1
|
Wang X, Wang K, Zhang W, Tang Z, Zhang H, Cheng Y, Zhou D, Zhang C, Zhong WZ, Ma Q, Xu J, Hu Z. Clonal expansion dictates the efficacy of mitochondrial lineage tracing in single cells. Genome Biol 2025; 26:70. [PMID: 40134031 PMCID: PMC11938731 DOI: 10.1186/s13059-025-03540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) variants hold promise as endogenous barcodes for tracking human cell lineages, but their efficacy as reliable lineage markers are hindered by the complex dynamics of mtDNA in somatic tissues. RESULTS Here, we use computational modeling and single-cell genomics to thoroughly interrogate the origin and clonal dynamics of mtDNA variants across various biological settings. Our findings reveal that the majority of mtDNA variants which are specifically present in a cell subpopulation, termed subpopulation-specific variants, are pre-existing heteroplasmies in the first cell instead of de novo somatic mutations during divisions. Moreover, subpopulation-specific variants demonstrate limited discriminatory power among different genuine lineages under weak clonal expansion; however, certain subpopulation-specific variants with consistently high frequencies among a subpopulation are capable of faithfully labeling cell lineages in scenarios of stringent clonal expansion, such as strongly expanded T cell populations in diseased conditions and clonal hematopoiesis in aged individuals. Inspired by our simulations, we introduce a lineage informative score, facilitating the identification of reliable mitochondrial lineage tracing markers across different modalities of single-cell genomic data. CONCLUSIONS Combining computational modeling and single-cell sequencing, our study reveals that the performance of mitochondrial lineage tracing is highly dependent on the extent of clonal expansion, which thus should be considered when applying mitochondrial lineage tracing.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kun Wang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Cheng
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qing Ma
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Zheng Hu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Zhang X, Zhang X, Ren J, Li J, Wei X, Yu Y, Yi Z, Wei W. Precise modelling of mitochondrial diseases using optimized mitoBEs. Nature 2025; 639:735-745. [PMID: 39843744 DOI: 10.1038/s41586-024-08469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
The development of animal models is crucial for studying and treating mitochondrial diseases. Here we optimized adenine and cytosine deaminases to reduce off-target effects on the transcriptome and the mitochondrial genome, improving the accuracy and efficiency of our newly developed mitochondrial base editors (mitoBEs)1. Using these upgraded mitoBEs (version 2 (v2)), we targeted 70 mouse mitochondrial DNA mutations analogous to human pathogenic variants2, establishing a foundation for mitochondrial disease mouse models. Circular RNA-encoded mitoBEs v2 achieved up to 82% editing efficiency in mice without detectable off-target effects in the nuclear genome. The edited mitochondrial DNA persisted across various tissues and was maternally inherited, resulting in F1 generation mice with mutation loads as high as 100% and some mice exhibiting editing only at the target site. By optimizing the transcription activator-like effector (TALE) binding site, we developed a single-base-editing mouse model for the mt-Nd5 A12784G mutation. Phenotypic evaluations led to the creation of mouse models for the mt-Atp6 T8591C and mt-Nd5 A12784G mutations, exhibiting phenotypes corresponding to the reduced heart rate seen in Leigh syndrome and the vision loss characteristic of Leber's hereditary optic neuropathy, respectively. Moreover, the mt-Atp6 T8591C mutation proved to be more deleterious than mt-Nd5 A12784G, affecting embryonic development and rapidly diminishing through successive generations. These upgraded mitoBEs offer a highly efficient and precise strategy for constructing mitochondrial disease models, laying a foundation for further research in this field.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Changping Laboratory, Beijing, The People's Republic of China
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
| | - Xue Zhang
- Changping Laboratory, Beijing, The People's Republic of China
| | - Jiwu Ren
- Changping Laboratory, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Jiayi Li
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Xiaoxu Wei
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China
| | - Zongyi Yi
- Changping Laboratory, Beijing, The People's Republic of China.
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China.
| | - Wensheng Wei
- Changping Laboratory, Beijing, The People's Republic of China.
- Biomedical Pioneering Innovation Center, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, The People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, The People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Zhang L, Xiang W. The impact of mitochondrial dysfunction on ovarian aging. J Transl Med 2025; 23:211. [PMID: 39980008 PMCID: PMC11844166 DOI: 10.1186/s12967-025-06223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
IMPORTANCE Ovarian aging has become a focal point in current research on female aging and refers to the gradual decline in ovarian function as women age. Numerous factors influence ovarian aging, among which mitochondrial function is one because it plays a crucial role by affecting oocytes and granulosa cells. Mitochondrial deterioration not only leads to a decrease in oocyte quality but also hinders follicle development, further impacting women's reproductive health and fertility. OBJECTIVE This review summarizes and integrates research on the impact of mitochondrial function on ovarian aging, outlining the mechanisms by which mitochondria regulate the functions of oocytes and granulosa cells. This study aims to provide potential therapeutic directions to mitigate mitochondrial decline and support female reproductive health. EVIDENCE REVIEW According to a 2023 study published in Cell, factors such as oxidative stress, mitochondrial dysfunction, chronic inflammation, and telomere shortening collectively drive ovarian aging, directly affecting female fertility. Among these factors, mitochondrial dysfunction plays a key role. This study reviewed literature from databases such as PubMed, Google Scholar, and CNKI, using keywords such as "mitochondrial dysfunction", "decline in oocyte quality and quantity", and "ovarian aging", aiming to summarize current research on the mechanisms of the impact of mitochondrial dysfunction on ovarian aging and provide theoretical support for future exploration of related therapeutic strategies. FINDINGS The main characteristics of ovarian aging include a decline in oocyte quantity and quality, fluctuations in hormone levels, and a reduction in granulosa cell function. Studies have shown that mitochondria affect fertility by regulating cellular energy metabolism, exacerbating oxidative stress, causing mitochondrial DNA (mtDNA) damage, and impacting the physiological function of granulosa cells within the ovary, gradually diminishing the ovarian reserve. CONCLUSION This review focuses on analyzing the effects of mitochondrial decline on energy production in oocytes and granulosa cells, the accumulation of reactive oxygen species (ROS), and the calcium ion (Ca2+) concentration, which all contribute to the ovarian aging process, and understanding them will provide new insights into the mechanisms of ovarian aging. RELEVANCE Therapeutic interventions targeting mitochondrial dysfunction may help delay ovarian aging and improve female reproductive health.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
5
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2025; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
6
|
Van Der Kelen A, Li Piani L, Mertens J, Regin M, Couvreu de Deckersberg E, Van de Velde H, Sermon K, Tournaye H, Verpoest W, Hes FJ, Blockeel C, Spits C. The interplay between mitochondrial DNA genotypes, female infertility, ovarian response, and mutagenesis in oocytes. Hum Reprod Open 2024; 2025:hoae074. [PMID: 39830711 PMCID: PMC11739621 DOI: 10.1093/hropen/hoae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Indexed: 01/22/2025] Open
Abstract
STUDY QUESTION Is there an association between different mitochondrial DNA (mtDNA) genotypes and female infertility or ovarian response, and is the appearance of variants in the oocytes favored by medically assisted reproduction (MAR) techniques? SUMMARY ANSWER Ovarian response was negatively associated with global non-synonymous protein-coding homoplasmic variants but positively associated with haplogroup K; the number of oocytes retrieved in a cycle correlates with the number of heteroplasmic variants in the oocytes, principally with variants located in the hypervariable (HV) region and rRNA loci, as well as non-synonymous protein-coding variants. WHAT IS KNOWN ALREADY Several genes have been shown to be positively associated with infertility, and there is growing concern that MAR may facilitate the transmission of these harmful variants to offspring, thereby passing on infertility. The potential role of mtDNA variants in these two perspectives remains poorly understood. STUDY DESIGN SIZE DURATION This cohort study included 261 oocytes from 132 women (mean age: 32 ± 4 years) undergoing ovarian stimulation between 2019 and 2020 at an academic center. The oocyte mtDNA genotypes were examined for associations with the women's fertility characteristics. PARTICIPANTS/MATERIALS SETTING METHODS The mtDNA of the oocytes underwent deep sequencing, and the mtDNA genotypes were compared between infertile and fertile groups using Fisher's exact test. The impact of the mtDNA genotype on anti-Müllerian hormone (AMH) levels and the number of (mature) oocytes retrieved was assessed using the Mann-Whitney U test for univariate analysis and logistic regression for multivariate analysis. Additionally, we examined the associations of oocyte maturation stage, infertility status, number of ovarian stimulation units, and number of oocytes retrieved with the type and load of heteroplasmic variants using univariate analysis and Poisson or linear regression analysis. MAIN RESULTS AND THE ROLE OF CHANCE Neither homoplasmic mtDNA variants nor haplogroups in the oocytes were associated with infertility status or with AMH levels. Conversely, when the relationship between the number of oocytes retrieved and different mtDNA genotypes was examined, a positive association was observed between the number of metaphase (MII) oocytes (P = 0.005) and haplogroup K. Furthermore, the presence of global non-synonymous homoplasmic variants in the protein-coding region was significantly associated with a reduced number of total oocytes and MII oocytes retrieved (P < 0.001 for both). Regarding the type and load of heteroplasmic variants in the different regions, there were no significant associations according to maturation stage of the oocyte or to fertility status; however, the number of oocytes retrieved correlated positively with the total number of heteroplasmic variants, and specifically with non-synonymous protein-coding, HV and rRNA variants (P < 0.001 for all). LIMITATIONS REASONS FOR CAUTION The current work is constrained by its retrospective design and single-center approach, potentially limiting the generalizability of our findings. The small sample size for specific types of infertility restricts this aspect of the findings. WIDER IMPLICATIONS OF THE FINDINGS This work suggests that mitochondrial genetics may have an impact on ovarian response and corroborates previous findings indicating that the size of the oocyte cohort after stimulation correlates with the presence of potentially deleterious variants in the oocyte. Future epidemiological and functional studies based on the results of the current study will provide valuable insights to address gaps in knowledge to assess any prospective risks for MAR-conceived offspring. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Research Foundation Flanders (FWO, Grant numbers 1506617N and 1506717N to C.S.), by the Fonds Wetenschappelijk Fonds, Willy Gepts Research Foundation of Universitair Ziekenhuis Brussel (Grant numbers WFWG14-15, WFWG16-43, and WFWG19-19 to C.S.), and by the Methusalem Grant of the Vrije Universiteit Brussel (to K.S.). M.R. and E.C.d.D. were supported predoctoral fellowships by the FWO, Grant numbers 1133622N and 1S73521N, respectively. The authors declare no conflict of interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Annelore Van Der Kelen
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Medical Genetics, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Letizia Li Piani
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Joke Mertens
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hilde Van de Velde
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Karen Sermon
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Herman Tournaye
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Willem Verpoest
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Reproductive Medicine, Utrecht University Medical Centre, Utrecht, The Netherlands
| | - Frederik Jan Hes
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Medical Genetics, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Christophe Blockeel
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
- Universitair Ziekenhuis Brussel (UZ Brussel), Brussels Health Campus, Centre for Reproductive Medicine, Brussels IVF, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Claudia Spits
- Vrije Universiteit Brussel (VUB), Brussels Health Campus/Faculty of Medicine and Pharmacy, Research Group Genetics, Reproduction and Development, Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
7
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
8
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Mello DF, Perez L, Bergemann CM, Morton KS, Ryde IT, Meyer JN. Comprehensive characterization of mitochondrial bioenergetics at different larval stages reveals novel insights about the developmental metabolism of Caenorhabditis elegans. PLoS One 2024; 19:e0306849. [PMID: 39591391 PMCID: PMC11593755 DOI: 10.1371/journal.pone.0306849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Luiza Perez
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Christina M. Bergemann
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Katherine S. Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
10
|
Li J, Wu H, Zhou Y, Liu M, Zhou Y, Chu J, Kamili E, Wang W, Yang J, Lin L, Zhang Q, Yang S, Xu Y. Characterization and trans-generation dynamics of mitogene pool in the silver carp (Hypophthalmichthys molitrix). G3 (BETHESDA, MD.) 2024; 14:jkae101. [PMID: 38922124 PMCID: PMC11491513 DOI: 10.1093/g3journal/jkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Multicopied mitogenome are prone to mutation during replication often resulting in heteroplasmy. The derived variants in a cell, organ, or an individual animal constitute a mitogene pool. The individual mitogene pool is initiated by a small fraction of the egg mitogene pool. However, the characteristics and relationship between them has not yet been investigated. This study quantitatively analyzed the heteroplasmy landscape, genetic loads, and selection strength of the mitogene pool of egg and hatchling in the silver carp (Hypophthalmichthys molitrix) using high-throughput resequencing. The results showed heteroplasmic sites distribute across the whole mitogenome in both eggs and hatchlings. The dominant substitution was Transversion in eggs and Transition in hatching accounting for 95.23%±2.07% and 85.38%±6.94% of total HP sites, respectively. The total genetic loads were 0.293±0.044 in eggs and 0.228±0.022 in hatchlings (P=0.048). The dN/dS ratio was 58.03±38.98 for eggs and 9.44±3.93 for hatchlings (P=0.037). These results suggest that the mitogenomes were under strong positive selection in eggs with tolerance to variants with deleterious effects, while the selection was positive but much weaker in hatchlings showing marked quality control. Based on these findings, we proposed a trans-generation dynamics model to explain differential development mode of the two mitogene pool between oocyte maturation and ontogenesis of offspring. This study sheds light on significance of mitogene pool for persistence of populations and subsequent integration in ecological studies and conservation practices.
Collapse
Affiliation(s)
- Jinlin Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Hengshu Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Yingna Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Manhong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Yongheng Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Jianing Chu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Elizabeth Kamili
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Wenhui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Jincheng Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Lijun Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Qi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| |
Collapse
|
11
|
Mikhailov N, Hämäläinen RH. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Ann Biomed Eng 2024; 52:2627-2640. [PMID: 36001180 PMCID: PMC11329604 DOI: 10.1007/s10439-022-03051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Mitochondria, mainly known as energy factories of eukaryotic cells, also exert several additional signaling and metabolic functions and are today recognized as major cellular biosynthetic and signaling hubs. Mitochondria possess their own genome (mitochondrial DNA-mtDNA), that encodes proteins essential for oxidative phosphorylation, and mutations in it are an important contributor to human disease. The mtDNA mutations often exist in heteroplasmic conditions, with both healthy and mutant versions of the mtDNA residing in patients' cells and the level of mutant mtDNA may vary between different tissues and organs and affect the clinical outcome of the disease. Thus, shifting the ratio between healthy and mutant mtDNA in patients' cells provides an intriguing therapeutic option for mtDNA diseases. In this review we describe current strategies for modulating mitochondrial heteroplasmy levels with engineered endonucleases including mitochondrially targeted TALENs and Zinc finger nucleases (ZFNs) and discuss their therapeutic potential. These gene therapy tools could in the future provide therapeutic help both for patients with mitochondrial disease as well as in preventing the transfer of pathogenic mtDNA mutations from a mother to her offspring.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
12
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
13
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Árnadóttir ER, Moore KHS, Guðmundsdóttir VB, Ebenesersdóttir SS, Guity K, Jónsson H, Stefánsson K, Helgason A. The rate and nature of mitochondrial DNA mutations in human pedigrees. Cell 2024; 187:3904-3918.e8. [PMID: 38851187 DOI: 10.1016/j.cell.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Collapse
Affiliation(s)
| | | | - Valdís B Guðmundsdóttir
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Kamran Guity
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Department of Anthropology, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
15
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Mello DF, Perez L, Bergemann CM, Morton KS, Ryde IT, Meyer JN. Comprehensive characterization of mitochondrial bioenergetics at different larval stages reveals novel insights about the developmental metabolism of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600841. [PMID: 38979262 PMCID: PMC11230424 DOI: 10.1101/2024.06.26.600841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Luiza Perez
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Christina M. Bergemann
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Katherine S. Morton
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| |
Collapse
|
17
|
Burr SP, Chinnery PF. Origins of tissue and cell-type specificity in mitochondrial DNA (mtDNA) disease. Hum Mol Genet 2024; 33:R3-R11. [PMID: 38779777 PMCID: PMC11112380 DOI: 10.1093/hmg/ddae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 05/25/2024] Open
Abstract
Mutations of mitochondrial (mt)DNA are a major cause of morbidity and mortality in humans, accounting for approximately two thirds of diagnosed mitochondrial disease. However, despite significant advances in technology since the discovery of the first disease-causing mtDNA mutations in 1988, the comprehensive diagnosis and treatment of mtDNA disease remains challenging. This is partly due to the highly variable clinical presentation linked to tissue-specific vulnerability that determines which organs are affected. Organ involvement can vary between different mtDNA mutations, and also between patients carrying the same disease-causing variant. The clinical features frequently overlap with other non-mitochondrial diseases, both rare and common, adding to the diagnostic challenge. Building on previous findings, recent technological advances have cast further light on the mechanisms which underpin the organ vulnerability in mtDNA diseases, but our understanding is far from complete. In this review we explore the origins, current knowledge, and future directions of research in this area.
Collapse
Affiliation(s)
- Stephen P Burr
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0QQ, United Kingdom
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, United Kingdom
| |
Collapse
|
18
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
19
|
Xue Y, Su Z, Lin X, Ho MK, Yu KHO. Single-cell lineage tracing with endogenous markers. Biophys Rev 2024; 16:125-139. [PMID: 38495438 PMCID: PMC10937880 DOI: 10.1007/s12551-024-01179-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Resolving lineage relationships between cells in an organism provides key insights into the fate of individual cells and drives a fundamental understanding of the process of development and disease. A recent rapid increase in experimental and computational advances for detecting naturally occurring somatic nuclear and mitochondrial mutation at single-cell resolution has expanded lineage tracing from model organisms to humans. This review discusses the advantages and challenges of experimental and computational techniques for cell lineage tracing using somatic mutation as endogenous DNA barcodes to decipher the relationships between cells during development and tumour evolution. We outlook the advantages of spatial clonal evolution analysis and single-cell lineage tracing using endogenous genetic markers.
Collapse
Affiliation(s)
- Yan Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mun Kay Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ken H. O. Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Units 1201-1206, 1223 & 1225, 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| |
Collapse
|
20
|
Ali A, Esmaeil A, Behbehani R. Mitochondrial Chronic Progressive External Ophthalmoplegia. Brain Sci 2024; 14:135. [PMID: 38391710 PMCID: PMC10887352 DOI: 10.3390/brainsci14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management. METHODS This study is conducted based on publications and guidelines obtained by selective review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and literature meta-analyses were particularly sought. DISCUSSION CPEO is a common presentation of mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies, preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic testing. No definitive treatment option is available for mitochondrial diseases, and management is mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial encephalomyopathies. KEY MESSAGES Understanding the varying presentations and genetic aspects of mitochondrial CPEO is crucial for accurate diagnosis and management.
Collapse
Affiliation(s)
| | | | - Raed Behbehani
- Neuro-Ophthalmology Unit, Ibn Sina Hospital, Al-Bahar Ophthalmology Center, Kuwait City 70035, Kuwait; (A.A.); (A.E.)
| |
Collapse
|
21
|
Pizzamiglio C, Hanna MG, Pitceathly RDS. Primary mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:53-76. [PMID: 39322395 DOI: 10.1016/b978-0-323-99209-1.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are a heterogeneous group of hereditary disorders characterized by an impairment of the mitochondrial respiratory chain. They are the most common group of genetic metabolic disorders, with a prevalence of 1 in 4,300 people. The presence of leukoencephalopathy is recognized as an important feature in many PMDs and can be a manifestation of mutations in both mitochondrial DNA (classic syndromes such as mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; myoclonic epilepsy with ragged-red fibers [RRFs]; Leigh syndrome; and Kearns-Sayre syndrome) and nuclear DNA (mutations in maintenance genes such as POLG, MPV17, and TYMP; Leigh syndrome; and mitochondrial aminoacyl-tRNA synthetase disorders). In this chapter, PMDs associated with white matter involvement are outlined, including details of clinical presentations, brain MRI features, and elements of differential diagnoses. The current approach to the diagnosis of PMDs and management strategies are also discussed. A PMD diagnosis in a subject with leukoencephalopathy should be considered in the presence of specific brain MRI features (for example, cyst-like lesions, bilateral basal ganglia lesions, and involvement of both cerebral hemispheres and cerebellum), in addition to a complex neurologic or multisystem disorder. Establishing a genetic diagnosis is crucial to ensure appropriate genetic counseling, multidisciplinary team input, and eligibility for clinical trials.
Collapse
Affiliation(s)
- Chiara Pizzamiglio
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
22
|
Broz AK, Sloan DB, Johnston IG. Stochastic organelle genome segregation through Arabidopsis development and reproduction. THE NEW PHYTOLOGIST 2024; 241:896-910. [PMID: 37925790 PMCID: PMC10841260 DOI: 10.1111/nph.19288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/07/2023] [Indexed: 11/07/2023]
Abstract
Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| |
Collapse
|
23
|
Flowers S, Kothari R, Torres Cleuren YN, Alcorn MR, Ewe CK, Alok G, Fiallo SL, Joshi PM, Rothman JH. Regulation of defective mitochondrial DNA accumulation and transmission in C. elegans by the programmed cell death and aging pathways. eLife 2023; 12:e79725. [PMID: 37782016 PMCID: PMC10545429 DOI: 10.7554/elife.79725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). 'Purifying selection' mechanisms operate to remove such dysfunctional mtDNAs. We found that activators of programmed cell death (PCD), including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1-kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-dependent accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and the aging program are required for germline mtDNA quality control and its intergenerational transmission.
Collapse
Affiliation(s)
- Sagen Flowers
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Rushali Kothari
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Yamila N Torres Cleuren
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
- Computational Biology Unit, Institute for Informatics, University of BergenBergenNorway
| | - Melissa R Alcorn
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Samantha L Fiallo
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Pradeep M Joshi
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
24
|
Ji D, Zhang N, Zou W, Zhang Z, Marley JL, Liu Z, Liang C, Shen L, Liu Y, Liang D, Su T, Du Y, Cao Y. Modeling-based prediction tools for preimplantation genetic testing of mitochondrial DNA diseases: estimating symptomatic thresholds, risk, and chance of success. J Assist Reprod Genet 2023; 40:2185-2196. [PMID: 37439868 PMCID: PMC10440331 DOI: 10.1007/s10815-023-02880-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
PURPOSE Preimplantation genetic testing (PGT) has become a reliable tool for preventing the germline transmission of mitochondrial DNA (mtDNA) variants. However, procedures are not standardized across mtDNA variants. In this study, we aim to estimate symptomatic thresholds, risk, and chance of success for PGT for mtDNA pathogenic variant carriers. METHODS We performed a systematic analysis of heteroplasmy data including 455 individuals from 187 familial pedigrees with the common m.3243A>G, m.8344A>G, or m.8993T>G pathogenic variants. We applied binary logistic regression for estimating symptomatic thresholds of heteroplasmy, simplified Sewell-Wright formula and Kimura equations for predicting the risk of disease transmission, and binomial distribution for predicting minimum oocyte numbers. RESULTS We estimated the symptomatic thresholds of m.8993T>G and m.8344A>G as 29.86% and 16.15%, respectively. We could not determine a threshold for m.3243A>G. We established models for mothers harboring common and rare mtDNA pathogenic variants to predict the risk of disease transmission and the number of oocytes required to produce an embryo with sufficiently low variant load. In addition, we provide a table allowing the prediction of transmission risk and the minimum required oocytes for PGT patients with different variant levels. CONCLUSION We have established models that can determine the symptomatic thresholds of common mtDNA pathogenic variants. We also constructed universal models applicable to nearly all mtDNA pathogenic variants which can predict risk and minimum numbers for PGT patients. These models have advanced our understanding of mtDNA disease pathogenesis and will enable more effective prevention of disease transmission using PGT.
Collapse
Affiliation(s)
- Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Jordan Lee Marley
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Zhuoli Liu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Tianhong Su
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Baoshan Branch, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
25
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
26
|
Vadakedath S, Kandi V, Ca J, Vijayan S, Achyut KC, Uppuluri S, Reddy PKK, Ramesh M, Kumar PP. Mitochondrial Deoxyribonucleic Acid (mtDNA), Maternal Inheritance, and Their Role in the Development of Cancers: A Scoping Review. Cureus 2023; 15:e39812. [PMID: 37397663 PMCID: PMC10314188 DOI: 10.7759/cureus.39812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is a small, circular, double-stranded DNA inherited from the mother during fertilization. Evolutionary evidence supported by the endosymbiotic theory identifies mitochondria as an organelle that could have descended from prokaryotes. This may be the reason for the independent function and inheritance pattern shown by mtDNA. The unstable nature of mtDNA due to the lack of protective histones, and effective repair systems make it more vulnerable to mutations. The mtDNA and its mutations could be maternally inherited thereby predisposing the offspring to various cancers like breast and ovarian cancers among others. Although mitochondria are considered heteroplasmic wherein variations among the multiple mtDNA genomes are noticed, mothers can have mitochondrial populations that are homoplasmic for a given mitochondrial mutation. Homoplasmic mitochondrial mutations may be transmitted to all maternal offspring. However, due to the complex interplay between the mitochondrial and nuclear genomes, it is often difficult to predict disease outcomes, even with homoplasmic mitochondrial populations. Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation. This led to the genetic bottleneck hypothesis, explaining the rapid changes in allele frequency witnessed during the transmission of mtDNA from one generation to the next. Although a physical reduction in mtDNA has been demonstrated in several species, a comprehensive understanding of the molecular mechanisms is yet to be demonstrated. Despite initially thought to be limited to the germline, there is evidence that blockages exist in different cell types during development, perhaps explaining why different tissues in the same organism contain different levels of mutated mtDNA. In this review, we comprehensively discuss the potential mechanisms through which mtDNA undergoes mutations and the maternal mode of transmission that contributes to the development of tumors, especially breast and ovarian cancers.
Collapse
Affiliation(s)
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - Swapna Vijayan
- Pediatrics, Sir CV Raman General Hospital, Bengaluru, IND
| | - Kushal C Achyut
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Shivani Uppuluri
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - Praveen Kumar K Reddy
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - Monish Ramesh
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - P Pavan Kumar
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| |
Collapse
|
27
|
Bi C, Wang L, Fan Y, Yuan B, Alsolami S, Zhang Y, Zhang PY, Huang Y, Yu Y, Izpisua Belmonte J, Li M. Quantitative haplotype-resolved analysis of mitochondrial DNA heteroplasmy in Human single oocytes, blastoids, and pluripotent stem cells. Nucleic Acids Res 2023; 51:3793-3805. [PMID: 37014011 PMCID: PMC10164563 DOI: 10.1093/nar/gkad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Maternal mitochondria are the sole source of mtDNA for every cell of the offspring. Heteroplasmic mtDNA mutations inherited from the oocyte are a common cause of metabolic diseases and associated with late-onset diseases. However, the origin and dynamics of mtDNA heteroplasmy remain unclear. We used our individual Mitochondrial Genome sequencing (iMiGseq) technology to study mtDNA heterogeneity, quantitate single nucleotide variants (SNVs) and large structural variants (SVs), track heteroplasmy dynamics, and analyze genetic linkage between variants at the individual mtDNA molecule level in single oocytes and human blastoids. Our study presented the first single-mtDNA analysis of the comprehensive heteroplasmy landscape in single human oocytes. Unappreciated levels of rare heteroplasmic variants well below the detection limit of conventional methods were identified in healthy human oocytes, of which many are reported to be deleterious and associated with mitochondrial disease and cancer. Quantitative genetic linkage analysis revealed dramatic shifts of variant frequency and clonal expansions of large SVs during oogenesis in single-donor oocytes. iMiGseq of a single human blastoid suggested stable heteroplasmy levels during early lineage differentiation of naïve pluripotent stem cells. Therefore, our data provided new insights of mtDNA genetics and laid a foundation for understanding mtDNA heteroplasmy at early stages of life.
Collapse
Affiliation(s)
- Chongwei Bi
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lin Wang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yong Fan
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, 510150 Guangzhou, China
| | - Baolei Yuan
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Samhan Alsolami
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yingzi Zhang
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pu-Yao Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, College of Chemistry, College of Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing100191, China
| | - Juan Carlos Izpisua Belmonte
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Altos Labs, Inc., San Diego, CA92121, USA
| | - Mo Li
- Bioscience program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Bioengineering program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Guangzhou, Saudi Arabia
| |
Collapse
|
28
|
Kang MH, Kim YJ, Lee JH. Mitochondria in reproduction. Clin Exp Reprod Med 2023; 50:1-11. [PMID: 36935406 PMCID: PMC10030209 DOI: 10.5653/cerm.2022.05659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
In reproduction, mitochondria produce bioenergy, help to synthesize biomolecules, and support the ovaries, oogenesis, and preimplantation embryos, thereby facilitating healthy live births. However, the regulatory mechanism of mitochondria in oocytes and embryos during oogenesis and embryo development has not been clearly elucidated. The functional activity of mitochondria is crucial for determining the quality of oocytes and embryos; therefore, the underlying mechanism must be better understood. In this review, we summarize the specific role of mitochondria in reproduction in oocytes and embryos. We also briefly discuss the recovery of mitochondrial function in gametes and zygotes. First, we introduce the general characteristics of mitochondria in cells, including their roles in adenosine triphosphate and reactive oxygen species production, calcium homeostasis, and programmed cell death. Second, we present the unique characteristics of mitochondria in female reproduction, covering the bottleneck theory, mitochondrial shape, and mitochondrial metabolic pathways during oogenesis and preimplantation embryo development. Mitochondrial dysfunction is associated with ovarian aging, a diminished ovarian reserve, a poor ovarian response, and several reproduction problems in gametes and zygotes, such as aneuploidy and genetic disorders. Finally, we briefly describe which factors are involved in mitochondrial dysfunction and how mitochondrial function can be recovered in reproduction. We hope to provide a new viewpoint regarding factors that can overcome mitochondrial dysfunction in the field of reproductive medicine.
Collapse
Affiliation(s)
- Min-Hee Kang
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Jin Kim
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Seoul, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
29
|
Li J, Cullis C. Comparative analysis of 84 chloroplast genomes of Tylosema esculentum reveals two distinct cytotypes. FRONTIERS IN PLANT SCIENCE 2023; 13:1025408. [PMID: 36798803 PMCID: PMC9927231 DOI: 10.3389/fpls.2022.1025408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Tylosema esculentum (marama bean) is an important orphan legume from southern Africa that has long been considered to have the potential to be domesticated as a crop. The chloroplast genomes of 84 marama samples collected from various geographical locations in Namibia and Pretoria were compared in this study. The cp genomes were analyzed for diversity, including SNPs, indels, structural alterations, and heteroplasmy. The marama cp genomes ranged in length from 161,537 bp to 161,580 bp and contained the same sets of genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The genes rpoC2 and rpoB, and the intergenic spacers trnT-trnL and ndhG-ndhI were found to be more diverse than other regions of the marama plastome. 15 haplotypes were found to be divided into two groups, differing at 122 loci and at a 230 bp inversion. One type appears to have greater variability within the major genome present, and variations amongst individuals with this type of chloroplast genome seems to be distributed within specific geographic regions but with very limited sampling for some regions. However, deep sequencing has identified that within most of the individuals, both types of chloroplast genomes are present, albeit one is generally at a very low frequency. The inheritance of this complex of chloroplast genomes appears to be fairly constant, providing a conundrum of how the two genomes co-exist and are propagated through generations. The possible consequences for adaptation to the harsh environment in which T. esculentum survives are considered. The results pave the way for marama variety identification, as well as for understanding the origin and evolution of the bean.
Collapse
|
30
|
Radzvilavicius AL, Johnston IG. Organelle bottlenecks facilitate evolvability by traversing heteroplasmic fitness valleys. Front Genet 2022; 13:974472. [PMID: 36386853 PMCID: PMC9650085 DOI: 10.3389/fgene.2022.974472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2024] Open
Abstract
Bioenergetic organelles-mitochondria and plastids-retain their own genomes (mtDNA and ptDNA), and these organelle DNA (oDNA) molecules are vital for eukaryotic life. Like all genomes, oDNA must be able to evolve to suit new environmental challenges. However, mixed oDNA populations in cells can challenge cellular bioenergetics, providing a penalty to the appearance and adaptation of new mutations. Here we show that organelle "bottlenecks," mechanisms increasing cell-to-cell oDNA variability during development, can overcome this mixture penalty and facilitate the adaptation of beneficial mutations. We show that oDNA heteroplasmy and bottlenecks naturally emerge in evolutionary simulations subjected to fluctuating environments, demonstrating that this evolvability is itself evolvable. Usually thought of as a mechanism to clear damaging mutations, organelle bottlenecks therefore also resolve the tension between intracellular selection for pure cellular oDNA populations and the "bet-hedging" need for evolvability and adaptation to new environments. This general theory suggests a reason for the maintenance of organelle heteroplasmy in cells, and may explain some of the observed diversity in organelle maintenance and inheritance across taxa.
Collapse
Affiliation(s)
- Arunas L. Radzvilavicius
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Kirillova A, Mazunin I. Operation "mitochondrial wipeout" - clearing recipient mitochondria DNA during the cytoplasmic replacement therapy. J Assist Reprod Genet 2022; 39:2205-2207. [PMID: 35852730 PMCID: PMC9596630 DOI: 10.1007/s10815-022-02561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022] Open
Affiliation(s)
- Anastasia Kirillova
- Center of Life Sciences, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia.
- Fomin Clinic, Moscow, Russia.
| | - Ilya Mazunin
- Center of Life Sciences, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia.
- Fomin Clinic, Moscow, Russia.
- Medical Genomics LLC, Moscow, Russia.
| |
Collapse
|
32
|
Broz AK, Keene A, Fernandes Gyorfy M, Hodous M, Johnston IG, Sloan DB. Sorting of mitochondrial and plastid heteroplasmy in Arabidopsis is extremely rapid and depends on MSH1 activity. Proc Natl Acad Sci U S A 2022; 119:e2206973119. [PMID: 35969753 PMCID: PMC9407294 DOI: 10.1073/pnas.2206973119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
The fate of new mitochondrial and plastid mutations depends on their ability to persist and spread among the numerous organellar genome copies within a cell (heteroplasmy). The extent to which heteroplasmies are transmitted across generations or eliminated through genetic bottlenecks is not well understood in plants, in part because their low mutation rates make these variants so infrequent. Disruption of MutS Homolog 1 (MSH1), a gene involved in plant organellar DNA repair, results in numerous de novo point mutations, which we used to quantitatively track the inheritance of single nucleotide variants in mitochondrial and plastid genomes in Arabidopsis. We found that heteroplasmic sorting (the fixation or loss of a variant) was rapid for both organelles, greatly exceeding rates observed in animals. In msh1 mutants, plastid variants sorted faster than those in mitochondria and were typically fixed or lost within a single generation. Effective transmission bottleneck sizes (N) for plastids and mitochondria were N ∼ 1 and 4, respectively. Restoring MSH1 function further increased the rate of heteroplasmic sorting in mitochondria (N ∼ 1.3), potentially because of its hypothesized role in promoting gene conversion as a mechanism of DNA repair, which is expected to homogenize genome copies within a cell. Heteroplasmic sorting also favored GC base pairs. Therefore, recombinational repair and gene conversion in plant organellar genomes can potentially accelerate the elimination of heteroplasmies and bias the outcome of this sorting process.
Collapse
Affiliation(s)
- Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Alexandra Keene
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | | | - Mychaela Hodous
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, 5007, Norway
- Computational Biology Unit, University of Bergen, Bergen, 5007, Norway
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
33
|
Liu Q, Iqbal MF, Yaqub T, Firyal S, Zhao Y, Stoneking M, Li M. The Transmission of Human Mitochondrial DNA in Four-Generation Pedigrees. Hum Mutat 2022; 43:1259-1267. [PMID: 35460575 DOI: 10.1002/humu.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Muhammad Faaras Iqbal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Firyal
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
34
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
35
|
Guo J, Chen X, Liu Z, Sun H, Zhou Y, Dai Y, Ma Y, He L, Qian X, Wang J, Zhang J, Zhu Y, Zhang J, Shen B, Zhou F. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:73-80. [PMID: 34938607 PMCID: PMC8646052 DOI: 10.1016/j.omtn.2021.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022]
Abstract
Critical mutations of mitochondrial DNA (mtDNA) generally lead to maternally inheritable diseases that affect multiple organs and systems; however, it was difficult to alter mtDNA in mammalian cells to intervene in or cure mitochondrial disorders. Recently, the discovery of DddA-derived cytosine base editor (DdCBE) enabled the precise manipulation of mtDNA. To test its feasibility for in vivo use, we selected several sites in mouse mtDNA as DdCBE targets to resemble the human pathogenic mtDNA G-to-A mutations. The efficiency of DdCBE-mediated mtDNA editing was first screened in mouse Neuro-2A cells and DdCBE pairs with the best performance were chosen for in vivo targeting. Microinjection of the mRNAs of DdCBE halves in the mouse zygotes or 2-cell embryo successfully generated edited founder mice with a base conversion rate ranging from 2.48% to 28.51%. When backcrossed with wild-type male mice, female founders were able to transmit the mutations to their offspring with different mutation loads. Off-target analyses demonstrated a high fidelity for DdCBE-mediated base editing in mouse mtDNA both in vitro and in vivo. Our study demonstrated that the DdCBE is feasible for generation of mtDNA mutation models to facilitate disease study and for potential treatment of mitochondrial disorders.
Collapse
Affiliation(s)
- Jiayin Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxu Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| | - Haifeng Sun
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yichen Dai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yu'e Ma
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| | - Lei He
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| | - Xuezhen Qian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jie Zhang
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| | - Yichen Zhu
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| | - Jun Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Gusu School, Nanjing Medical University, Nanjing 211166, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fei Zhou
- Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
36
|
Urbisz AZ, Chajec Ł, Małota K, Student S, Sawadro MK, Śliwińska MA, Świątek P. All for one - changes in mitochondrial morphology and activity during syncytial oogenesis. Biol Reprod 2022; 106:1232-1253. [PMID: 35156116 DOI: 10.1093/biolre/ioac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
The syncytial groups of germ cells (germ-line cysts) forming in ovaries of clitellate annelids are an attractive model to study mitochondrial stage-specific changes. Using transmission electron microscopy, serial block-face scanning electron microscopy, and fluorescent microscopy, we analyzed the mitochondria distribution and morphology and the state of membrane potential in female cysts in Enchytraeus albidus. We visualized in 3D at the ultrastructural level mitochondria in cysts at successive stages: 2-celled, 4-celled, 16-celled cysts, and cyst in advanced oogenesis. We found that mitochondria form extensive aggregates - they are fused and connected into large and branched mitochondrial networks. The most extensive networks are formed with up to 10,000 fused mitochondria, whereas individual organelles represent up to 2% of the total mitochondrial volume. We classify such morphology of mitochondria as a dynamic hyperfusion state, and suggest that it can maintain their high activity and intensifies the process of cellular respiration within the syncytial cysts. We found some individual mitochondria undergoing degradation, which implies that damaged mitochondria are removed from networks for their final elimination. As it was shown that growing oocytes possess less active mitochondria than the nurse cells, it suggests that the high activity of mitochondria in the nurse cells and their dynamic hyperfusion state serve the needs of the growing oocyte. Additionally, we measured by calorimetry the total antioxidant capacity of germ-line cysts in comparison to somatic tissue, and it suggests that antioxidative defense systems, together with mitochondrial networks, can effectively protect germ-line mitochondria from damage.
Collapse
Affiliation(s)
- Anna Z Urbisz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Łukasz Chajec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karol Małota
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Sebastian Student
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Marta K Sawadro
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Małgorzata A Śliwińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Laboratory of Imaging Tissue Structure and Function, Warsaw, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
37
|
Mitochondrial Neurodegeneration. Cells 2022; 11:cells11040637. [PMID: 35203288 PMCID: PMC8870525 DOI: 10.3390/cells11040637] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are cytoplasmic organelles, which generate energy as heat and ATP, the universal energy currency of the cell. This process is carried out by coupling electron stripping through oxidation of nutrient substrates with the formation of a proton-based electrochemical gradient across the inner mitochondrial membrane. Controlled dissipation of the gradient can lead to production of heat as well as ATP, via ADP phosphorylation. This process is known as oxidative phosphorylation, and is carried out by four multiheteromeric complexes (from I to IV) of the mitochondrial respiratory chain, carrying out the electron flow whose energy is stored as a proton-based electrochemical gradient. This gradient sustains a second reaction, operated by the mitochondrial ATP synthase, or complex V, which condensates ADP and Pi into ATP. Four complexes (CI, CIII, CIV, and CV) are composed of proteins encoded by genes present in two separate compartments: the nuclear genome and a small circular DNA found in mitochondria themselves, and are termed mitochondrial DNA (mtDNA). Mutations striking either genome can lead to mitochondrial impairment, determining infantile, childhood or adult neurodegeneration. Mitochondrial disorders are complex neurological syndromes, and are often part of a multisystem disorder. In this paper, we divide the diseases into those caused by mtDNA defects and those that are due to mutations involving nuclear genes; from a clinical point of view, we discuss pediatric disorders in comparison to juvenile or adult-onset conditions. The complementary genetic contributions controlling organellar function and the complexity of the biochemical pathways present in the mitochondria justify the extreme genetic and phenotypic heterogeneity of this new area of inborn errors of metabolism known as ‘mitochondrial medicine’.
Collapse
|
38
|
Brüser C, Keller-Findeisen J, Jakobs S. The TFAM-to-mtDNA ratio defines inner-cellular nucleoid populations with distinct activity levels. Cell Rep 2021; 37:110000. [PMID: 34818548 DOI: 10.1016/j.celrep.2021.110000] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.
Collapse
Affiliation(s)
- Christian Brüser
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jan Keller-Findeisen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Research Group Mitochondrial Structure and Dynamics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Clinic of Neurology, High Resolution Microscopy of the Cell, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
39
|
Ji D, Li X, Pan J, Zong K, Chen D, Marley JL, Zou W, Deng X, Cao Y, Zhang Z, Zhou P, Sha H, Cao Y. Preimplantation genetic diagnosis for a carrier with m.3697G > A mitochondrial DNA mutation. J Assist Reprod Genet 2021; 38:3251-3260. [PMID: 34802141 DOI: 10.1007/s10815-021-02354-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To explore inheritance of the m.3697G > A mitochondrial DNA (mtDNA) mutation and the effectiveness of preimplantation genetic diagnosis (PGD) for the carrier. METHODS The study encompassed a pedigree of m.3697G > A mtDNA mutation, including one asymptomatic patient who pursued for PGD treatment. Twelve cumulus oocyte complexes (COCs) were collected in the first PGD cycle and 11 COCs in the second cycle. The efficiency of cumulus cells, polar bodies, and trophectoderm (TE) in predicting the m.3697G > A heteroplasmy of embryos was analyzed. RESULTS From 23 COCs, 20 oocytes were fertilized successfully. On day 5 and 6 post-fertilization, 15 blastocysts were biopsied. The m.3697G > A mutation load of TE biopsies ranged from 15.2 to 100%. In the first cycle, a blastocyst with mutation load of 31.7% and chromosomal mosaicism was transferred, but failed to yield a clinical pregnancy. In the second cycle, a euploid blastocyst with mutation load of 53.9% was transferred, which gave rise to a clinical pregnancy. However, the pregnancy was terminated due to fetal cleft lip and palate. The mutation loads of different tissues (47.7 ± 1.8%) from the induced fetus were comparable to that of the biopsied TE and amniotic fluid cell (49.7%). The mutation load of neither cumulus cells (R2 = 0.02, p = 0.58) nor polar bodies (R2 = 0.33, p = 0.13) correlated with TE mutation load which was regarded as a gold standard. CONCLUSIONS The m.3697G > A mutation showed a random pattern of inheritance. PGD could be used to reduce the risk of inheritance of a high mutation load. Cumulus cells are not a suitable predictor of blastocyst mutation load.
Collapse
Affiliation(s)
- Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Xinyuan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jianxin Pan
- Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kai Zong
- Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.,China Technical Center of Hefei Customs District, No. 329 Tunxi Road, Hefei, 230022, Anhui, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Jordan Lee Marley
- Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.,Biosciences Institute, Tyne and Wear, Newcastle University,, Newcastle Upon Tyne, NE1 8PB, UK
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Xiaohong Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Yu Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China.,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China.,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China
| | - Hongying Sha
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China. .,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China. .,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, China. .,NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract (Anhui Medical University), No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Reproductive Medicine Center, No. 120 Wanshui Road, Shushan District, the First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, China.
| |
Collapse
|
40
|
Mostafavi S, Balafkan N, Pettersen IKN, Nido GS, Siller R, Tzoulis C, Sullivan GJ, Bindoff LA. Distinct Mitochondrial Remodeling During Mesoderm Differentiation in a Human-Based Stem Cell Model. Front Cell Dev Biol 2021; 9:744777. [PMID: 34722525 PMCID: PMC8553110 DOI: 10.3389/fcell.2021.744777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Given the considerable interest in using stem cells for modeling and treating disease, it is essential to understand what regulates self-renewal and differentiation. Remodeling of mitochondria and metabolism, with the shift from glycolysis to oxidative phosphorylation (OXPHOS), plays a fundamental role in maintaining pluripotency and stem cell fate. It has been suggested that the metabolic “switch” from glycolysis to OXPHOS is germ layer-specific as glycolysis remains active during early ectoderm commitment but is downregulated during the transition to mesoderm and endoderm lineages. How mitochondria adapt during these metabolic changes and whether mitochondria remodeling is tissue specific remain unclear. Here, we address the question of mitochondrial adaptation by examining the differentiation of human pluripotent stem cells to cardiac progenitors and further to differentiated mesodermal derivatives, including functional cardiomyocytes. In contrast to recent findings in neuronal differentiation, we found that mitochondrial content decreases continuously during mesoderm differentiation, despite increased mitochondrial activity and higher levels of ATP-linked respiration. Thus, our work highlights similarities in mitochondrial remodeling during the transition from pluripotent to multipotent state in ectodermal and mesodermal lineages, while at the same time demonstrating cell-lineage-specific adaptations upon further differentiation. Our results improve the understanding of how mitochondrial remodeling and the metabolism interact during mesoderm differentiation and show that it is erroneous to assume that increased OXPHOS activity during differentiation requires a simultaneous expansion of mitochondrial content.
Collapse
Affiliation(s)
- Sepideh Mostafavi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Novin Balafkan
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.,Norwegian Centre for Mental Disorders Research (NORMENT)-Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| | | | - Gonzalo S Nido
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Richard Siller
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Charalampos Tzoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Gareth J Sullivan
- Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital and the University of Oslo, Oslo, Norway.,Institute of Immunology, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
41
|
Dawod PGA, Jancic J, Marjanovic A, Brankovic M, Jankovic M, Samardzic J, Gamil Anwar Dawod A, Novakovic I, Abdel Motaleb FI, Radlovic V, Kostic VS, Nikolic D. Mutational Analysis and mtDNA Haplogroup Characterization in Three Serbian Cases of Mitochondrial Encephalomyopathies and Literature Review. Diagnostics (Basel) 2021; 11:1969. [PMID: 34829316 PMCID: PMC8620769 DOI: 10.3390/diagnostics11111969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial encephalomyopathies (MEMP) are heterogeneous multisystem disorders frequently associated with mitochondrial DNA (mtDNA) mutations. Clinical presentation varies considerably in age of onset, course, and severity up to death in early childhood. In this study, we performed molecular genetic analysis for mtDNA pathogenic mutation detection in Serbian children, preliminary diagnosed clinically, biochemically and by brain imaging for mitochondrial encephalomyopathies disorders. Sanger sequencing analysis in three Serbian probands revealed two known pathogenic mutations. Two probands had a heteroplasmic point mutation m.3243A>G in the MT-TL1 gene, which confirmed mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome (MELAS), while a single case clinically manifested for Leigh syndrome had an almost homoplasmic (close to 100%) m.8993T>G mutation in the MT-ATP6 gene. After full mtDNA MITOMASTER analysis and PhyloTree build 17, we report MELAS' association with haplogroups U and H (U2e and H15 subclades); likewise, the mtDNA-associated Leigh syndrome proband shows a preference for haplogroup H (H34 subclade). Based on clinical-genetic correlation, we suggest that haplogroup H may contribute to the mitochondrial encephalomyopathies' phenotypic variability of the patients in our study. We conclude that genetic studies for the distinctive mitochondrial encephalomyopathies should be well-considered for realizing clinical severity and possible outcomes.
Collapse
Affiliation(s)
- Phepy G. A. Dawod
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Jasna Jancic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Clinic of Neurology and Psychiatry of Children and Youth, 11000 Belgrade, Serbia
| | - Ana Marjanovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Marija Brankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Milena Jankovic
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Janko Samardzic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ayman Gamil Anwar Dawod
- Internal Medicine, Hepatogastroenterology and Endoscopy Department, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Ivana Novakovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
| | - Fayda I. Abdel Motaleb
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Vladimir Radlovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Pediatric Surgery Department, University Children’s Hospital, 11000 Belgrade, Serbia
| | - Vladimir S. Kostic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Neurology Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (P.G.A.D.); (J.J.); (A.M.); (M.B.); (I.N.); (V.R.); (V.S.K.)
- Physical Medicine and Rehabilitation Department, University Children’s Hospital, Tirsova 10, 11000 Belgrade, Serbia
| |
Collapse
|
42
|
Brunetti D, Dykstra W, Le S, Zink A, Prigione A. Mitochondria in neurogenesis: Implications for mitochondrial diseases. Stem Cells 2021; 39:1289-1297. [PMID: 34089537 DOI: 10.1002/stem.3425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are organelles with recognized key roles in cellular homeostasis, including bioenergetics, redox, calcium signaling, and cell death. Mitochondria are essential for neuronal function, given the high energy demands of the human brain. Consequently, mitochondrial diseases affecting oxidative phosphorylation (OXPHOS) commonly exhibit neurological impairment. Emerging evidence suggests that mitochondria are important not only for mature postmitotic neurons but also for the regulation of neural progenitor cells (NPCs) during the process of neurogenesis. These recent findings put mitochondria as central regulator of cell fate decisions during brain development. OXPHOS mutations may disrupt the function of NPCs and thereby impair the metabolic programming required for neural fate commitment. Promoting the mitochondrial function of NPCs could therefore represent a novel interventional approach against incurable mitochondrial diseases.
Collapse
Affiliation(s)
- Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Werner Dykstra
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
43
|
Piccinini G, Iannello M, Puccio G, Plazzi F, Havird JC, Ghiselli F. Mitonuclear Coevolution, but not Nuclear Compensation, Drives Evolution of OXPHOS Complexes in Bivalves. Mol Biol Evol 2021; 38:2597-2614. [PMID: 33616640 PMCID: PMC8136519 DOI: 10.1093/molbev/msab054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the “nuclear compensation hypothesis,” a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with “doubly uniparental” mtDNA inheritance. Our data showed strong and clear signals of mitonuclear coevolution. NuOXPHOS subunits had concordant topologies with mtOXPHOS subunits, contrary to previous phylogenies based on nuclear genes lacking mt interactions. Evolutionary rates between mt and nuOXPHOS subunits were also highly correlated compared with non-OXPHO-interacting nuclear genes. Nuclear subunits of chimeric OXPHOS complexes (I, III, IV, and V) also had higher dN/dS ratios than Complex II, which is formed exclusively by nuDNA-encoded subunits. However, we did not find evidence of nuclear compensation: mitochondria-encoded subunits showed similar dN/dS ratios compared with nuclear-encoded subunits, contrary to most previously studied bilaterian animals. Moreover, no site-specific signals of compensatory positive selection were detected in nuOXPHOS genes. Our analyses extend the evidence for mitonuclear coevolution to a new taxonomic group, but we propose a reconsideration of the nuclear compensation hypothesis.
Collapse
Affiliation(s)
- Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Justin C Havird
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Lima A, Lubatti G, Burgstaller J, Hu D, Green AP, Di Gregorio A, Zawadzki T, Pernaute B, Mahammadov E, Perez-Montero S, Dore M, Sanchez JM, Bowling S, Sancho M, Kolbe T, Karimi MM, Carling D, Jones N, Srinivas S, Scialdone A, Rodriguez TA. Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nat Metab 2021; 3:1091-1108. [PMID: 34253906 PMCID: PMC7611553 DOI: 10.1038/s42255-021-00422-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from development to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mitochondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function triggers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.
Collapse
Affiliation(s)
- Ana Lima
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Di Hu
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alistair P Green
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London, UK
| | - Aida Di Gregorio
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tamzin Zawadzki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Barbara Pernaute
- National Heart and Lung Institute, Imperial College London, London, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elmir Mahammadov
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Marian Dore
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Juan Miguel Sanchez
- National Heart and Lung Institute, Imperial College London, London, UK
- Orchard Therapeutics, London, UK
| | - Sarah Bowling
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Margarida Sancho
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Thomas Kolbe
- Biomodels Austria (Biat), University of Veterinary Medicine Vienna, Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - David Carling
- MRC London Institute of Medical Sciences (LMS), Institute of Clinical Sciences, Imperial College London, London, UK
| | - Nick Jones
- EPSRC Centre for the Mathematics of Precision Healthcare, Department of Mathematics, Imperial College London, London, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany.
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
45
|
Fu L, Luo YX, Liu Y, Liu H, Li HZ, Yu Y. Potential of Mitochondrial Genome Editing for Human Fertility Health. Front Genet 2021; 12:673951. [PMID: 34354734 PMCID: PMC8329452 DOI: 10.3389/fgene.2021.673951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes vital proteins and RNAs for the normal functioning of the mitochondria. Mutations in mtDNA leading to mitochondrial dysfunction are relevant to a large spectrum of diseases, including fertility disorders. Since mtDNA undergoes rather complex processes during gametogenesis and fertilization, clarification of the changes and functions of mtDNA and its essential impact on gamete quality and fertility during this process is of great significance. Thanks to the emergence and rapid development of gene editing technology, breakthroughs have been made in mitochondrial genome editing (MGE), offering great potential for the treatment of mtDNA-related diseases. In this review, we summarize the features of mitochondria and their unique genome, emphasizing their inheritance patterns; illustrate the role of mtDNA in gametogenesis and fertilization; and discuss potential therapies based on MGE as well as the outlook in this field.
Collapse
Affiliation(s)
- Lin Fu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu-Xin Luo
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- Food Inspection and Quarantine Technology Center of Shenzhen Customs District, FICS, Shenzhen, China
| | - Hui Liu
- Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| | - Hong-Zhen Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.,Stem Cell Research Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
46
|
Gonçalves FG, Alves CAPF, Heuer B, Peterson J, Viaene AN, Reis Teixeira S, Martín-Saavedra JS, Andronikou S, Goldstein A, Vossough A. Primary Mitochondrial Disorders of the Pediatric Central Nervous System: Neuroimaging Findings. Radiographics 2021; 40:2042-2067. [PMID: 33136487 DOI: 10.1148/rg.2020200052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - César Augusto Pinheiro Ferreira Alves
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Beth Heuer
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - James Peterson
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Angela N Viaene
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Sara Reis Teixeira
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Juan Sebastián Martín-Saavedra
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Savvas Andronikou
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Amy Goldstein
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| | - Arastoo Vossough
- From the Department of Radiology, Division of Neuroradiology (F.G.G., C.A.P.F.A., S.R.T., J.S.M.S., S.A., A.V.), Department of Pathology (A.N.V.), and Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics (B.H., J.P., A.G.), Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104-4399; and Departments of Pediatrics (A.G.) and Radiology (S.A., A.V.), University of Pennsylvania Perelman School of Medicine (A.N.V.), Philadelphia, Pa
| |
Collapse
|
47
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|
48
|
Bernardino Gomes TM, Ng YS, Pickett SJ, Turnbull DM, Vincent AE. Mitochondrial DNA disorders: From pathogenic variants to preventing transmission. Hum Mol Genet 2021; 30:R245-R253. [PMID: 34169319 PMCID: PMC8490015 DOI: 10.1093/hmg/ddab156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondrial DNA (mtDNA) disorders are recognized as one of the most common causes of inherited metabolic disorders. The mitochondrial genome occurs in multiple copies resulting in both homoplasmic and heteroplasmic pathogenic mtDNA variants. A biochemical defect arises when the pathogenic variant level reaches a threshold, which differs between variants. Moreover, variants can segregate, clonally expand, or be lost from cellular populations resulting in a dynamic and tissue-specific mosaic pattern of oxidative deficiency. MtDNA is maternally inherited but transmission patterns of heteroplasmic pathogenic variants are complex. During oogenesis, a mitochondrial bottleneck results in offspring with widely differing variant levels to their mother, whilst highly deleterious variants, such as deletions, are not transmitted. Complemented by a complex interplay between mitochondrial and nuclear genomes, these peculiar genetics produce marked phenotypic variation, posing challenges to the diagnosis and clinical management of patients. Novel therapeutic compounds and several genetic therapies are currently under investigation, but proven disease-modifying therapies remain elusive. Women who carry pathogenic mtDNA variants require bespoke genetic counselling to determine their reproductive options. Recent advances in in vitro fertilization techniques, have greatly improved reproductive choices, but are not without their challenges. Since the first pathogenic mtDNA variants were identified over 30 years ago, there has been remarkable progress in our understanding of these diseases. However, many questions remain unanswered and future studies are required to investigate the mechanisms of disease progression and to identify new disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Tiago M Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
49
|
Pereira CV, Gitschlag BL, Patel MR. Cellular mechanisms of mtDNA heteroplasmy dynamics. Crit Rev Biochem Mol Biol 2021; 56:510-525. [PMID: 34120542 DOI: 10.1080/10409238.2021.1934812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise de novo. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.
Collapse
Affiliation(s)
- Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
50
|
Broz AK, Waneka G, Wu Z, Fernandes Gyorfy M, Sloan DB. Detecting de novo mitochondrial mutations in angiosperms with highly divergent evolutionary rates. Genetics 2021; 218:iyab039. [PMID: 33704433 PMCID: PMC8128415 DOI: 10.1093/genetics/iyab039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Although plant mitochondrial genomes typically show low rates of sequence evolution, levels of divergence in certain angiosperm lineages suggest anomalously high mitochondrial mutation rates. However, de novo mutations have never been directly analyzed in such lineages. Recent advances in high-fidelity DNA sequencing technologies have enabled detection of mitochondrial mutations when still present at low heteroplasmic frequencies. To date, these approaches have only been performed on a single plant species (Arabidopsis thaliana). Here, we apply a high-fidelity technique (Duplex Sequencing) to multiple angiosperms from the genus Silene, which exhibits extreme heterogeneity in rates of mitochondrial sequence evolution among close relatives. Consistent with phylogenetic evidence, we found that Silene latifolia maintains low mitochondrial variant frequencies that are comparable with previous measurements in Arabidopsis. Silene noctiflora also exhibited low variant frequencies despite high levels of historical sequence divergence, which supports other lines of evidence that this species has reverted to lower mitochondrial mutation rates after a past episode of acceleration. In contrast, S. conica showed much higher variant frequencies in mitochondrial (but not in plastid) DNA, consistent with an ongoing bout of elevated mitochondrial mutation rates. Moreover, we found an altered mutational spectrum in S. conica heavily biased towards AT→GC transitions. We also observed an unusually low number of mitochondrial genome copies per cell in S. conica, potentially pointing to reduced opportunities for homologous recombination to accurately repair mismatches in this species. Overall, these results suggest that historical fluctuations in mutation rates are driving extreme variation in rates of plant mitochondrial sequence evolution.
Collapse
Affiliation(s)
- Amanda K Broz
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120 Shenzhen, China
| | | | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|