1
|
Lin B, Hu T, Xu Z, Ke Y, Zhang L, Zheng J, Ma J. Stratified biofilm structure of MABR enabling efficient ammonia removal from aquaculture medicated bath wastewater. WATER RESEARCH 2025; 277:123326. [PMID: 39983264 DOI: 10.1016/j.watres.2025.123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The presence of high concentrations of residual antibiotics in aquaculture medicated bath wastewater poses challenges to conventional biological nitrogen removal processes. Membrane aerated biofilm reactor (MABR), known for its energy efficiency and stratified biofilm structure that supports diverse ecological niches, was therefore introduced. Experimental results revealed that MABR achieved an exceptional NH4+-N removal efficiency of 98.2 ± 1.8 % even under high oxytetracycline exposure, attributed to the protective effects of the biofilm on functional bacteria colonized in the inner layer (e.g., ammonia- and nitrite-oxidizing bacteria). Genes mediating the nitrification process, such as amoA/B and nxrA, showed an overall upward trend, with the activation of efflux pumps synergistically constituting the microbial response. Conversely, total nitrogen removal efficiency decreased from 95.3 ± 2.5 % to 76.0 ± 8.8 %, despite enrichment of Denitratisoma oestradiolicum (14.5 %) and denitrifying bacterium clone NOA-1-C (41.7 %), likely due to limited expression of the narG gene. After ceasing oxytetracycline dosing and adjusting operational parameters, total nitrogen removal improved to 87.4 ± 5.8 %. The results of this study underscore the significance and resilience of MABR technology in the treatment of aquaculture medicated bath wastewater.
Collapse
Affiliation(s)
- Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou 510663, China
| | - Lei Zhang
- Ecological Environment Monitoring Center, Xingtai 054001, China
| | - Junjian Zheng
- College of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Liu X, Li H, Yang J, Yan S, Zhou Y, Jiang R, Li R, Wang M, Ren P. Different effects of bio/non-degradable microplastics on sewage sludge compost performance: Focusing on antibiotic resistance genes, virulence factors and key metabolic functions. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137329. [PMID: 39879766 DOI: 10.1016/j.jhazmat.2025.137329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Microplastics (MP) have aroused increasing concern due to the negative environmental impact. However, the impact of bio/non-biodegradable MPs on the sludge composting process has not been thoroughly investigated. This study examined antibiotic resistance genes (ARGs), virulence factors (VFs), and microbial community functions in sludge compost with the application of polylactic acid (PLA) and polypropylene (PP), using metagenomic sequencing. The findings indicated that both types of MPs could extend the thermophilic phase, enhance microbial activity, and inhibit the formation of humic acids. Compared to CK, the subtypes of ARGs decreased 4.22 % and 13.11 % in PLA and PP groups, respectively. But new ARGs emerged, particularly in the PLA group. The proportions of ARGs related to efflux and VFs associated with the adhesion system increased 1.62 %-2.27 % and 55.56 %-60.00 %, respectively, in MPs-added composts. The relative abundance of potential bacterial hosts (e.g., Psychrobacter) carrying multiple ARGs and VFs was much higher in PLA-added compost than in the other two. Moreover, PP facilitated denitrification process and PLA enhanced dissimilatory nitrate reduction to ammonium. Both types of MPs inhibited assimilatory nitrate reduction to ammonia but promoted inorganic nitrogen assimilation. This study broadens our understanding of the potential environmental risks posed by biodegradable and non-biodegradable microplastics on sludge compost and offers valuable insights for the management and application of compost products.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiyue Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou 450000, China
| | - Yufei Zhou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Jiang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Renhe Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mengmeng Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Peng Ren
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao 266061, China
| |
Collapse
|
3
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
McCarlie SJ, du Preez LL, Hernandez JC, Boucher CE, Bragg RR. Transcriptomic signature of bacteria exposed to benzalkonium chloride. Res Microbiol 2024; 175:104151. [PMID: 37952705 DOI: 10.1016/j.resmic.2023.104151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
The COVID-19 pandemic has highlighted our reliance on biocides, the increasing prevalence of resistance to biocides is a risk to public health. Bacterial exposure to the biocide, benzalkonium chloride (BAC), resulted in a unique transcriptomic profile, characterised by both a short and long-term response. Differential gene expression was observed in four main areas: motility, membrane composition, proteostasis, and the stress response. A metabolism shift to protect the proteome and the stress response were prioritised suggesting these are main resistance mechanisms. Whereas "well-established" mechanisms, such as biofilm formation, were not found to be differentially expressed after exposure to BAC.
Collapse
Affiliation(s)
- Samantha J McCarlie
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Louis L du Preez
- Research & HPC: ICT Services, University of the Free State, South Africa
| | | | - Charlotte E Boucher
- Department of Microbiology and Biochemistry, University of the Free State, South Africa
| | - Robert R Bragg
- Department of Microbiology and Biochemistry, University of the Free State, South Africa.
| |
Collapse
|
5
|
Al Khoury C, Tokajian S, Nemer N, Nemer G, Rahy K, Thoumi S, Al Samra L, Sinno A. Computational Applications: Beauvericin from a Mycotoxin into a Humanized Drug. Metabolites 2024; 14:232. [PMID: 38668360 PMCID: PMC11051850 DOI: 10.3390/metabo14040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Drug discovery was initially attributed to coincidence or experimental research. Historically, the traditional approaches were complex, lengthy, and expensive, entailing costly random screening of synthesized compounds or natural products coupled with in vivo validation largely depending on the availability of appropriate animal models. Currently, in silico modeling has become a vital tool for drug discovery and repurposing. Molecular docking and dynamic simulations are being used to find the best match between a ligand and a molecule, an approach that could help predict the biomolecular interactions between the drug and the target host. Beauvericin (BEA) is an emerging mycotoxin produced by the entomopathogenic fungus Beauveria bassiana, being originally studied for its potential use as a pesticide. BEA is now considered a molecule of interest for its possible use in diverse biotechnological applications in the pharmaceutical industry and medicine. In this manuscript, we provide an overview of the repurposing of BEA as a potential therapeutic agent for multiple diseases. Furthermore, considerable emphasis is given to the fundamental role of in silico techniques to (i) further investigate the activity spectrum of BEA, a secondary metabolite, and (ii) elucidate its mode of action.
Collapse
Affiliation(s)
- Charbel Al Khoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos Campus, Byblos P.O. Box 36, Lebanon
| | - Nabil Nemer
- Department of Agriculture and Food Engineering, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Kelven Rahy
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos P.O. Box 36, Lebanon
| | - Sergio Thoumi
- Department of Computer Science and Mathematics, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Lynn Al Samra
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Aia Sinno
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut Campus, P.O. Box 13-5053, Chouran, Beirut 1102 2801, Lebanon
| |
Collapse
|
6
|
Dey S, Rout M, Pati S, Singh MK, Dehury B, Subudhi E. All-atoms molecular dynamics study to screen potent efflux pump inhibitors against KpnE protein of Klebsiella pneumoniae. J Biomol Struct Dyn 2024; 42:3492-3506. [PMID: 37218086 DOI: 10.1080/07391102.2023.2214232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
The Small Multidrug Resistance efflux pump protein KpnE, plays a pivotal role in multi-drug resistance in Klebsiella pneumoniae. Despite well-documented study of its close homolog, EmrE, from Escherichia coli, the mechanism of drug binding to KpnE remains obscure due to the absence of a high-resolution experimental structure. Herein, we exclusively elucidate its structure-function mechanism and report some of the potent inhibitors through drug repurposing. We used molecular dynamics simulation to develop a dimeric structure of KpnE and explore its dynamics in lipid-mimetic bilayers. Our study identified both semi-open and open conformations of KpnE, highlighting its importance in transport process. Electrostatic surface potential map suggests a considerable degree of similarity between KpnE and EmrE at the binding cleft, mostly occupied by negatively charged residues. We identify key amino acids Glu14, Trp63 and Tyr44, indispensable for ligand recognition. Molecular docking and binding free energy calculations recognizes potential inhibitors like acarbose, rutin and labetalol. Further validations are needed to confirm the therapeutic role of these compounds. Altogether, our membrane dynamics study uncovers the crucial charged patches, lipid-binding sites and flexible loop that could potentiate substrate recognition, transport mechanism and pave the way for development of novel inhibitors against K. pneumoniae.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suchanda Dey
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Enketeswara Subudhi
- Biomics and Biodiversity lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Maillard JY, Pascoe M. Disinfectants and antiseptics: mechanisms of action and resistance. Nat Rev Microbiol 2024; 22:4-17. [PMID: 37648789 DOI: 10.1038/s41579-023-00958-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Chemical biocides are used for the prevention and control of infection in health care, targeted home hygiene or controlling microbial contamination for various industrial processes including but not limited to food, water and petroleum. However, their use has substantially increased since the implementation of programmes to control outbreaks of methicillin-resistant Staphylococcus aureus, Clostridioides difficile and severe acute respiratory syndrome coronavirus 2. Biocides interact with multiple targets on the bacterial cells. The number of targets affected and the severity of damage will result in an irreversible bactericidal effect or a reversible bacteriostatic one. Most biocides primarily target the cytoplasmic membrane and enzymes, although the specific bactericidal mechanisms vary among different biocide chemistries. Inappropriate usage or low concentrations of a biocide may act as a stressor while not killing bacterial pathogens, potentially leading to antimicrobial resistance. Biocides can also promote the transfer of antimicrobial resistance genes. In this Review, we explore our current understanding of the mechanisms of action of biocides, the bacterial resistance mechanisms encompassing both intrinsic and acquired resistance and the influence of bacterial biofilms on resistance. We also consider the impact of bacteria that survive biocide exposure in environmental and clinical contexts.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK.
| | - Michael Pascoe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| |
Collapse
|
8
|
Nanjan P, Bose V. Efflux-mediated Multidrug Resistance in Critical Gram-negative Bacteria and Natural Efflux Pump Inhibitors. Curr Drug Res Rev 2024; 16:349-368. [PMID: 38288795 DOI: 10.2174/0125899775271214240112071830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 09/04/2024]
Abstract
Multidrug Resistance mechanisms in microorganisms confer the slackness of the existing drugs, leading to added difficulty in treating infections. As a consequence, efficient novel drugs and innovative therapies to treat MDR infections are necessarily required. One of the primary contributors to the emergence of multidrug resistance in gram-negative bacteria has been identified as the efflux pumps. These transporter efflux pumps reduce the intracellular concentration of antibiotics and aid bacterial survival in suboptimal low antibiotic concentration environments that may cause treatment failure. The reversal of this resistance via inhibition of the efflux mechanism is a promising method for increasing the effectiveness of antibiotics against multidrug-resistant pathogens. Such EPI, in combination with antibiotics, can make it easier to reintroduce traditional antibiotics into clinical practice. This review mostly examines efflux-mediated multidrug resistance in critical gram-negative bacterial pathogens and EPI of plant origin that have been reported over previous decades.
Collapse
Affiliation(s)
- Praveena Nanjan
- Department of Biochemistry, School of Life Science, Jss Academy of Higher Education and Research, Longwood Campus, Mysuru Road, Ooty, India
| | - Vanitha Bose
- Department of Biochemistry, School of Life Science, Jss Academy of Higher Education and Research, Longwood Campus, Mysuru Road, Ooty, India
| |
Collapse
|
9
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
10
|
Ashy RA. Functional analysis of bacterial genes accidentally packaged in rhizospheric phageome of the wild plant species Abutilon fruticosum. Saudi J Biol Sci 2023; 30:103789. [PMID: 37680975 PMCID: PMC10480775 DOI: 10.1016/j.sjbs.2023.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The study aimed to reveal the structure and function of phageome existing in soil rhizobiome of Abutilon fruticosum in order to detect accidentally-packaged bacterial genes that encode Carbohydrate-Active enZymes (or CAZymes) and those that confer antibiotic resistance (e.g., antibiotic resistance genes or ARGs). Highly abundant genes were shown to mainly exist in members of the genera Pseudomonas, Streptomyces, Mycobacterium and Rhodococcus. Enriched CAZymes belong to glycoside hydrolase families GH4, GH6, GH12, GH15 and GH43 and mainly function in D-glucose biosynthesis via 10 biochemical passages. Another enriched CAZyme, e.g., alpha-galactosidase, of the GH4 family is responsible for the wealth of different carbohydrate forms in rhizospheric soil sink of A. fruticosum. ARGs of this phageome include the soxR and OleC genes that participate in the "antibiotic efflux pump" resistance mechanism, the parY mutant gene that participates in the "antibiotic target alteration" mechanism and the arr-1, iri, and AAC(3)-Ic genes that participate in the "antibiotic inactivation" mechanism. It is claimed that the genera Streptomyces, which harbors phages with oleC and parY mutant genes, and Pseudomonas, which harbors phages with soxR and AAC(3)-Ic genes, are approaching multidrug resistance via newly disseminating phages. These ARGs inhibit many antibiotics including oleandomycin, tetracycline, rifampin and aminoglycoside. The study highlights the possibility of accidental packaging of these ARGs in soil phageome and the risk of their horizontal transfer to human gut pathogens through the food chain as detrimental impacts of soil phageome of A. fruticosum. The study also emphasizes the beneficial impacts of phageome on soil microbiome and plant interacting in storing carbohydrates in the soil sink for use by the two entities upon carbohydrate deprivation.
Collapse
Affiliation(s)
- Ruba Abdulrahman Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|
11
|
Alshehri WA, Abulfaraj AA, Alqahtani MD, Alomran MM, Alotaibi NM, Alwutayd K, Aloufi AS, Alshehrei FM, Alabbosh KF, Alshareef SA, Ashy RA, Refai MY, Jalal RS. Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum. AMB Express 2023; 13:92. [PMID: 37646836 PMCID: PMC10469157 DOI: 10.1186/s13568-023-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine.
Collapse
Affiliation(s)
- Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Mashael D Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Khairiah Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, 21955, Makkah, Saudi Arabia
| | - Khulood F Alabbosh
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, 21921, Jeddah, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Mohammed Y Refai
- Department of Biochemistry, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia.
| |
Collapse
|
12
|
Majumder P, Ahmed S, Ahuja P, Athreya A, Ranjan R, Penmatsa A. Cryo-EM structure of antibacterial efflux transporter QacA from Staphylococcus aureus reveals a novel extracellular loop with allosteric role. EMBO J 2023; 42:e113418. [PMID: 37458117 PMCID: PMC10425836 DOI: 10.15252/embj.2023113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Efflux of antibacterial compounds is a major mechanism for developing antimicrobial resistance. In the Gram-positive pathogen Staphylococcus aureus, QacA, a 14 transmembrane helix containing major facilitator superfamily antiporter, mediates proton-coupled efflux of mono and divalent cationic antibacterial compounds. In this study, we report the cryo-EM structure of QacA, with a single mutation D411N that improves homogeneity and retains efflux activity against divalent cationic compounds like dequalinium and chlorhexidine. The structure of substrate-free QacA, complexed to two single-domain camelid antibodies, was elucidated to a resolution of 3.6 Å. The structure displays an outward-open conformation with an extracellular helical hairpin loop (EL7) between transmembrane helices 13 and 14, which is conserved in a subset of DHA2 transporters. Removal of the EL7 hairpin loop or disrupting the interface formed between EL7 and EL1 compromises efflux activity. Chimeric constructs of QacA with a helical hairpin and EL1 grafted from other DHA2 members, LfrA and SmvA, restore activity in the EL7 deleted QacA revealing the allosteric and vital role of EL7 hairpin in antibacterial efflux in QacA and related members.
Collapse
Affiliation(s)
- Puja Majumder
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
Memorial‐Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
St. Jude Children's Research HospitalMemphisTNUSA
| | - Pragya Ahuja
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Arunabh Athreya
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rakesh Ranjan
- ICAR‐National Research Centre on CamelJorbeerBikanerIndia
| | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
13
|
Chegene Lorestani R, Shojaeian A, Rostamian M. Phenotypic, genotypic, and metabolic resistance mechanisms of ESKAPE bacteria to chemical disinfectants: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21:1097-1123. [PMID: 37674347 DOI: 10.1080/14787210.2023.2256975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The presence of resistant ESKAPE pathogens to antimicrobials including chemical disinfectants (ChDs) is a serious threat to public health worldwide. In the present study, we systematically reviewed published reports on mechanisms beyond ChD resistance of ESKAPE bacteria. RESEARCH DESIGN AND METHODS Several databases without date limitations were searched. Studies focused on the ChD resistance/tolerance mechanisms of ESKAPE bacteria were included. Meta-analysis was done to assess the frequency of tolerance and genes in ESKAPE clinical isolates. By screening of initial 6733 records, finally, 41 studies were included. RESULTS The overall tolerance to at least one ChD was 48.6%. Pseudomonas aeruginosa and Acinetobacter baumannii were highly ChD-resistant. In several studies, phenotypic changes including changes in general morphology, pump function, cell surface, and membrane, as well as metabolic changes were observed after ChD addition. The resistance gene frequency was 70.2% for norfloxacin efflux pump genes, 40.6% for qac major facilitator superfamily genes, and 22.2% for qac small multidrug resistance genes. CONCLUSION We systematically reviewed the effect of various mechanisms in the resistance process of ESKAPE bacteria to ChDs. However, except for the impact of genes, the numbers of studies investigating other mechanisms were very limited, demanding carrying out more studies in this field.
Collapse
Affiliation(s)
- Roya Chegene Lorestani
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
da Silva LYS, Paulo CLR, Moura TF, Alves DS, Pessoa RT, Araújo IM, de Morais Oliveira-Tintino CD, Tintino SR, Nonato CDFA, da Costa JGM, Ribeiro-Filho J, Coutinho HDM, Kowalska G, Mitura P, Bar M, Kowalski R, Menezes IRAD. Antibacterial Activity of the Essential Oil of Piper tuberculatum Jacq. Fruits against Multidrug-Resistant Strains: Inhibition of Efflux Pumps and β-Lactamase. PLANTS (BASEL, SWITZERLAND) 2023; 12:2377. [PMID: 37376002 DOI: 10.3390/plants12122377] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Antimicrobial resistance has become a growing public health concern in recent decades, demanding a search for new effective treatments. Therefore, this study aimed to elucidate the phytochemical composition and evaluate the antibacterial activity of the essential oil obtained from the fruits of Piper tuberculatum Jacq. (EOPT) against strains carrying different mechanisms of antibiotic resistance. Phytochemical analysis was performed using gas chromatography-mass spectrometry (GC/MS). The antibacterial activity of EOPT and its ability to inhibit antibiotic resistance was evaluated through the broth microdilution method. The GC-MS analysis identified 99.59% of the constituents, with β-pinene (31.51%), α-pinene (28.38%), and β-cis-ocimene (20.22%) being identified as major constituents. The minimum inhibitory concentration (MIC) of EOPT was determined to assess its antibacterial activity against multidrug-resistant strains of Staphylococcus aureus (IS-58, 1199B, K2068, and K4100). The compound showed a MIC of ≥ 1024 μg/mL, suggesting a lack of intrinsic antibacterial activity. However, when the EOPT was associated with antibiotics and EtBr, a significant decrease in antibiotic resistance was observed, indicating the modulation of efflux pump activity. This evidence was corroborated with the observation of increased fluorescent light emission by the bacterial strains, indicating the involvement of the NorA and MepA efflux pumps. Additionally, the significant potentiation of ampicillin activity against the S. aureus strain K4414 suggests the β-lactamase inhibitory activity of EOPT. These results suggest that the essential oil from P. tuberculatum fruits has antibiotic-enhancing properties, with a mechanism involving the inhibition of efflux pumps and β-lactamase in MDR S. aureus strains. These findings provide new perspectives on the potential use of EOPT against antibiotic resistance and highlight the importance of Piper species as sources of bioactive compounds with promising therapeutic activities against MDR bacteria. Nevertheless, further preclinical (in vivo) studies remain necessary to confirm these in vitro-observed results.
Collapse
Affiliation(s)
- Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Cicera Laura Roque Paulo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Talysson Felismino Moura
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Daniel Sampaio Alves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Isaac Moura Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Carla de Fatima Alves Nonato
- Laboratory Natural Products Research, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - José Galberto Martins da Costa
- Laboratory Natural Products Research, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Ceará, R. São José, S/N-Precabura, Eusébio 21040-900, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Oncological Urology, Medical University of Lublin, 8 Jaczewskiego Str., 20-954 Lublin, Poland
| | - Marek Bar
- Department of Urology and Oncological Urology, Medical University of Lublin, 8 Jaczewskiego Str., 20-954 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri-URCA, Crato 63105-000, CE, Brazil
| |
Collapse
|
15
|
Li H, Li X, Chen T, Yang Z, Shi D, Yin J, Yang D, Zhou S, Li J, Jin M. Antidepressant exposure as a source of disinfectant resistance in waterborne bacteria. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131371. [PMID: 37030229 DOI: 10.1016/j.jhazmat.2023.131371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The emergence of disinfectant-resistant pathogens in water is a major threat to public health. However, whether human-consumed pharmaceuticals can induce bacterial resistance to disinfectants remains unclear. Herein, Escherichia coli was exposed to 12 antidepressants, and susceptibility of antidepressant-induced chloramphenicol (CHL)-resistant mutants to disinfectants was tested. Whole genome sequencing, global transcriptomic sequencing, and real-time quantitative polymerase chain reaction were used to elucidate the underlying mechanisms. We observed that duloxetine, fluoxetine, amitriptyline, and sertraline significantly increased the mutation frequency of E. coli against CHL by 15- to 2948-fold. The resultant mutants increased the average MIC50 of sodium hypochlorite, benzalkonium bromide, and triclosan roughly 2- to 8-fold. Consistently, marRAB and acrAB-tolC genes, together with ABC transporter genes (e.g., yddA, yadG, yojI, and mdlA), were triggered to increase the efflux of disinfectants out of the cell, while ompF was inhibited, reducing disinfectant penetration into the cell. Additionally, the occurrence of DNA mutations in marR and acrR in the mutants was observed, potentially resulting in increased synthesis of the AcrAB-TolC pump. This study indicates that pharmaceutical exposure may create disinfectant-resistant bacteria, which may then be released into water systems, providing novel insights into the potential source of water-borne disinfectant-resistant pathogens.
Collapse
Affiliation(s)
- Haibei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Xinmei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Zhongwei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Danyang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Shuqing Zhou
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
16
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
17
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
18
|
Ashy RA, Jalal RS, Sonbol HS, Alqahtani MD, Sefrji FO, Alshareef SA, Alshehrei FM, Abuauf HW, Baz L, Tashkandi MA, Hakeem IJ, Refai MY, Abulfaraj AA. Functional annotation of rhizospheric phageome of the wild plant species Moringa oleifera. Front Microbiol 2023; 14:1166148. [PMID: 37260683 PMCID: PMC10227523 DOI: 10.3389/fmicb.2023.1166148] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/10/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction The study aims to describe phageome of soil rhizosphere of M.oleifera in terms of the genes encoding CAZymes and other KEGG enzymes. Methods Genes of the rhizospheric virome of the wild plant species Moringa oleifera were investigated for their ability to encode useful CAZymes and other KEGG (Kyoto Encyclopedia of Genes and Genomes) enzymes and to resist antibiotic resistance genes (ARGs) in the soil. Results Abundance of these genes was higher in the rhizospheric microbiome than in the bulk soil. Detected viral families include the plant viral family Potyviridae as well as the tailed bacteriophages of class Caudoviricetes that are mainly associated with bacterial genera Pseudomonas, Streptomyces and Mycobacterium. Viral CAZymes in this soil mainly belong to glycoside hydrolase (GH) families GH43 and GH23. Some of these CAZymes participate in a KEGG pathway with actions included debranching and degradation of hemicellulose. Other actions include biosynthesizing biopolymer of the bacterial cell wall and the layered cell wall structure of peptidoglycan. Other CAZymes promote plant physiological activities such as cell-cell recognition, embryogenesis and programmed cell death (PCD). Enzymes of other pathways help reduce the level of soil H2O2 and participate in the biosynthesis of glycine, malate, isoprenoids, as well as isoprene that protects plant from heat stress. Other enzymes act in promoting both the permeability of bacterial peroxisome membrane and carbon fixation in plants. Some enzymes participate in a balanced supply of dNTPs, successful DNA replication and mismatch repair during bacterial cell division. They also catalyze the release of signal peptides from bacterial membrane prolipoproteins. Phages with the most highly abundant antibiotic resistance genes (ARGs) transduce species of bacterial genera Pseudomonas, Streptomyces, and Mycobacterium. Abundant mechanisms of antibiotic resistance in the rhizosphere include "antibiotic efflux pump" for ARGs soxR, OleC, and MuxB, "antibiotic target alteration" for parY mutant, and "antibiotic inactivation" for arr-1. Discussion These ARGs can act synergistically to inhibit several antibiotics including tetracycline, penam, cephalosporin, rifamycins, aminocoumarin, and oleandomycin. The study highlighted the issue of horizontal transfer of ARGs to clinical isolates and human gut microbiome.
Collapse
Affiliation(s)
- Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mashael D. Alqahtani
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah O. Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Sahar A. Alshareef
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah M. Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Israa J. Hakeem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science & Arts, King AbdulAziz University, Rabigh, Saudi Arabia
| |
Collapse
|
19
|
Dashtbani-Roozbehani A, Chitsaz M, Brown MH. The role of TMS 12 in the staphylococcal multidrug efflux protein QacA. J Antimicrob Chemother 2023:7143693. [PMID: 37100459 DOI: 10.1093/jac/dkad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To elucidate the importance of a region in QacA predicted to be important in antimicrobial substrate recognition. METHODS A total of 38 amino acid residues within or flanking putative transmembrane helix segment (TMS) 12 of QacA were individually replaced with cysteine using site-directed mutagenesis. The impact of these mutations on protein expression, drug resistance, transport activity and interaction with sulphhydryl-binding compounds was determined. RESULTS Accessibility analysis of cysteine-substituted mutants identified the extents of TMS 12, which allowed for refinement of the QacA topology model. Mutation of Gly-361, Gly-379 and Ser-387 in QacA resulted in reduced resistance to at least one bivalent substrate. Interaction with sulphhydryl-binding compounds in efflux and binding assays demonstrated the role of Gly-361 and Ser-387 in the binding and transport pathway of specific substrates. The highly conserved residue Gly-379 was found to be important for the transport of bivalent substrates, commensurate with the role of glycine residues in helical flexibility and interhelical interactions. CONCLUSIONS TMS 12 and its external flanking loop is required for the structural and functional integrity of QacA and contains amino acids directly involved in the interaction with substrates.
Collapse
Affiliation(s)
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
20
|
Quan H, Gong X, Chen Q, Zheng F, Yu Y, Liu D, Wang W, Chu Y. Functional Characterization of a Novel SMR-Type Efflux Pump RanQ, Mediating Quaternary Ammonium Compound Resistance in Riemerella anatipestifer. Microorganisms 2023; 11:907. [PMID: 37110330 PMCID: PMC10142375 DOI: 10.3390/microorganisms11040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is a multidrug-resistant bacterium and an important pathogen responsible for major economic losses in the duck industry. Our previous study revealed that the efflux pump is an important resistance mechanism of R. anatipestifer. Bioinformatics analysis indicated that the GE296_RS02355 gene (denoted here as RanQ), a putative small multidrug resistance (SMR)-type efflux pump, is highly conserved in R. anatipestifer strains and important for the multidrug resistance. In the present study, we characterized the GE296_RS02355 gene in R. anatipestifer strain LZ-01. First, the deletion strain RA-LZ01ΔGE296_RS02355 and complemented strain RA-LZ01cΔGE296_RS02355 were constructed. When compared with that of the wild-type (WT) strain RA-LZ01, the mutant strain ΔRanQ showed no significant influence on bacterial growth, virulence, invasion and adhesion, morphology biofilm formation ability, and glucose metabolism. In addition, the ΔRanQ mutant strain did not alter the drug resistance phenotype of the WT strain RA-LZ01 and displayed enhanced sensitivity toward structurally related quaternary ammonium compounds, such as benzalkonium chloride and methyl viologen, which show high efflux specificity and selectivity. This study may help elucidate the unprecedented biological functions of the SMR-type efflux pump in R. anatipestifer. Thus, if this determinant is horizontally transferred, it could cause the spread of quaternary ammonium compound resistance among bacterial species.
Collapse
Affiliation(s)
- Heng Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Donghui Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
Le CY, Ye YJ, Xu J, Li L, Feng XQ, Chen NP, Zhu BQ, Ding ZS, Qian CD. Hinokitiol Selectively Enhances the Antibacterial Activity of Tetracyclines against Staphylococcus aureus. Microbiol Spectr 2023; 11:e0320522. [PMID: 36943047 PMCID: PMC10101018 DOI: 10.1128/spectrum.03205-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The increasing prevalence of antibiotic resistance causes an urgent need for alternative agents to combat drug-resistant bacterial pathogens. Plant-derived compounds are promising candidates for the treatment of infections caused by antibiotic-resistant bacteria. Hinokitiol (β-thujaplicin), a natural tropolone derivative found in the heartwood of cupressaceous plants, has been widely used in oral and skin care products as an antimicrobial agent. The aim of this work was to study the synergy potential of hinokitiol with antibiotics against Staphylococcus aureus, which is an extremely successful opportunistic pathogen capable of causing nosocomial and community-acquired infections worldwide. The MIC was determined by the broth microdilution method, and the effect of combinations was evaluated through fractional inhibitory concentration indices (FICI). The mechanism behind this synergy was also investigated by using fluorescence spectroscopy and high-performance liquid chromatography (HPLC). The MICs of hinokitiol alone against most S. aureus strains were 32 μg/mL. Selectively synergistic activities (FICIs of ≤0.5) were observed for combinations of this phytochemical with tetracyclines against all tested strains of S. aureus. Importantly, hinokitiol at 1 μg/mL completely or partially reversed tetracycline resistance in staphylococcal isolates. The increased accumulation of tetracycline inside S. aureus in the presence of hinokitiol was observed. In addition, hinokitiol promoted the uptake of ethidium bromide (EB) in bacterial cells without membrane depolarization, suggesting that it may be an efflux pump inhibitor. IMPORTANCE The disease caused by S. aureus is a public health issue due to the continuing emergence of drug-resistant strains, particularly methicillin-resistant S. aureus (MRSA). Tetracyclines, one of the old classes of antimicrobials, have been used for the treatment of infections caused by S. aureus. However, the increased resistance to tetracyclines together with their toxicity have limited their use in the clinic. Here, we demonstrated that the combination of hinokitiol and tetracyclines displayed synergistic antibacterial activity against S. aureus, including tetracycline-resistant strains and MRSA, offering a potential alternative approach for the treatment of infections caused by this bacterium.
Collapse
Affiliation(s)
- Chun-Yan Le
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Jian Ye
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou, China
| | - Jian Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi-Qing Feng
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao-Dong Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Molecular Medicine, College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
23
|
Du HY, Zhang YZ, Liu K, Gu PW, Cao S, Gao X, Wang ZY, Liu ZH, Yu ZY. Analysis of the Properties of 44 ABC Transporter Genes from Biocontrol Agent Trichoderma asperellum ACCC30536 and Their Responses to Pathogenic Alternaria alternata Toxin Stress. Curr Issues Mol Biol 2023; 45:1570-1586. [PMID: 36826046 PMCID: PMC9955796 DOI: 10.3390/cimb45020101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are involved in transporting multiple substrates, such as toxins, and may be important for the survival of Trichoderma when encountering biotic toxins. In this study, genome searching revealed that there are 44 ABC transporters encoded in the genome of Trichoderma asperellum. These ABC transporters were divided into six types based on three-dimensional (3D) structure prediction, of which four, represented by 39 ABCs, are involved in transport and the remaining two, represented by 5 ABCs, are involved in regulating translation. The characteristics of nucleotide-binding domain (NBD) are important in the identification of ABC proteins. Even though the 3D structures of the 79 NBDs in the 44 ABCs are similar, multiple sequence alignment showed they can be divided into three classes. In total, 794 motifs were found in the promoter regions of the 44 ABC genes, of which 541 were cis-regulators related to stress responses. To characterize how their ABCs respond when T. asperellum interact with fungi or plants, T. asperellum was cultivated in either minimal media (MM) control, C-hungry, N-hungry, or poplar medium (PdPap) to simulate normal conditions, competition with pathogens, interaction with pathogens, and interaction with plants, respectively. The results show that 17 of 39 transport ABCs are highly expressed in at least one condition, whereas four of the five translation-regulating ABCs are highly expressed in at least one condition. Of these 21 highly expressed ABCs, 6 were chosen for RT-qPCR expression under the toxin stress of phytopathogen Alternaria alternata, and the results show ABC01, ABC04, ABC05, and ABC31 were highly expressed and may be involved in pathogen interaction and detoxifying toxins from A. alternata.
Collapse
Affiliation(s)
- Hua-Ying Du
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
| | - Yu-Zhou Zhang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Kuo Liu
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
| | - Pei-Wen Gu
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
| | - Shuang Cao
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
| | - Xiang Gao
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
| | - Zhi-Ying Wang
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Zhi-Hua Liu
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- College of Forestry, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ze-Yang Yu
- School of Agriculture, Ningxia University, 489 Helan Mountain West Road, Yinchuan 750021, China
- School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Correspondence: ; Tel.: +86-951-5015825; Fax: +86-951-5032599
| |
Collapse
|
24
|
Zhai G, Zhang Z, Dong C. Mutagenesis and functional analysis of SotB: A multidrug transporter of the major facilitator superfamily from Escherichia coli. Front Microbiol 2022; 13:1024639. [PMID: 36386622 PMCID: PMC9650428 DOI: 10.3389/fmicb.2022.1024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 10/28/2023] Open
Abstract
Dysfunction of the major facilitator superfamily multidrug (MFS Mdr) transporters can lead to a variety of serious diseases in human. In bacteria, such membrane proteins are often associated with bacterial resistance. However, as one of the MFS Mdr transporters, the physiological function of SotB from Escherichia coli is poorly understood to date. To better understand the function and mechanism of SotB, a systematic study on this MFS Mdr transporter was carried out. In this study, SotB was found to directly efflux L-arabinose in E. coli by overexpressing sotB gene combined with cell based radiotracer uptake assay. Besides, the surface plasmon resonance (SPR) studies, the L-arabinose inhibition assays, together with precise molecular docking analysis, reveal the following: (i) the functional importance of E29 (protonation), H115/N343 (substrate recognition), and W119/S339 (substrate efflux) in the SotB mediated export of L-arabinose, and (ii) for the first time find that D-xylose, an isomer of L-arabinose, likely hinders the binding of L-arabinose with SotB as a competitive inhibitor. Finally, by analyzing the structure of SotB2 (shares 62.8% sequence similarity with SotB) predicted by AlphaFold 2, the different molecular mechanism of substrate recognition between SotB and SotB2 is explained. To our knowledge, this is the first systematic study of MFS Mdr transporter SotB. The structural information, together with the biochemical inspections in this study, provide a valuable framework for further deciphering the functional mechanisms of the physiologically important L-arabinose transporter SotB and its family.
Collapse
Affiliation(s)
| | - Zhengyu Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Shami AY, Abulfaraj AA, Refai MY, Barqawi AA, Binothman N, Tashkandi MA, Baeissa HM, Baz L, Abuauf HW, Ashy RA, Jalal RS. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Front Microbiol 2022; 13:990169. [PMID: 36187977 PMCID: PMC9524394 DOI: 10.3389/fmicb.2022.990169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
Collapse
Affiliation(s)
- Ashwag Y. Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Aala A. Abulfaraj
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Y. Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aminah A. Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Manal A. Tashkandi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science—King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haneen W. Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ruba A. Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Rewaa S. Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
- *Correspondence: Rewaa S. Jalal,
| |
Collapse
|
26
|
Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. Genes (Basel) 2022; 13:genes13081397. [PMID: 36011308 PMCID: PMC9407594 DOI: 10.3390/genes13081397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.
Collapse
|
27
|
Hospital water as the source of healthcare-associated infection and antimicrobial-resistant organisms. Curr Opin Infect Dis 2022; 35:339-345. [PMID: 35849524 DOI: 10.1097/qco.0000000000000842] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Drinking water is considered one of the most overlooked and underestimated sources of healthcare-associated infections (HAIs). Recently, the prevention and control of opportunistic premise plumbing pathogens (OPPPs) in healthcare water systems has been receiving increasing attention in infection control guidelines. However, these fail to address colonization of pathogens that do not originate from source water. Subsequently, this review explores the role of water and premise plumbing biofilm in HAIs. The potential mechanisms of contamination and transmission of antimicrobial-resistant (AMR) pathogens originating both from supply water and human microbiota are discussed. RECENT FINDINGS OPPPs, such as Legionella pneumophila, Pseudomonas aeruginosa and Mycobacterium avium have been described as native to the plumbing environment. However, other pathogens, not found in the source water, have been found to proliferate in biofilms formed on outlets devices and cause HAI outbreaks. SUMMARY Biofilms formed on outlet devices, such as tap faucets, showers and drains provide an ideal niche for the dissemination of antimicrobial resistance. Thus, comprehensive surveillance guidelines are required to understand the role that drinking water and water-related devices play in the transmission of AMR HAIs and to improve infection control guidelines.
Collapse
|
28
|
Belter B, McCarlie SJ, Boucher-van Jaarsveld CE, Bragg RR. Investigation into the Metabolism of Quaternary Ammonium Compound Disinfectants by Bacteria. Microb Drug Resist 2022; 28:841-848. [PMID: 35759372 DOI: 10.1089/mdr.2022.0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Since the start of the COVID-19 pandemic, our reliance on disinfectants and sanitizers and the use thereof has grown. While this may protect human health, it may be selecting for antimicrobial-resistant microorganisms, including those that are not only capable of growth in the presence of disinfectants but also thrive using this as an energy source. Furthermore, there is a growing concern in emerging nosocomial pathogens, which have shown resistance to antibiotics and disinfectants. This rise in resistance has led to the investigation of various mechanisms behind resistance, such as biofilms, efflux pumps, and mobile genetic elements. Although many resistance mechanisms have been identified, it was discovered that some potentially pathogenic microbes could metabolize these compounds, which remains an avenue for further investigation. Investigating alternative metabolic pathways in microorganisms capable of growth using disinfectants as their sole carbon and energy source may provide insight into the metabolism of quaternary ammonium compound (QAC)-based antimicrobials. Many of the metabolic reactions proposed include hydroxylation, N-dealkylation, N-demethylation, and β-oxidation of QACs. If clear metabolic pathways and reactions are elucidated, possible alternative approaches to QACs may be advised. Alternatively, this may provide opportunities for biodegradation of the compounds that adversely affect the environment.
Collapse
Affiliation(s)
- Bernadette Belter
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Samantha J McCarlie
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlotte E Boucher-van Jaarsveld
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Robert R Bragg
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
29
|
Dias MF, Leroy-Freitas D, Machado EC, da Silva Santos L, Leal CD, da Rocha Fernandes G, de Araújo JC. Effects of activated sludge and UV disinfection processes on the bacterial community and antibiotic resistance profile in a municipal wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36088-36099. [PMID: 35060061 DOI: 10.1007/s11356-022-18749-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Wastewater tertiary treatment has been pointed out as an effective alternative for reducing the concentration of antibiotic resistant bacteria and genes (ARB and ARGs) in wastewaters. The present work aimed to build on the current knowledge about the effects of activated sludge and UV irradiation on antibiotic resistance determinants in biologically treated wastewaters. For that, the microbial community and ARGs' composition of samples collected after preliminary (APT), secondary (AST), and tertiary (ATT) treatments in a full-scale wastewater treatment plant using a modified activated sludge (MAS) system followed by an UV stage (16 mJ/cm2) were investigated through culture-dependent and independent approaches (including metagenomics). A total of 24 phyla and 460 genera were identified, with predominance of Gammaproteobacteria in all samples. Pathogenic genera corresponded to 8.6% of all sequences on average, mainly Acinetobacter and Streptococcus. Significant differences (p < 0.05) in the proportion of pathogens were observed between APT and the other samples, suggesting that the secondary treatment reduced its abundance. The MAS achieved 64.0-99.7% average removal efficiency for total (THB) and resistant heterotrophic bacteria, although the proportions of ARB/THB have increased for sulfamethoxazole, cephalexin, ciprofloxacin, and tetracycline. A total of 107 copies/mL of intI1 gene remained in the final effluent, suggesting that the treatment did not significantly remove this gene and possibly other ARGs. In accordance, metagenomic results suggested that number of reads recruited to plasmid-associated ARGs became more abundant in the pool throughout the treatment, suggesting that it affected more the bacteria without these ARGs than those with it. In conclusion, disinfected effluents are still a potential source for ARB and ARGs, which highlights the importance to investigate ways to mitigate their release into the environment.
Collapse
Affiliation(s)
- Marcela França Dias
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil
| | - Deborah Leroy-Freitas
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil
| | - Elayne Cristina Machado
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil
| | - Leticia da Silva Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil
| | - Cintia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil
| | | | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
30
|
Elucidation of a complete mechanical signaling and virulence activation pathway in enterohemorrhagic Escherichia coli. Cell Rep 2022; 39:110614. [PMID: 35385749 DOI: 10.1016/j.celrep.2022.110614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 12/09/2021] [Accepted: 03/13/2022] [Indexed: 12/23/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important extracellular human pathogen. The initial adherence of EHEC to host cells is a major cue for transcriptional induction of the locus of enterocyte effacement (LEE) genes to promote colonization and pathogenesis, but the mechanism through which this adherence is sensed and the LEE is induced remains largely elusive. Here, we report a complete signal transduction pathway for this virulence activation process. In this pathway, the outer-membrane lipoprotein NlpE senses a mechanical cue generated from initial host adherence and activates the BaeSR two-component regulatory system; the response regulator BaeR then directly activates the expression of airA located on O-island-134 and encoding a LEE transcriptional activator. Disruption of this pathway severely attenuates EHEC O157:H7 virulence both in vitro and in vivo. This study provides further insights into the evolution of EHEC pathogenesis and the host-pathogen interaction.
Collapse
|
31
|
Samreen, Qais FA, Ahmad I. In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. J Biomol Struct Dyn 2022; 41:2189-2201. [PMID: 35067192 DOI: 10.1080/07391102.2022.2029564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple drug resistance (MDR) in bacteria has increased globally in recent times. This has reduced the efficacy of antibiotics and increasing the rate of therapeutic failure. Targeting efflux pump by natural and synthetic compounds is one of the strategies to develop an ideal broad-spectrum resistance-modifying agent. Very few inhibitors of AcrB from natural sources have been reported till date. In the current study, 19 phytocompounds were screened for efflux pump inhibitory activity against AcrB protein of E. coli TG1 using molecular docking studies. The molecular dynamics simulation provided stability the protein (AcrB) and its complex with chlorogenic acid under physiological conditions. Moreover, the detailed molecular insights of the binding were also explored. The Lipinski rule of 5 and the drug-likeness prediction was determined using Swiss ADME server, while toxicity prediction was done using admetSAR and PROTOX-II webservers. Chlorogenic acid showed the highest binding affinity (-9.1 kcal mol-1) with AcrB protein among all screened phytocompounds. Consequently, all the phytocompounds that accede to Lipinski's rule, demonstrated a high LD50 value indicating that they are non-toxic except the phytocompound reserpine. Chlorogenic acid and capsaicin are filtered out based on the synergy with tetracycline having FIC index of 0.25 and 0.28. The percentage increase of EtBr fluorescence by chlorogenic acid was 36.6% followed by piperine (24.2%). Chlorogenic acid may be a promising efflux pump inhibitor that might be employed in combination therapy with tetracycline against E. coli, based on the above relationship between in silico screening and in vitro positive efflux inhibitory activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
32
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
33
|
Freitas TS, Xavier JC, Pereira RLS, Rocha JE, Campina FF, de Araújo Neto JB, Silva MMC, Barbosa CRS, Marinho ES, Nogueira CES, Dos Santos HS, Coutinho HDM, Teixeira AMR. In vitro and in silico studies of chalcones derived from natural acetophenone inhibitors of NorA and MepA multidrug efflux pumps in Staphylococcus aureus. Microb Pathog 2021; 161:105286. [PMID: 34793877 DOI: 10.1016/j.micpath.2021.105286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Bacterial resistance induced by efflux pumps is a frequent concern in clinical treatments involving multi-resistant bacteria. Staphylococcus aureus is a microorganism responsible for several types of infections and has several strains carrying efflux pumps, among them are the strain 1199B (NorA overexpresser), and the strain K2068 (MepA overexpresser). In this work, four chalcones derived from Croton anisodontus with modifications in the B ring in their structures were tested regarding their ability to inhibit NorA and MepA efflux pumps. The efflux pump inhibition mechanism was tested with the ethidium bromide substrate in the presence and absence of standard efflux pump inhibitors. The minimum inhibitory concentration values were also compared to those of strains that do not overexpress these efflux pumps. In order to gain some insights about the efflux pump mechanisms of these chalcones, two homology models were created (NorA and MepA) for a docking procedure. In addition, the ADME properties (absorption, distribution, metabolism and excretion) were also evaluated. The tested chalcones promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps. All four tested chalcones appear to bind to the binding sites of the efflux pump models in the same fashion as other chalcones with efflux pump inhibition capabilities. It was also verified that the chalcones 1-4 are well absorbed in the intestine, but with a decrease in their bioavailability, resulting in a low volume of distribution in the blood plasma, in addition to having a mild CNS activity. However, the chalcone 3 and 4 were not toxic due to metabolic activation. Whereas the chalcones 1 and 2 present a mutagenic risk, depending on the oral dose administered. The tested chalcones have not antibacterial activity; however, they are capable of inhibiting efflux pumps for the 1199B and K2068 strains. They promoted synergism of the norfloxacin antibiotic by inhibiting associated efflux pumps, as well as other associated mechanisms.
Collapse
Affiliation(s)
- Thiago S Freitas
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Jayze C Xavier
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Raimundo L S Pereira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Janaína E Rocha
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Fábia F Campina
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - José B de Araújo Neto
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Maria M C Silva
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Cristina R S Barbosa
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Emmanuel S Marinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Carlos E S Nogueira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil
| | - Hélcio S Dos Santos
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Center for Exact Sciences and Technology - Chemistry Course, Vale do Acaraú University, Sobral, CE, Brazil
| | - Henrique D M Coutinho
- Group of Theoretical Chemistry and Electrochemistry, State University of Ceará, Campus FAFIDAM, Limoeiro do Norte, CE, Brazil
| | - Alexandre M R Teixeira
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Department of Physics, Regional University of Cariri, Juazeiro do Norte, CE, Brazil.
| |
Collapse
|
34
|
Taju SW, Shah SMA, Ou YY. Identification of efflux proteins based on contextual representations with deep bidirectional transformer encoders. Anal Biochem 2021; 633:114416. [PMID: 34656612 DOI: 10.1016/j.ab.2021.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Efflux proteins are the transport proteins expressed in the plasma membrane, which are involved in the movement of unwanted toxic substances through specific efflux pumps. Several studies based on computational approaches have been proposed to predict transport proteins and thereby to understand the mechanism of the movement of ions across cell membranes. However, few methods were developed to identify efflux proteins. This paper presents an approach based on the contextualized word embeddings from Bidirectional Encoder Representations from Transformers (BERT) with the Support Vector Machine (SVM) classifier. BERT is the most effective pre-trained language model that performs exceptionally well on several Natural Language Processing (NLP) tasks. Therefore, the contextualized representations from BERT were implemented to incorporate multiple interpretations of identical amino acids in the sequence. A dataset of efflux proteins with annotations was first established. The feature vectors were extracted by transferring protein data through the hidden layers of the pre-trained model. Our proposed method was trained on complete training datasets to identify efflux proteins and achieved the accuracies of 94.15% and 87.13% in the independent tests on membrane and transport datasets, respectively. This study opens a research avenue for the implementation of contextualized word embeddings in Bioinformatics and Computational Biology.
Collapse
Affiliation(s)
- Semmy Wellem Taju
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Syed Muazzam Ali Shah
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan
| | - Yu-Yen Ou
- Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan.
| |
Collapse
|
35
|
Guo K, Zhao Y, Cui L, Cao Z, Zhang F, Wang X, Feng J, Dai M. The Influencing Factors of Bacterial Resistance Related to Livestock Farm: Sources and Mechanisms. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.650347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacterial resistance is a complex scientific issue. To manage this issue, we need to deeply understand the influencing factors and mechanisms. Based on the background of livestock husbandry, this paper reviews the factors that affect the acquisition of bacterial resistance. Meanwhile, the resistance mechanism is also discussed. “Survival of the fittest” is the result of genetic plasticity of bacterial pathogens, which brings about specific response, such as producing adaptive mutation, gaining genetic material or changing gene expression. To a large extent, bacterial populations acquire resistance genes directly caused by the selective pressure of antibiotics. However, mobile resistance genes may be co-selected by other existing substances (such as heavy metals and biocides) without direct selection pressure from antibiotics. This is because the same mobile genetic elements as antibiotic resistance genes can be co-located by the resistance determinants of some of these compounds. Furthermore, environmental factors are a source of resistance gene acquisition. Here, we describe some of the key measures that should be taken to mitigate the risk of antibiotic resistance. We call on the relevant governments or organizations around the world to formulate and improve the monitoring policies of antibiotic resistance, strengthen the supervision, strengthen the international cooperation and exchange, and curb the emergence and spread of drug-resistant strains.
Collapse
|
36
|
Neto LJDL, Ramos AGB, de Freitas TS, Barbosa CRDS, de Sousa Júnior DL, Siyadatpanah A, Nejat M, Wilairatana P, Coutinho HDM, da Cunha FAB. Evaluation of Benzaldehyde as an Antibiotic Modulator and Its Toxic Effect against Drosophila melanogaster. Molecules 2021; 26:5570. [PMID: 34577039 PMCID: PMC8471095 DOI: 10.3390/molecules26185570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
Products of natural origin remain important in the discovery of new bioactive molecules and are less damaging to the environment. Benzaldehyde is a product of the metabolism of plants, and similarly to oxygenated terpenes, it can have antibacterial activity against Staphylococcus aureus and toxic action against Drosophila melanogaster; we aimed to verify these activities. The broth microdilution tests determined the minimum inhibitory concentration (MIC) of benzaldehyde alone and in association with antibiotics and ethidium bromide (EtBr). Toxicity against Drosophila melanogaster was determined by fumigation tests that measured lethality and damage to the locomotor system. The results indicated that there was an association of norfloxacin and ciprofloxacin with benzaldehyde, from 64 μg/mL to 32 μg/mL of ciprofloxacin in the strain K6028 and from 256 μg/mL to 128 μg/mL of norfloxacin in the strain 1199B; however, the associations were not able to interfere with the functioning of the tested efflux pumps. In addition, benzaldehyde had a toxic effect on flies. Thus, the results proved the ability of benzaldehyde to modulate quinolone antibiotics and its toxic effects on fruit flies, thus enabling further studies in this area.
Collapse
Affiliation(s)
- Luiz Jardelino de Lacerda Neto
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Thiago Sampaio de Freitas
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Cristina Rodrigues dos Santos Barbosa
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Dárcio Luiz de Sousa Júnior
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717434765, Iran
| | - Morteza Nejat
- Master of Internal Surgery Nursing, Birjand University of Medical Sciences, Birjand 9717434765, Iran;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
| |
Collapse
|
37
|
Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, Arimondo PB, Glaser P, Aigle B, Bode HB, Moreira R, Li Y, Luzhetskyy A, Medema MH, Pernodet JL, Stadler M, Tormo JR, Genilloud O, Truman AW, Weissman KJ, Takano E, Sabatini S, Stegmann E, Brötz-Oesterhelt H, Wohlleben W, Seemann M, Empting M, Hirsch AKH, Loretz B, Lehr CM, Titz A, Herrmann J, Jaeger T, Alt S, Hesterkamp T, Winterhalter M, Schiefer A, Pfarr K, Hoerauf A, Graz H, Graz M, Lindvall M, Ramurthy S, Karlén A, van Dongen M, Petkovic H, Keller A, Peyrane F, Donadio S, Fraisse L, Piddock LJV, Gilbert IH, Moser HE, Müller R. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem 2021; 5:726-749. [PMID: 34426795 PMCID: PMC8374425 DOI: 10.1038/s41570-021-00313-1] [Citation(s) in RCA: 575] [Impact Index Per Article: 143.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
Collapse
Affiliation(s)
- Marcus Miethke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Marco Pieroni
- Food and Drug Department, University of Parma, Parma, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mark Brönstrup
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Chemical Biology (CBIO), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Peter Hammann
- Infectious Diseases & Natural Product Research at EVOTEC, and Justus Liebig University Giessen, Giessen, Germany
| | - Ludovic Halby
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, UMR n°3523, CNRS, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance Unit, Microbiology Department, Institut Pasteur, CNRS UMR3525, Paris, France
| | | | - Helge B. Bode
- Department of Biosciences, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, Marburg, Germany
| | - Rui Moreira
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Yanyan Li
- Unit MCAM, CNRS, National Museum of Natural History (MNHN), Paris, France
| | - Andriy Luzhetskyy
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC) & Microbiology Department, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Marc Stadler
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Microbial Drugs (MWIS), Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | | | | | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Kira J. Weissman
- Molecular and Structural Enzymology Group, Université de Lorraine, CNRS, IMoPA, Nancy, France
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Evi Stegmann
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Wolfgang Wohlleben
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Myriam Seemann
- Institute for Chemistry UMR 7177, University of Strasbourg/CNRS, ITI InnoVec, Strasbourg, France
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna K. H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Timo Jaeger
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Silke Alt
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | | | | | - Andrea Schiefer
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Heather Graz
- Biophys Ltd., Usk, Monmouthshire, United Kingdom
| | - Michael Graz
- School of Law, University of Bristol, Bristol, United Kingdom
| | | | | | - Anders Karlén
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Hrvoje Petkovic
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany
| | | | | | - Laurent Fraisse
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Laura J. V. Piddock
- The Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Ian H. Gilbert
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Heinz E. Moser
- Novartis Institutes for BioMedical Research (NIBR), Emeryville, CA USA
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
38
|
Efflux Pump Overexpression Profiling in Acinetobacter baumannii and Study of New 1-(1-Naphthylmethyl)-Piperazine Analogs as Potential Efflux Inhibitors. Antimicrob Agents Chemother 2021; 65:e0071021. [PMID: 34097483 DOI: 10.1128/aac.00710-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of efflux pumps extruding antibiotics currently used for the treatment of Acinetobacter baumannii infections has been described as an important mechanism causing antibiotic resistance. The first aim of this work was to phenotypically evaluate the overexpression of efflux pumps on a collection of 124 ciprofloxacin-resistant A. baumannii strains. An overexpression of genes encoding one or more efflux pumps was obtained for 19 out of the 34 strains with a positive phenotypic efflux (56%). The most frequent genes overexpressed were those belonging to the RND family, with adeJ being the most prevalent (50%). Interestingly, efflux pump genes coding for MATE and MFS families were also overexpressed quite frequently: abeM (32%) and abaQ (26%). The second aim was to synthesize 1-(1-naphthylmethyl)-piperazine analogs as potential new efflux pump inhibitors and biologically evaluate them against strains with a positive phenotypic efflux. Quinoline and pyridine analogs were found to be more effective than their parent compound, 1-(1-naphthyl methyl)-piperazine. Stereochemistry also played an important part in the inhibitory activity, as quinoline derivative (R)-3a was identified as being the most effective and less cytotoxic. Its inhibitory activity was also correlated with the number of efflux pumps expressed by a strain. The results obtained in this work suggest that quinoline analogs of 1-(1-naphthylmethyl)-piperazine are promising leads in the development of new anti-Acinetobacter baumannii therapeutic alternatives in combination with antibiotics for which an efflux-mediated resistance is suspected.
Collapse
|
39
|
Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martínez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muñiz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafría VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD. The EcoCyc Database in 2021. Front Microbiol 2021; 12:711077. [PMID: 34394059 PMCID: PMC8357350 DOI: 10.3389/fmicb.2021.711077] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.
Collapse
Affiliation(s)
- Ingrid M. Keseler
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Amanda Mackie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Billington
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | | | - Ron Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Anamika Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Markus Krummenacker
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Peter E. Midford
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Wai Kit Ong
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, México
| | - Pallavi Subhraveti
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| |
Collapse
|
40
|
Kumar S, Athreya A, Gulati A, Nair RM, Mahendran I, Ranjan R, Penmatsa A. Structural basis of inhibition of a transporter from Staphylococcus aureus, NorC, through a single-domain camelid antibody. Commun Biol 2021; 4:836. [PMID: 34226658 PMCID: PMC8257674 DOI: 10.1038/s42003-021-02357-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Transporters play vital roles in acquiring antimicrobial resistance among pathogenic bacteria. In this study, we report the X-ray structure of NorC, a 14-transmembrane major facilitator superfamily member that is implicated in fluoroquinolone resistance in drug-resistant Staphylococcus aureus strains, at a resolution of 3.6 Å. The NorC structure was determined in complex with a single-domain camelid antibody that interacts at the extracellular face of the transporter and stabilizes it in an outward-open conformation. The complementarity determining regions of the antibody enter and block solvent access to the interior of the vestibule, thereby inhibiting alternating-access. NorC specifically interacts with an organic cation, tetraphenylphosphonium, although it does not demonstrate an ability to transport it. The interaction is compromised in the presence of NorC-antibody complex, consequently establishing a strategy to detect and block NorC and related transporters through the use of single-domain camelid antibodies.
Collapse
Affiliation(s)
- Sushant Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Van Andel Institute, Grand Rapids, MI, USA
| | - Arunabh Athreya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rahul Mony Nair
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Ithayaraja Mahendran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Structural Parasitology Lab, International Centre for Genetic engineering and Biotechnology, New Delhi, India
| | - Rakesh Ranjan
- Principal Scientist, ICAR-National Research Centre of Camel (NRCC), Bikaner, India
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
41
|
Zhang Y, Deng Y, Feng J, Guo Z, Chen H, Wang B, Hu J, Lin Z, Su Y. Functional characterization of VscCD, an important component of the type Ⅲ secretion system of Vibrio harveyi. Microb Pathog 2021; 157:104965. [PMID: 34015493 DOI: 10.1016/j.micpath.2021.104965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Vibrio harveyi is a Gram-negative bacterium that occurs widely in the ocean and a kind of pathogenic bacteria associated with vibriosis in grouper. We investigated whether the VscCD protein of the type Ⅲ secretion system (T3SS) was important for pathogenicity of V. harveyi. Mutations to the vscC and vscD genes (ΔvscCD) and complementation of the ΔvscCD mutant (C-ΔvscCD) were created. Moreover, the biological characteristics of the wild-type (WT) and mutant strains of V. harveyi 345 were compared. The results showed that deletion of the vscCD genes had no effect on bacterial growth, swimming/swarming ability, secretion of extracellular protease, or biofilm formation. However, as compared with the V. harveyi 345: pMMB207 (WT+) and complementary (C-ΔvscCD) strains, the ΔvscCD: pMMB207 (ΔvscCD+) mutant displayed decreased resistance to acid stress, H2O2, and antibiotics. In addition, infection of the pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) showed that as compared with the WT+ and C-ΔvscCD strains, the ΔvscCD+ strain significantly reduced cumulative mortality of the host. The colonization ability of the ΔvscCD+ mutant in the spleen and liver tissues of the pearl gentian grouper was significantly lower than that of the WT+ and C-ΔvscCD strains. In the early stage of infection with the ΔvscCD+ strain, the expression levels of IL-1β, IL-16, TLR3, TNF-α, MHC-Iα, and CD8α were up-regulated to varying degrees. As compared with the WT+ and C-ΔvscCD strains, luxR expression was significantly up-regulated in the ΔvscCD+ strain, while the expression of vcrH and vp1668 was significantly down-regulated. As an important component of the T3SS, VscCD seemed to play a significant role in the pathogenesis of V. harveyi.
Collapse
Affiliation(s)
- Yaqiu Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haoxiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baotun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianmei Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
42
|
Mass spectrometry informs the structure and dynamics of membrane proteins involved in lipid and drug transport. Curr Opin Struct Biol 2021; 70:53-60. [PMID: 33964676 DOI: 10.1016/j.sbi.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Membrane proteins are important macromolecules that play crucial roles in many cellular and physiological processes. Over the past two decades, the use of mass spectrometry as a biophysical tool to characterise membrane proteins has grown steadily. By capturing these dynamic complexes in the gas phase, many unknown small molecule interactions have been revealed. One particular application of this research has been the focus on antibiotic resistance with considerable efforts being made to understand underlying mechanisms. Here we review recent advances in the application of mass spectrometry that have yielded both structural and dynamic information on the interactions of antibiotics with proteins involved in bacterial cell envelope biogenesis and drug efflux.
Collapse
|
43
|
Quinazoline Derivatives Designed as Efflux Pump Inhibitors: Molecular Modeling and Spectroscopic Studies. Molecules 2021; 26:molecules26082374. [PMID: 33921798 PMCID: PMC8073189 DOI: 10.3390/molecules26082374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Multidrug resistance of bacteria is a worrying concern in the therapeutic field and an alternative method to combat it is designing new efflux pump inhibitors (EPIs). This article presents a molecular study of two quinazoline derivatives, labelled BG1189 and BG1190, proposed as EPIs. In silico approach investigates the pharmacodynamic and pharmacokinetic profile of BG1189 and BG1190 quinazolines. Molecular docking and predicted ADMET features suggest that BG1189 and BG1190 may represent attractive candidates as antimicrobial drugs. UV-Vis absorption spectroscopy was employed to study the time stability of quinazoline solutions in water or in dimethyl sulfoxide (DMSO), in constant environmental conditions, and to determine the influence of usual storage temperature, normal room lighting and laser radiation (photostability) on samples stability. The effects of irradiation on BG1189 and BG1190 molecules were also assessed through Fourier-transform infrared (FTIR) spectroscopy. FTIR spectra showed that laser radiation breaks some chemical bonds affecting the substituents and the quinazoline radical of the compounds.
Collapse
|
44
|
Metabolomics Reveal Potential Natural Substrates of AcrB in Escherichia coli and Salmonella enterica Serovar Typhimurium. mBio 2021; 12:mBio.00109-21. [PMID: 33785633 PMCID: PMC8092203 DOI: 10.1128/mbio.00109-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug-resistant Gram-negative bacteria pose a global threat to human health. The AcrB efflux pump confers inherent and evolved drug resistance to Enterobacterales, including Escherichia coli and Salmonella enterica serovar Typhimurium. In the fight against antibiotic resistance, drugs that target resistance mechanisms in bacteria can be used to restore the therapeutic effectiveness of antibiotics. The multidrug resistance efflux complex AcrAB-TolC is the most clinically relevant efflux pump in Enterobacterales and is a target for drug discovery. Inhibition of the pump protein AcrB allows the intracellular accumulation of a wide variety of antibiotics, effectively restoring their therapeutic potency. To facilitate the development of AcrB efflux inhibitors, it is desirable to discover the native substrates of the pump, as these could be chemically modified to become inhibitors. We analyzed the native substrate profile of AcrB in Escherichia coli MG1655 and Salmonella enterica serovar Typhimurium SL1344 using an untargeted metabolomics approach. We analyzed the endo- and exometabolome of the wild-type strain and their respective AcrB loss-of-function mutants (AcrB D408A) to determine the metabolites that are native substrates of AcrB. Although there is 95% homology between the AcrB proteins of S. Typhimurium and E. coli, we observed mostly different metabolic responses in the exometabolomes of the S. Typhimurium and E. coli AcrB D408A mutants relative to those in the wild type, potentially indicating a differential metabolic adaptation to the same mutation in these two species. Additionally, we uncovered metabolite classes that could be involved in virulence of S. Typhimurium and a potential natural substrate of AcrB common to both species.
Collapse
|
45
|
Verma P, Tiwari M, Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microb Pathog 2021; 152:104766. [PMID: 33545327 DOI: 10.1016/j.micpath.2021.104766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Acinetobacter baumannii is an ESKAPE pathogen known to cause fatal nosocomial infections. With the surge of multidrug resistance (MDR) in the bacterial system, effective treatment measures have become very limited. The MDR in A. baumannii is contributed by various factors out of which efflux pumps have gained major attention due to their broad substrate specificity and wide distribution among bacterial species. The efflux pumps are involved in the MDR as well as contribute to other physiological processes in bacteria, therefore, it is critically important to inhibit efflux pumps in order to combat emerging resistance. The present review provides insight about the different efflux pump systems in A. baumannii and their role in multidrug resistance. A major focus has been put on the different strategies and alternate therapeutics to inhibit the efflux system. This includes use of different efflux pump inhibitors-natural, synthetic or combinatorial therapy. The use of phage therapy and nanoparticles for inhibiting efflux pumps have also been discussed here. Moreover, the present review provides the knowledge of barriers in development of efflux pump inhibitors (EPIs) and their approval for commercialization. Here, different prospectives have been discussed to improve the therapeutic development process and make it more compatible for clinical use.
Collapse
Affiliation(s)
- Privita Verma
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India.
| |
Collapse
|
46
|
McCarthy RR, Larrouy-Maumus GJ, Meiqi Tan MGC, Wareham DW. Antibiotic Resistance Mechanisms and Their Transmission in Acinetobacter baumannii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:135-153. [PMID: 34661894 DOI: 10.1007/978-3-030-67452-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The discovery of penicillin over 90 years ago and its subsequent uptake by healthcare systems around the world revolutionised global health. It marked the beginning of a golden age in antibiotic discovery with new antibiotics readily discovered from natural sources and refined into therapies that saved millions of lives. Towards the end of the last century, the rate of discovery slowed to a near standstill. The lack of discovery is compounded by the rapid emergence and spread of bacterial pathogens that exhibit resistance to multiple antibiotic therapies and threaten the sustainability of global healthcare systems. Acinetobacter baumannii is an opportunistic pathogen whose prevalence and impact has grown significantly over the last 20 years. It is recognised as a barometer of the antibiotic resistance crisis due to the diverse array of mechanisms by which it can become resistant.
Collapse
Affiliation(s)
- Ronan R McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Gerald J Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Mei Gei C Meiqi Tan
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| | - David W Wareham
- Antimicrobial Research Group, Blizard Institute, Queen Mary University London, London, UK
| |
Collapse
|
47
|
Dias MF, de Castro GM, de Paiva MC, de Paula Reis M, Facchin S, do Carmo AO, Alves MS, Suhadolnik ML, de Moraes Motta A, Henriques I, Kalapothakis E, Lobo FP, Nascimento AMA. Exploring antibiotic resistance in environmental integron-cassettes through intI-attC amplicons deep sequencing. Braz J Microbiol 2020; 52:363-372. [PMID: 33247398 DOI: 10.1007/s42770-020-00409-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Freshwater ecosystems provide propitious conditions for the acquisition and spread of antibiotic resistance genes (ARGs), and integrons play an important role in this process. MATERIAL AND METHODS In the present study, the diversity of putative environmental integron-cassettes, as well as their potential bacterial hosts in the Velhas River (Brazil), was explored through intI-attC and 16S rRNA amplicons deep sequencing. RESULTS AND DISCUSSION: ORFs related to different biological processes were observed, from DNA integration to oxidation-reduction. ARGs-cassettes were mainly associated with class 1 mobile integrons carried by pathogenic Gammaproteobacteria, and possibly sedentary chromosomal integrons hosted by Proteobacteria and Actinobacteria. Two putative novel ARG-cassettes homologs to fosB3 and novA were detected. Regarding 16SrRNA gene analysis, taxonomic and functional profiles unveiled Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria as dominant phyla. Betaproteobacteria, Alphaproteobacteria, and Actinobacteria classes were the main contributors for KEGG orthologs associated with resistance. CONCLUSIONS Overall, these results provide new information about environmental integrons as a source of resistance determinants outside clinical settings and the bacterial community in the Velhas River.
Collapse
Affiliation(s)
- Marcela França Dias
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Giovanni Marques de Castro
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Mariana de Paula Reis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Susanne Facchin
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Marta Salgueiro Alves
- Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal.,CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Maria Luíza Suhadolnik
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Amanda de Moraes Motta
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Isabel Henriques
- CESAM, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Evanguedes Kalapothakis
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Francisco Pereira Lobo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Andréa Maria Amaral Nascimento
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
48
|
Nava AR, Mauricio N, Sanca AJ, Domínguez DC. Evidence of Calcium Signaling and Modulation of the LmrS Multidrug Resistant Efflux Pump Activity by Ca 2 + Ions in S. aureus. Front Microbiol 2020; 11:573388. [PMID: 33193178 PMCID: PMC7642317 DOI: 10.3389/fmicb.2020.573388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
Calcium ions (Ca2+) play a pivotal role in eukaryote cell signaling and regulate many physiological functions. Although a similar role for Ca2+ in prokaryotes has been difficult to demonstrate, there is increasing evidence for Ca2+ as a cell regulator in bacteria. The purpose of this study was to investigate Ca2+ signaling and the effect of Ca2+ on the Staphylococcus aureus multidrug resistant efflux pump LmrS. We hypothesized that antibiotics act by increasing Ca2+ concentrations, which in turn enhance the efflux activity of LmrS. These Ca2+ transients were measured by luminometry in response to various antibiotics by using the photoprotein aequorin reconstituted within live bacterial cells. Efflux associated with LmrS was measured by the increase in fluorescence due to the loss of ethidium bromide (EtBr) from both S. aureus cells and from E. coli cells in which the lmrs gene of S. aureus was expressed. We found that addition of antibiotics to cells generated unique cytosolic Ca2+ transients and that addition of CaCl2 to cells enhanced EtBr efflux whereas addition of Ca2+ chelators or efflux pump inhibitors significantly decreased EtBr efflux from cells. We conclude that antibiotics induce a Ca2+ mediated response through transients in cytosolic Ca2+, which then stimulates LmrS efflux pump.
Collapse
Affiliation(s)
- Amy R Nava
- Department of Interdisciplinary Health Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Natalia Mauricio
- Biology Department, El Paso Community College, El Paso, TX, United States
| | - Angel J Sanca
- Biological Sciences Department, The University of Texas at El Paso, El Paso, TX, United States
| | - Delfina C Domínguez
- Department of Interdisciplinary Health Sciences, The University of Texas at El Paso, El Paso, TX, United States.,Clinical Laboratory Science Program/Department of Public Health Sciences, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
49
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
50
|
Hall CL, Harrison MA, Pond MJ, Chow C, Harding-Esch EM, Sadiq ST. Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae. Sex Health 2020; 16:479-487. [PMID: 31366421 DOI: 10.1071/sh18225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Background High rates of antimicrobial resistance (AMR) in Neisseria gonorrhoeae hinder effective treatment, but molecular AMR diagnostics may help address the challenge. This study aimed to appraise the literature for resistance-associated genotypic markers linked to fluoroquinolones and macrolides, to identify and review their use in diagnostics. METHODS Medline and EMBASE databases were searched and data pooled to evaluate associations between genotype and phenotypic resistance. The minimum inhibitory concentration (MIC) cut-offs were ≤ 0.06 mg L-1 for non-resistance to ciprofloxacin and ≤ 0.5 mg L-1 for non-resistance to azithromycin. RESULTS Diagnostic accuracy estimates were limited by data availability and reporting. It was found that: 1) S91 and D95 mutations in the GyrA protein independently predicted ciprofloxacin resistance and, used together, gave 98.6% (95% confidence interval (CI) 98.0-99.0%) sensitivity and 91.4% (95%CI 88.6-93.7%) specificity; 2) the number of 23S rRNA gene alleles with C2611T or A2059G mutations was highly correlated with azithromycin resistance, with mutation in any allele giving a sensitivity and specificity of 66.1% (95%CI 62.1-70.0%) and 98.9% (95%CI 97.5-99.5%) respectively. Estimated negative (NPV) and positive predictive values (PPV) for a 23S rRNA diagnostic were 98.6% (95%CI 96.8-99.4%) and 71.5% (95%CI 68.0-74.8%) respectively; 3) mutation at amino acid position G45 in the MtrR protein independently predicted azithromycin resistance; however, when combined with 23S rRNA, did not improve the PPV or NPV. CONCLUSIONS Viable candidates for markers of resistance detection for incorporation into diagnostics were demonstrated. Such tests may enhance antibiotic stewardship and treatment options.
Collapse
Affiliation(s)
- Catherine L Hall
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Mark A Harrison
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Marcus J Pond
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Christine Chow
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK
| | - Emma M Harding-Esch
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK; and National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - S Tariq Sadiq
- Applied Diagnostic Research and Evaluation Unit, St George's University of London, Institute for Infection & Immunity, Cranmer Terrace, Tooting, London SW17 0RE, UK; and National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK; and St George's University Hospitals NHS Foundation Trust, Blackshaw Road, Tooting, London SW17 0QT, UK; and Corresponding author.
| |
Collapse
|