fluid Characterization. SENSORS 2020; 21:s21010115. [PMID: 33375431 PMCID: PMC7795892 DOI: 10.3390/s21010115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
A microcantilever is a suspended micro-scale beam structure supported at one end which can bend and/or vibrate when subjected to a load. Microcantilevers are one of the most fundamental miniaturized devices used in microelectromechanical systems and are ubiquitous in sensing, imaging, time reference, and biological/biomedical applications. They are typically built using micro and nanofabrication techniques derived from the microelectronics industry and can involve microelectronics-related materials, polymeric materials, and biological materials. This work presents a comprehensive review of the rich dynamical response of a microcantilever and how it has been used for measuring the mass and rheological properties of Newtonian/non-Newtonian fluids in real time, in ever-decreasing space and time scales, and with unprecedented resolution.
Collapse
|
14
|
Hegde O, Kabi P, Basu S. Enhancement of mixing in a viscous, non-volatile droplet using a contact-free vapor-mediated interaction. Phys Chem Chem Phys 2020; 22:14570-14578. [PMID: 32596709 DOI: 10.1039/d0cp01004a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mixing at small fluidic length scales is especially challenging in viscous and non-volatile droplets frequently encountered in bio-chemical assays. In situ methods of mixing, which depend on diffusion or evaporation-driven capillary flow, are typically slow and inefficient, while thermal or electro-capillary methods that are either complicated to implement or may cause sample denaturing. This article demonstrates an enhanced mixing timescale in a sessile droplet of glycerol by simply introducing a droplet of ethanol in its near vicinity. The fast evaporation of ethanol introduces molecules in the proximity of the glycerol droplet, which are preferentially adsorbed (more on the side closer to ethanol) creating a gradient of surface tension driving the Marangoni convection in the droplet. We conclusively show that for the given volume of the droplet, the mixing time reduces by ∼10 hours due to the vapour-mediated Marangoni convection. Simple scaling arguments are used to predict the enhancement of the mixing timescale. Experimental evidence obtained from fluorescence imaging is used to quantify mixing and validate the analytical results. This is the first proof of concept of enhanced mixing in a viscous, sessile droplet using the vapour mediation technique.
Collapse
Affiliation(s)
- Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | - Prasenjit Kabi
- Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore-560012, India
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
15
|
Dervisevic E, Tuck KL, Voelcker NH, Cadarso VJ. Recent Progress in Lab-On-a-Chip Systems for the Monitoring of Metabolites for Mammalian and Microbial Cell Research. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5027. [PMID: 31752167 PMCID: PMC6891382 DOI: 10.3390/s19225027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
Lab-on-a-chip sensing technologies have changed how cell biology research is conducted. This review summarises the progress in the lab-on-a-chip devices implemented for the detection of cellular metabolites. The review is divided into two subsections according to the methods used for the metabolite detection. Each section includes a table which summarises the relevant literature and also elaborates the advantages of, and the challenges faced with that particular method. The review continues with a section discussing the achievements attained due to using lab-on-a-chip devices within the specific context. Finally, a concluding section summarises what is to be resolved and discusses the future perspectives.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia;
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia;
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC 3168, Australia
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
- The Melbourne Centre for Nanofabrication, Australian National Fabrication Facility-Victorian Node, Clayton, VIC 3800, Australia
| |
Collapse
|
16
|
Abstract
Isothermal titration calorimetry (ITC) can benefit from operating in miniaturized devices as they enable quantitative, low-cost measurements with reduced analysis time and reagents consumption. However, most of the existing devices that offer ITC capabilities either do not yet allow proper control of reaction conditions or are limited by issues such as evaporation or surface adsorption caused inaccurate solution concentration information and unintended changes in biomolecular properties because of aggregation. In this paper, we present a microdevice that combines 3D-printed microfluidic structures with a polymer-based MEMS thermoelectric sensor to enable quantitative ITC measurements of biomolecular interactions. Benefitting from the geometric flexibility of 3D-printing, the microfluidic design features calorimetric chambers in a differential cantilever configuration that improves the thermal insulation and reduces the thermal mass of the implementing device. Also, 3D-printing microfluidic structures use non-permeable materials to avoid potential adsorption. Finally, the robustness of the polymeric MEMS sensor chip allows the device to be assembled reversibly and leak-free, and hence reusable. We demonstrate the utility of the device by quantitative ITC characterization of a biomolecular binding system, ribonuclease A (RNase A) bind with cytidine 2'-monophosphate (2'CMP) down to a practically useful sample concentration of 0.2 mM. The thermodynamic parameters of the binding system, including the stoichiometry, equilibrium binding constant, and enthalpy change are obtained and found to agree with values previously reported in the literature.
Collapse
|
17
|
Development of a highly sensitive, quantitative, and rapid detection system for Plasmodium falciparum-infected red blood cells using a fluorescent blue-ray optical system. Biosens Bioelectron 2019; 132:375-381. [PMID: 30901727 DOI: 10.1016/j.bios.2019.02.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
A highly sensitive diagnostic system for determining low-density infections that are missed by conventional methods is necessary to detect the carriers of Plasmodium falciparum. A fluorescent blue-ray optical system with a polycarbonate scan disc was developed to detect P. falciparum-infected red blood cells (Pf-iRBCs), and nine samples could be analyzed simultaneously. The cultured P. falciparum strain 3D7 was used to examine the potential of the system for diagnosing malaria. After an RBC suspension had been applied to the disc, the cells were dispersed on the disc by rotation. During the 10 min standing period to allow the RBCs to settle on the disc surface, the cells were simultaneously stained with nuclear fluorescence staining dye Hoechst 34580, which was previously adsorbed on the disc surface. RBCs were arranged on the disc surface as a monolayer by removing excess cells through momentary rotation. Over 1.1 million RBCs remained on the disc for fluorescence analysis. A portable, battery-driven fluorescence image reader was employed to detect fluorescence-positive RBCs for approximately 40 min. A good correlation between examination of Giemsa-stained RBCs by light microscopy and the developed system was demonstrated in the parasitemia range of 0.0001-1.0% by linear regression analysis (R2 = 0.99993). The limit of detection of 0.00020% and good reproducibility for parasitemia determination were observed. The ability of the developed system to detect sub-microscopic low-density Pf-iRBCs and provide accurate quantitative evaluation with easy operation was demonstrated.
Collapse
|
18
|
Norcic G. Liquid Biopsy in Colorectal Cancer-Current Status and Potential Clinical Applications. MICROMACHINES 2018; 9:mi9060300. [PMID: 30424233 PMCID: PMC6187650 DOI: 10.3390/mi9060300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most frequent solid malignancies worldwide. The treatment is either surgical or multimodal and depends on the stage of the disease at diagnosis. Accurate disease assessment is thus of great importance for choosing the most optimal treatment strategy. However, the standard means of disease assessment by radiological imaging or histopathological analysis of the removed tumor tissue lack the sensitivity in detecting the early systemic spread of the disease. To overcome this deficiency, the concept of liquid biopsy from the peripheral blood of patients has emerged as a new, very promising diagnostic tool. In this article, we provide an overview of the current status of clinical research on liquid biopsy in colorectal cancer. We also highlight the clinical situations in which the concept might be of the greatest benefit for the management of colorectal cancer patients in the future.
Collapse
Affiliation(s)
- Gregor Norcic
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloska Cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
19
|
Abstract
Living a healthy and fulfilling life or at least carrying on the daily activities inevitably depends on some physical activity in different scales. Therefore, measuring the physical activity is necessary to evaluate both healthy people and patients in order to plan their needs for wellbeing. Objective and accurate measurements can be made with wearable sensors and related technologies. Evaluating health and wellness, efficacy of treatment, safety, physical ability and disability are in the scope of monitoring physical activity with wearable technologies.
Collapse
Affiliation(s)
- Figen Tokuçoğlu
- SBÜ İzmir Tepecik Training and Research Hospital Neurology Clinic, İzmir, Turkey
| |
Collapse
|
20
|
Soares RRG, Ricelli A, Fanelli C, Caputo D, de Cesare G, Chu V, Aires-Barros MR, Conde JP. Advances, challenges and opportunities for point-of-need screening of mycotoxins in foods and feeds. Analyst 2018; 143:1015-1035. [DOI: 10.1039/c7an01762f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent advances in analytical methods for mycotoxin screening in foods and feeds are reviewed, focusing on point-of-need detection using integrated devices.
Collapse
Affiliation(s)
- Ruben R. G. Soares
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
| | | | - Corrado Fanelli
- Department of Environmental Biology
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Domenico Caputo
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Giampiero de Cesare
- Department of Information Engineering
- Electronics and Telecommunications
- University of Rome “La Sapienza”
- Rome
- Italy
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
| | - M. Raquel Aires-Barros
- IBB – Institute for Bioengineering and Biosciences
- Instituto Superior Técnico
- Universidade de Lisboa
- Lisbon
- Portugal
| | - João P. Conde
- Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC MN) and IN – Institute of Nanoscience and Nanotechnology
- Portugal
- Department of Bioengineering
- Instituto Superior Técnico
- Universidade de Lisboa
| |
Collapse
|
21
|
Messner JJ, Glenn HL, Meldrum DR. Laser-fabricated cell patterning stencil for single cell analysis. BMC Biotechnol 2017; 17:89. [PMID: 29258486 PMCID: PMC5735507 DOI: 10.1186/s12896-017-0408-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/10/2022] Open
Abstract
Precise spatial positioning and isolation of mammalian cells is a critical component of many single cell experimental methods and biological engineering applications. Although a variety of cell patterning methods have been demonstrated, many of these methods subject cells to high stress environments, discriminate against certain phenotypes, or are a challenge to implement. Here, we demonstrate a rapid, simple, indiscriminate, and minimally perturbing cell patterning method using a laser fabricated polymer stencil. The stencil fabrication process requires no stencil-substrate alignment, and is readily adaptable to various substrate geometries and experiments.
Collapse
Affiliation(s)
| | - Honor L Glenn
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Deirdre R Meldrum
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., P.O. Box 877101, Tempe, AZ, 85287-7101, USA.
| |
Collapse
|
22
|
Soares RRG, Azevedo AM, Fernandes P, Chu V, Conde JP, Aires-Barros MR. A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems. J Chromatogr A 2017; 1511:15-24. [PMID: 28697933 DOI: 10.1016/j.chroma.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
The rapid detection of mycotoxins in feed samples is becoming an increasingly relevant challenge for the food production sector, in order to effectively enforce current regulations and assure food and feed safety. To achieve rapid mycotoxin detection, several biosensing strategies have been published, many reaching assay times of the order of a few minutes. However, the vast majority of these rely on sample preparation based on volatile organic solvents, often comprising complex multi-step procedures and devoid of clean-up and/or concentration effects. Here, a novel sample preparation methodology based on a green, non-toxic and inexpensive polyethylene glycol-sodium citrate aqueous two-phase system is reported, providing single-step extraction and concentration of three target mycotoxins within 20min: aflatoxin B1 (AFB1), ochratoxin A (OTA) and deoxynivalenol (DON). With point-of-need applications in mind, the extraction procedure was optimized and validated using a rapid multi-toxin microfluidic competitive immunoassay. The assay was successfully tested with spiked complex solid matrices including corn, soy, chickpea and sunflower-based feeds and limits of detection of 4.6ngg-1±15.8%, 24.1ngg-1±8.1% and 129.7ngg-1±53.1% (±CV) were obtained in corn for AFB1, OTA and DON, respectively. These sensitivities are fit-for-purpose at the required regulatory and recommended limits for animal feed, providing an effective and safe semi-quantitative mycotoxin analysis that can be performed in the field.
Collapse
Affiliation(s)
- Ruben R G Soares
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Instituto de Engenharia de Sistemas e Computadores, Microsistemas e Nanotecnologias (INESC MN) and IN, Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - Ana M Azevedo
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Fernandes
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores, Microsistemas e Nanotecnologias (INESC MN) and IN, Institute of Nanoscience and Nanotechnology, Lisbon, Portugal
| | - João P Conde
- Instituto de Engenharia de Sistemas e Computadores, Microsistemas e Nanotecnologias (INESC MN) and IN, Institute of Nanoscience and Nanotechnology, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - M Raquel Aires-Barros
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|