1
|
Thomas HE, Boas Lichty KE, Richards GP, Boyd EF. Dual roles of glycine betaine, dimethylglycine, and sarcosine as osmoprotectants and nutrient sources for Vibrio natriegens. Appl Environ Microbiol 2025:e0061925. [PMID: 40265944 DOI: 10.1128/aem.00619-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Bacteria respond to osmotic stress by intracellularly accumulating low molecular weight compounds called compatible solutes, also known as osmolytes. Glycine betaine (N,N,N-trimethylglycine, GB) is a highly effective and widely available osmolyte used by bacteria, algae, and plants for abiotic stress protection. Here, we highlight the dual roles of GB, dimethyl glycine (DMG), and sarcosine for both osmoprotection and a less known role as sole carbon sources. First, we showed that the marine halophile Vibrio natriegens can grow in 1% to 7% NaCl and biosynthesize GB, ectoine, and glutamate and import GB, DMG, and sarcosine in response to osmotic stress. Betaine-carnitine-choline transporters (BCCTs) for the uptake of GB and DMG, but not sarcosine, were identified. Bioinformatics analyses uncovered homologs of GB, DMG, and sarcosine catabolism genes (dgcAB_fixAB, gbcA, gbcB, purU, soxBDAG, glyA, glxA) clustered in the V. natriegens genome, and these genes had a limited distribution among vibrios. We showed that V. natriegens ATCC 14048 grew on GB, DMG, and sarcosine as sole carbon sources, and gbcA and dgcA were required for growth. A contiguous catabolism cluster was present in a subset of Vibrio fluvialis strains, and we demonstrated the growth of V. fluvialis 2013V-1197 in DMG and sarcosine as sole carbon sources. Phylogenetic analysis revealed the catabolism cluster did not share a common ancestor among members of the family Vibrionaceae.IMPORTANCECompatible solutes are frequently the most concentrated organic components in marine organisms, allowing them to adapt to high saline environments as well as affording protection to other abiotic stresses. These organic compounds are significant energy stores that have been overlooked for their potential as abundant nutrient sources for bacteria. Our study characterized glycine betaine (GB), dimethyl glycine (DMG), and sarcosine catabolism genes and showed their efficient use as carbon and energy sources by marine halophilic vibrios.
Collapse
Affiliation(s)
- Heather E Thomas
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Gary P Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Lüchtrath C, Forsten E, Polis R, Hoffmann M, Genis AS, Kuhn AL, Hövels M, Deppenmeier U, Magnus J, Büchs J. Small-scale fed-batch cultivations of Vibrio natriegens: overcoming challenges for early process development. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03159-9. [PMID: 40249449 DOI: 10.1007/s00449-025-03159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
Vibrio natriegens is a fast-growing microbial workhorse with high potential for biotechnological applications. However, handling the bacterium in batch processes is challenging due to its high overflow metabolism and mixed acid formation under microaerobic conditions. For early process development, technologies enabling small-scale fed-batch cultivation of V. natriegens Vmax are needed. In this study, fed-batch cultivations in 96-well microtiter plates were successfully online-monitored for the first time with a µTOM device. Using the online-monitored oxygen transfer rate, a scale up to membrane-based fed-batch shake flasks was performed. The overflow metabolism was efficiently minimized by choosing suitable feed rates, and mixed acid formation was prevented. A glucose soft sensor using the oxygen transfer rate provided accurate estimates of glucose consumption throughout the fermentation, eliminating the need for offline sampling. Analyzing the impact of the inducer IPTG on the recombinant production of the enzyme inulosucrase revealed concentration-dependent effects in batch processes. In contrast, fed-batch operating mode resulted in high inulosucrase activity even without induction. Overall, an inulosucrase titer of 80 U/mL was achieved. In conclusion, the advantages of small-scale fed-batch technologies supported by a glucose soft sensor have been demonstrated for early process development for V. natriegens Vmax.
Collapse
Affiliation(s)
- Clara Lüchtrath
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Eva Forsten
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Romeos Polis
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Aylin Sara Genis
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Anna-Lena Kuhn
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Marcel Hövels
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Uwe Deppenmeier
- Institute for Microbiology and Biotechnology, University of Bonn, Bonn, Germany
| | - Jørgen Magnus
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT- Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
3
|
Schwarz S, Fan R, Ebrahimi M, Czermak P. Efficient Separation of a Novel Microbial Chassis, Vibrio natriegens, from High-Salt Culture Broth Using Ceramic Ultrafiltration Membranes. MEMBRANES 2025; 15:121. [PMID: 40277991 PMCID: PMC12028687 DOI: 10.3390/membranes15040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
Vibrio natriegens is widely used as a production host for biotechnological processes due to its superior maximum glucose consumption rate, high growth rate, and abundant ribosomes. Most bioprocesses also need a scalable biomass separation step. This can be achieved by cross-flow filtration with ceramic membranes, although the membrane pores are susceptible to fouling. However, the fouling characteristics of V. natriegens culture broth have not been investigated in detail. We therefore characterized membrane fouling during the separation of V. natriegens biomass from culture broth using a cross-flow filtration plant with ceramic membranes. The resistance in series model was used to quantify the fouling-induced resistance caused by the different components of the culture broth. The total fouling resistance was 4.1·109 ± 0.6·109 m-1 for the culture broth and 5.4·109 ± 0.7·109 m-1 for the summed broth components. Reversible resistance accounted for 86% and 81% of these totals, respectively. We then applied Hermia's adapted filtration laws to determine the dominant fouling mechanism induced by the different broth components. In a further step, we established a setup to determine the compressibility index of the cells during cross-flow filtration, resulting in an estimated value of 0.55 ± 0.04. These results will facilitate the design of economic filtration plants and will help to establish V. natriegens as a production host for large-scale industrial processes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Central Hesse, 35390 Giessen, Germany; (S.S.); (R.F.); (M.E.)
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Central Hesse, 35390 Giessen, Germany; (S.S.); (R.F.); (M.E.)
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Central Hesse, 35390 Giessen, Germany; (S.S.); (R.F.); (M.E.)
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Central Hesse, 35390 Giessen, Germany; (S.S.); (R.F.); (M.E.)
- Faculty of Biology and Chemistry, Justus-Liebig-University Giessen, 35390 Giessen, Germany
| |
Collapse
|
4
|
Hädrich M, Scheuchenegger C, Vital ST, Gunkel C, Müller S, Hoff J, Borger J, Glawischnig E, Thoma F, Blombach B. Low-biomass pyruvate production with engineered Vibrio natriegens is accompanied by parapyruvate formation. Microb Cell Fact 2025; 24:73. [PMID: 40148976 PMCID: PMC11951559 DOI: 10.1186/s12934-025-02693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Pyruvate is a precursor for various compounds in the chemical, drug, and food industries and is therefore an attractive target molecule for microbial production processes. The fast-growing bacterium Vibrio natriegens excels with its specific substrate uptake rate as an unconventional chassis for industrial biotechnology. Here, we aim to exploit the traits of V. natriegens for pyruvate production in fermentations with low biomass concentrations. RESULTS We inactivated the pyruvate dehydrogenase complex in V. natriegens Δvnp12, which harbors deletions of the prophage regions vnp12. The resulting strain V. natriegens Δvnp12 ΔaceE was unable to grow in minimal medium with glucose unless supplemented with acetate. In shaking flasks, the strain showed a growth rate of 1.16 ± 0.03 h- 1 and produced 4.0 ± 0.3 gPyr L- 1 within 5 h. We optimized the parameters in an aerobic fermentation process and applied a constant maintenance feed of 0.24 gAc h- 1 which resulted in a maximal biomass concentration of only 6.6 ± 0.4 gCDW L- 1 and yielded highly active resting cells with a glucose uptake rate (qS) of 3.5 ± 0.2 gGlc gCDW-1 h- 1. V. natriegens Δvnp12 ΔaceE produced 41.0 ± 1.8 gPyr L- 1 with a volumetric productivity of 4.1 ± 0.2 gPyr L- 1 h- 1. Carbon balancing disclosed a gap of 30%, which we identified partly as parapyruvate. Deletion of ligK encoding the HMG/CHA aldolase in V. natriegens Δvnp12 ΔaceE did not impact biomass formation but plasmid-based overexpression of ligK negatively affected growth and led to a 3-fold higher parapyruvate concentration in the culture broth. Notably, we also identified parapyruvate in supernatants of a pyruvate-producing Corynebacterium glutamicum strain. Cell-free bioreactor experiments mimicking the biological process also resulted in parapyruvate formation, pointing to a chemical reaction contributing to its synthesis. CONCLUSIONS We engineered metabolically highly active resting cells of V. natriegens producing pyruvate with high productivity at a low biomass concentration. However, we also found that pyruvate production is accompanied by parapyruvate formation in V. natriegens as well as in a pyruvate producing C. glutamicum strain. Parapyruvate formation seems to be a result of chemical pyruvate conversion and might be supported biochemically by an aldolase reaction.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Clarissa Scheuchenegger
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Sören-Tobias Vital
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Christoph Gunkel
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Susanne Müller
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Jennifer Borger
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Erich Glawischnig
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
5
|
Thomas HE, Boas Lichty KE, Richards GP, Boyd EF. Dual roles of glycine betaine (GB), dimethylglycine, and sarcosine as osmoprotectants and nutrient sources for Vibrio natriegens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643870. [PMID: 40166187 PMCID: PMC11957063 DOI: 10.1101/2025.03.18.643870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bacteria respond to osmotic stress by intracellularly accumulating low molecular weight compounds called compatible solutes (CS), also known as osmolytes. Glycine betaine ( N , N , N -trimethylglycine, GB) is a highly effective and widely available osmolyte used by bacteria, algae, and plants for abiotic stress protection. Here, we highlight the dual roles of GB, dimethyl glycine (DMG), and sarcosine for both osmoprotection and a less known role as sole carbon sources. First, we showed that the marine halophile Vibrio natriegens can grow in 1% to 7% NaCl and biosynthesize GB, ectoine, and glutamate, and imported GB, DMG, and sarcosine in response to osmotic stress. Betaine-carnitine-choline transporters (BCCTs) for the uptake of GB and DMG, but not sarcosine, were identified. Bioinformatics analyses uncovered homologs of GB, DMG, and sarcosine catabolism genes ( dgcAB_fixAB, gbcA, gbcB, purU, soxBDAG, glyA, glxA ) clustered in the V. natriegens genome and these genes had a limited distribution among vibrios. We showed V. natriegens ATCC 14048 grew on GB, DMG, and sarcosine as sole carbon sources and gbcA and dgcA were required for growth. A contiguous catabolism cluster was present in a subset of V. fluvialis strains, and we demonstrated growth of V. fluvialis 2013V-1197 in DMG and sarcosine as sole carbon sources. Phylogenetic analysis revealed the catabolism cluster did not share a common ancestor among members of the family Vibrionaceae . IMPORTANCE Compatible solutes are frequently the most concentrated organic components in marine organisms allowing them to adapt to high saline environments as well as affording protection to other abiotic stresses. These organic compounds are significant energy stores that have been overlooked for their potential as abundant nutrient sources for bacteria. Our study characterized GB, DMG, and sarcosine catabolism genes and showed their efficient use as carbon and energy sources by marine halophilic vibrios.
Collapse
|
6
|
Stukenberg D, Hoff J, Faber A, Becker A. Protocol for NT-CRISPR: A Method for Efficient Genome Engineering in Vibrio natriegens. Methods Mol Biol 2025; 2850:365-375. [PMID: 39363082 DOI: 10.1007/978-1-0716-4220-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.
Collapse
Affiliation(s)
- Daniel Stukenberg
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Josef Hoff
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Anna Faber
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg, Germany.
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
7
|
Lima M, Muddana C, Xiao Z, Bandyopadhyay A, Wangikar PP, Pakrasi HB, Tang YJ. The new chassis in the flask: Advances in Vibrio natriegens biotechnology research. Biotechnol Adv 2024; 77:108464. [PMID: 39389280 DOI: 10.1016/j.biotechadv.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Biotechnology has been built on the foundation of a small handful of well characterized and well-engineered organisms. Recent years have seen a breakout performer gain attention as a new entrant into the bioengineering toolbox: Vibrio natriegens. This review covers recent research efforts into making V. natriegens a biotechnology platform, using a large language model (LLM) and knowledge graph to expedite the literature survey process. Scientists have made advancements in research pertaining to the fundamental metabolic characteristics of V. natriegens, development and characterization of synthetic biology tools, systems biology analysis and metabolic modeling, bioproduction and metabolic engineering, and microbial ecology. Each of these subcategories has relevance to the future of V. natriegens for bioengineering applications. In this review, we cover these recent advancements and offer context for the impact they may have on the field, highlighting benefits and drawbacks of using this organism. From examining the recent bioengineering research, it appears that V. natriegens is on the precipice of becoming a platform bacterium for the future of biotechnology.
Collapse
Affiliation(s)
- Matthew Lima
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | - Zhengyang Xiao
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Anindita Bandyopadhyay
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Himadri B Pakrasi
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Yinjie J Tang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
8
|
Carrillo Rincón AF, Cabral AJ, Gyorgy A, Farny NG. A dual-inducible control system for multistep biosynthetic pathways. J Biol Eng 2024; 18:68. [PMID: 39568033 PMCID: PMC11580509 DOI: 10.1186/s13036-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The successful production of industrially relevant natural products hinges on two key factors: the cultivation of robust microbial chassis capable of synthesizing the desired compounds, and the availability of reliable genetic tools for expressing target genes. The development of versatile and portable genetic tools offers a streamlined pathway to efficiently produce a variety of compounds in well-established chassis organisms. The σ70lac and tet expression systems - adaptations of the widely used lac and tet regulatory systems developed in our laboratory - have shown effective regulation and robust expression of recombinant proteins in various Gram-negative bacteria. Understanding the strengths and limitations of these regulatory systems in controlling recombinant protein production is essential for progress in this area. RESULTS To assess their capacity for combinatorial control, both the σ70lac and tet expression systems were combined into a single plasmid and assessed for their performance in producing fluorescent reporters as well as the terpenoids lycopene and β-carotene. We thoroughly characterized the induction range, potential for synergistic effects, and metabolic costs of our dual σ70lac and tet expression system in the well-established microorganisms Escherichia coli, Pseudomonas putida, and Vibrio natriegens using combinations of fluorescent reporters. The dynamic range and basal transcriptional control of the σ70 expression systems were further improved through the incorporation of translational control mechanisms via toehold switches. This improvement was assessed using the highly sensitive luciferase reporter system. The improvement in control afforded by the integration of the toehold switches enabled the accumulation of a biosynthetic intermediate (lycopene) in the β-carotene synthesis pathway. CONCLUSION This study presents the development and remaining challenges of a set of versatile genetic tools that are portable across well-established gammaproteobacterial chassis and capable of controlling the expression of multigene biosynthetic pathways. The enhanced σ70 expression systems, combined with toehold switches, facilitate the biosynthesis and study of enzymes, recombinant proteins, and natural products, thus providing a valuable resource for producing a variety of compounds in microbial cell factories.
Collapse
Affiliation(s)
- Andrés Felipe Carrillo Rincón
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alexandra J Cabral
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Natalie G Farny
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
- Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
9
|
Hädrich M, Schulze C, Hoff J, Blombach B. Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39527262 DOI: 10.1007/10_2024_271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast growth accompanied with high substrate consumption rates and a versatile metabolism paved the way to exploit Vibrio natriegens as unconventional host for biotechnological applications. Meanwhile, a wealth of knowledge on the physiology, the metabolism, and the regulation in this halophilic marine bacterium has been gathered. Sophisticated genetic engineering tools and metabolic models are available and have been applied to engineer production strains and first chassis variants of V. natriegens. In this review, we update the current knowledge on the physiology and the progress in the development of synthetic biology tools and provide an overview of recent advances in metabolic engineering of this promising host. We further discuss future challenges to enhance the application range of V. natriegens.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
10
|
Woo S, Han YH, Lee HK, Baek D, Noh MH, Han S, Lim HG, Jung GY, Seo SW. Generation of a Vibrio-based platform for efficient conversion of raffinose through Adaptive Laboratory Evolution on a solid medium. Metab Eng 2024; 86:300-307. [PMID: 39489215 DOI: 10.1016/j.ymben.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Raffinose, a trisaccharide abundantly found in soybeans, is a potential alternative carbon source for biorefineries. Nevertheless, residual intermediate di- or monosaccharides and low catabolic efficiency limit raffinose use through conventional microbial hosts. This study presents a Vibrio-based platform to convert raffinose efficiently. Vibrio sp. dhg was selected as the starting strain for the Adaptive Laboratory Evolution (ALE) strategy to leverage its significantly higher metabolic efficiency. We conducted ALE on a solid minimal medium supplemented with raffinose to prevent the enrichment of undesired phenotypes due to the shared effect of extracellular raffinose hydrolysis among multiple strains. As a result, we generated the VRA10 strain that efficiently utilizes raffinose without leaving behind degraded di- or monosaccharides, achieving a notable growth rate (0.40 h-1) and raffinose consumption rate (1.2 g/gdcw/h). Whole genome sequencing and reverse engineering identified that a missense mutation in the melB gene (encoding a melibiose/raffinose:sodium symporter) and the deletion of the two galR genes (encoding transcriptional repressors for galactose catabolism) facilitated rapid raffinose utilization. The further engineered strain produced 6.2 g/L of citramalate from 20 g/L of raffinose. This study will pave the way for the efficient utilization of diverse raffinose-rich byproducts and the expansion of alternative carbon streams in biorefinery applications.
Collapse
Affiliation(s)
- Sunghwa Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Yong Hee Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro 77, Gwangju, 61186, South Korea
| | - Hye Kyung Lee
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dongyeop Baek
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Myung Hyun Noh
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jonggaro, Junggu, Ulsan, 44429, South Korea
| | - Sukjae Han
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and Bioengineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon, 22212, South Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea; Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; School of Chemical and Biological Engineering, South Korea; Institute of Chemical Processes, South Korea; Bio-MAX Institute, South Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
11
|
VanArsdale E, Kelly E, Sayer CV, Vora GJ, Tschirhart T. Engineering xylose induction in Vibrio natriegens for biomanufacturing applications. Biotechnol Bioeng 2024; 121:3572-3581. [PMID: 39031482 DOI: 10.1002/bit.28804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.
Collapse
Affiliation(s)
- Eric VanArsdale
- National Research Council, United States Naval Research Laboratory, Washington, District of Columbia, USA
| | - Erin Kelly
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Cameron V Sayer
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Gary J Vora
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Tanya Tschirhart
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| |
Collapse
|
12
|
Forsten E, Gerdes S, Petri R, Büchs J, Magnus J. Unraveling the impact of pH, sodium concentration, and medium osmolality on Vibrio natriegens in batch processes. BMC Biotechnol 2024; 24:63. [PMID: 39313794 PMCID: PMC11421182 DOI: 10.1186/s12896-024-00897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Vibrio natriegens, a halophilic marine γ-proteobacterium, holds immense biotechnological potential due to its remarkably short generation time of under ten minutes. However, the highest growth rates have been primarily observed on complex media, which often suffer from batch-to-batch variability affecting process stability and performance. Consistent bioprocesses necessitate the use of chemically defined media, which are usually optimized for fermenters with pH and dissolved oxygen tension (DOT) regulation, both of which are not applied during early-stage cultivations in shake flasks or microtiter plates. Existing studies on V. natriegens' growth on mineral media report partially conflicting results, and a comprehensive study examining the combined effects of pH buffering, sodium concentration, and medium osmolality is lacking. RESULTS This study evaluates the influence of sodium concentration, pH buffering, and medium osmolality on the growth of V. natriegens under unregulated small-scale conditions. The maximum growth rate, time of glucose depletion, as well as the onset of stationary phase were observed through online-monitoring the oxygen transfer rate. The results revealed optimal growth conditions at an initial pH of 8.0 with a minimum of 300 mM MOPS buffer for media containing 20 g/L glucose or 180 mM MOPS for media with 10 g/L glucose. Optimal sodium chloride supplementation was found to be between 7.5 and 15 g/L, lower than previously reported ranges. This is advantageous for reducing industrial corrosion issues. Additionally, an osmolality range of 1 to 1.6 Osmol/kg was determined to be optimal for growth. Under these optimized conditions, V. natriegens achieved a growth rate of 1.97 ± 0.13 1/h over a period of 1 h at 37 °C, the highest reported rate for this organism on a mineral medium. CONCLUSION This study provides guidelines for cultivating V. natriegens in early-stage laboratory settings without pH and DOT regulation. The findings suggest a lower optimal sodium chloride range than previously reported and establish an osmolality window for optimal growth, thereby advancing the understanding of V. natriegens' physiology. In addition, this study offers a foundation for future research into the effects of different ions and carbon sources on V. natriegens.
Collapse
Affiliation(s)
- Eva Forsten
- AVT- Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Steffen Gerdes
- AVT- Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - René Petri
- AVT- Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT- Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Magnus
- AVT- Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
13
|
Lee Y, Kim K, Choi M, Seo SW. Natural transformation of Vibrio natriegens with large genetic cluster enables alginate assimilation for isopentenol production. BIORESOURCE TECHNOLOGY 2024; 406:130988. [PMID: 38885723 DOI: 10.1016/j.biortech.2024.130988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Alginate is a major component of brown macroalgae, and its efficient utilization is critical for developing sustainable technologies. Vibrio natriegens is a fast-growing marine bacterium that has gained massive attention due to its potential as an alternative industrial chassis. However, V. natriegens cannot naturally metabolize alginate, limiting its usage in marine biomass conversion. In this study, V. natriegens was engineered to utilize marine biomass, kelp, as a carbon source. A total of 33.8 kb of the genetic cluster for alginate assimilation from Vibrio sp. dhg was integrated into V. natriegens by natural transformation. Engineered V. natriegens was further modified to produce 1.8 mg/L of isopentenol from 16 g/L of crude kelp powder. This study not only presents the very first case in which V. natriegens can be naturally transformed with large DNA fragments but also highlights the potential of this strain for converting marine biomass into valuable products.
Collapse
Affiliation(s)
- Yungyu Lee
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Keonwoo Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Mincheol Choi
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; Institute of Bio Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
14
|
Smith M, Hernández JS, Messing S, Ramakrishnan N, Higgins B, Mehalko J, Perkins S, Wall VE, Grose C, Frank PH, Cregger J, Le PV, Johnson A, Sherekar M, Pagonis M, Drew M, Hong M, Widmeyer SRT, Denson JP, Snead K, Poon I, Waybright T, Champagne A, Esposito D, Jones J, Taylor T, Gillette W. Producing recombinant proteins in Vibrio natriegens. Microb Cell Fact 2024; 23:208. [PMID: 39049057 PMCID: PMC11267860 DOI: 10.1186/s12934-024-02455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024] Open
Abstract
The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.
Collapse
Affiliation(s)
- Matthew Smith
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - José Sánchez Hernández
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter H Frank
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julia Cregger
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Phuong Vi Le
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mukul Sherekar
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Morgan Pagonis
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matt Drew
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ivy Poon
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Allison Champagne
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
15
|
Stukenberg D, Faber A, Becker A. Graded-CRISPRi, a Tool for Tuning the Strengths of CRISPRi-Mediated Knockdowns in Vibrio natriegens Using gRNA Libraries. ACS Synth Biol 2024; 13:2091-2104. [PMID: 38916455 DOI: 10.1021/acssynbio.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In recent years, the fast-growing bacterium Vibrio natriegens has gained increasing attention as it has the potential to become a next-generation chassis for synthetic biology. A wide range of genetic parts and genome engineering methods have already been developed. However, there is still a need for a well-characterized tool to effectively and gradually reduce the expression levels of native genes. To bridge this gap, we created graded-CRISPRi, a system utilizing gRNA variants that lead to varying levels of repression strength. By incorporating multiple gRNA sequences into our design, we successfully extended this concept to simultaneously repress four distinct reporter genes. Furthermore, we demonstrated the capability of using graded-CRISPRi to target native genes, thereby examining the effect of various knockdown levels on growth.
Collapse
Affiliation(s)
- Daniel Stukenberg
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35037, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Anna Faber
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35037, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Anke Becker
- Center for Synthetic Microbiology, Philipps-Universität Marburg, Marburg 35037, Germany
- Department of Biology, Philipps-Universität Marburg, Marburg 35037, Germany
| |
Collapse
|
16
|
Li H, Zhang J, Wang Z, Shi P, Shi C. Genetically encoded site-specific 19F unnatural amino acid incorporation in V. natriegens for in-cell NMR analysis. Protein Expr Purif 2024; 219:106461. [PMID: 38460621 DOI: 10.1016/j.pep.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.
Collapse
Affiliation(s)
- Hao Li
- Anhui Vocational and Technical College, Hefei, Anhui, 230011, PR China; Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| | - Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Zilong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Pan Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
17
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Ramming L, Stukenberg D, Sánchez Olmos MDC, Glatter T, Becker A, Schindler D. Rationally designed chromosome fusion does not prevent rapid growth of Vibrio natriegens. Commun Biol 2024; 7:519. [PMID: 38698198 PMCID: PMC11066055 DOI: 10.1038/s42003-024-06234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
DNA replication is essential for the proliferation of all cells. Bacterial chromosomes are replicated bidirectionally from a single origin of replication, with replication proceeding at about 1000 bp per second. For the model organism, Escherichia coli, this translates into a replication time of about 40 min for its 4.6 Mb chromosome. Nevertheless, E. coli can propagate by overlapping replication cycles with a maximum short doubling time of 20 min. The fastest growing bacterium known, Vibrio natriegens, is able to replicate with a generation time of less than 10 min. It has a bipartite genome with chromosome sizes of 3.2 and 1.9 Mb. Is simultaneous replication from two origins a prerequisite for its rapid growth? We fused the two chromosomes of V. natriegens to create a strain carrying one chromosome with a single origin of replication. Compared to the parental, this strain showed no significant deviation in growth rate. This suggests that the split genome is not a prerequisite for rapid growth.
Collapse
Affiliation(s)
- Lea Ramming
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Stukenberg
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Becker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
19
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
20
|
Specht DA, Sheppard TJ, Kennedy F, Li S, Gadikota G, Barstow B. Efficient natural plasmid transformation of Vibrio natriegens enables zero-capital molecular biology. PNAS NEXUS 2024; 3:pgad444. [PMID: 38352175 PMCID: PMC10863642 DOI: 10.1093/pnasnexus/pgad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024]
Abstract
The fast-growing microbe Vibrio natriegens is capable of natural transformation where it draws DNA in from media via an active process under physiological conditions. Using an engineered strain with a genomic copy of the master competence regulator tfoX from Vibrio cholerae in combination with a new minimal competence media (MCM) that uses acetate as an energy source, we demonstrate naturally competent cells which are created, transformed, and recovered entirely in the same media, without exchange or addition of fresh media. Cells are naturally competent to plasmids, recombination with linear DNA, and cotransformation of both to select for scarless and markerless genomic edits. The entire process is simple and inexpensive, requiring no capital equipment for an entirely room temperature process (zero capital protocol, 104 cfu/μg), or just an incubator (high-efficiency protocol, 105-6 cfu/μg). These cells retain their naturally competent state when frozen and are transformable immediately upon thawing like a typical chemical or electrochemical competent cell. Since the optimized transformation protocol requires only 50 min of hands-on time, and V. natriegens grows quickly even on plates, a transformation started at 9 AM yields abundant culturable single colonies by 5 PM. Further, because all stages of transformation occur in the same media, and the process can be arbitrarily scaled in volume, this natural competence strain and media could be ideal for automated directed evolution applications. As a result, naturally competent V. natriegens could compete with Escherichia coli as an excellent chassis for low-cost and highly scalable synthetic biology.
Collapse
Affiliation(s)
- David A Specht
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Timothy J Sheppard
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Finn Kennedy
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sijin Li
- Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Greeshma Gadikota
- Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Schulze C, Hädrich M, Borger J, Rühmann B, Döring M, Sieber V, Thoma F, Blombach B. Investigation of exopolysaccharide formation and its impact on anaerobic succinate production with Vibrio natriegens. Microb Biotechnol 2024; 17:e14277. [PMID: 37256270 PMCID: PMC10832516 DOI: 10.1111/1751-7915.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Vibrio natriegens is an emerging host for biotechnology due to its high growth and substrate consumption rates. In industrial processes typically fed-batch processes are applied to obtain high space-time yields. In this study, we established an aerobic glucose-limited fed-batch fermentation with the wild type (wt) of V. natriegens which yielded biomass concentrations of up to 28.4 gX L-1 . However, we observed that the viscosity of the culture broth increased by a factor of 800 at the end of the cultivation due to the formation of 157 ± 20 mg exopolysaccharides (EPS) L-1 . Analysis of the genomic repertoire revealed several genes and gene clusters associated with EPS formation. Deletion of the transcriptional regulator cpsR in V. natriegens wt did not reduce EPS formation, however, it resulted in a constantly low viscosity of the culture broth and altered the carbohydrate content of the EPS. A mutant lacking the cps cluster secreted two-fold less EPS compared to the wt accompanied by an overall low viscosity and a changed EPS composition. When we cultivated the succinate producer V. natriegens Δlldh Δdldh Δpfl Δald Δdns::pycCg (Succ1) under anaerobic conditions on glucose, we also observed an increased viscosity at the end of the cultivation. Deletion of cpsR and the cps cluster in V. natriegens Succ1 reduced the viscosity five- to six-fold which remained at the same level observed at the start of the cultivation. V. natriegens Succ1 ΔcpsR and V. natriegens Succ1 Δcps achieved final succinate concentrations of 51 and 46 g L-1 with a volumetric productivity of 8.5 and 7.7 gSuc L-1 h-1 , respectively. Both strains showed a product yield of about 1.4 molSuc molGlc -1 , which is 27% higher compared with that of V. natriegens Succ1 and corresponds to 81% of the theoretical maximum.
Collapse
Affiliation(s)
- Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Jennifer Borger
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Broder Rühmann
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Manuel Döring
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
| | - Volker Sieber
- Chemistry of Biogenic Resources, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Felix Thoma
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubingGermany
- SynBiofoundry@TUMTechnical University of MunichStraubingGermany
| |
Collapse
|
22
|
Yang H, Yu F, Qian Z, Huang T, Peng T, Hu Z. Cytochrome P450 for environmental remediation: catalytic mechanism, engineering strategies and future prospects. World J Microbiol Biotechnol 2023; 40:33. [PMID: 38057619 DOI: 10.1007/s11274-023-03823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/29/2023] [Indexed: 12/08/2023]
Abstract
Environmental pollution is a global concern. Various organic compounds are released into the environment through wastewater, waste gas, and waste residue, ultimately accumulating in the environment and the food chain. This poses a significant threat to both human health and ecology. Currently, a growing body of research has demonstrated that microorganisms employ their Cytochrome P450 (CYP450) system for biodegradation, offering a crucial approach for eliminating these pollutants in environmental remediation. CYP450, a ubiquitous catalyst in nature, includes a vast array of family members distributed widely across various organisms, including bacteria, fungi, and mammals. These enzymes participate in the metabolism of diverse organic compounds. Furthermore, the rapid advancements in enzyme and protein engineering have led to increased utilization of engineered CYP450s in environmental remediation, enhancing their efficiency in pollutant removal. This article presents an overview of the current understanding of various members of the CYP450 superfamily involved in transforming organic pollutants and the engineering of biodegrading CYP450s. Additionally, it explores the catalytic mechanisms, current practical applications of CYP450-based systems, their potential applications, and the prospects in bioremediation.
Collapse
Affiliation(s)
- Haichen Yang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Zhihui Qian
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
- Guangdong Research Center of Offshore Environmental Pollution Control Engineering, Shantou University, Shantou, 515063, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Tian J, Deng W, Zhang Z, Xu J, Yang G, Zhao G, Yang S, Jiang W, Gu Y. Discovery and remodeling of Vibrio natriegens as a microbial platform for efficient formic acid biorefinery. Nat Commun 2023; 14:7758. [PMID: 38012202 PMCID: PMC10682008 DOI: 10.1038/s41467-023-43631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
Formic acid (FA) has emerged as a promising one-carbon feedstock for biorefinery. However, developing efficient microbial hosts for economically competitive FA utilization remains a grand challenge. Here, we discover that the bacterium Vibrio natriegens has exceptional FA tolerance and metabolic capacity natively. This bacterium is remodeled by rewiring the serine cycle and the TCA cycle, resulting in a non-native closed loop (S-TCA) which as a powerful metabolic sink, in combination with laboratory evolution, enables rapid emergence of synthetic strains with significantly improved FA-utilizing ability. Further introduction of a foreign indigoidine-forming pathway into the synthetic V. natriegens strain leads to the production of 29.0 g · L-1 indigoidine and consumption of 165.3 g · L-1 formate within 72 h, achieving a formate consumption rate of 2.3 g · L-1 · h-1. This work provides an important microbial chassis as well as design rules to develop industrially viable microorganisms for FA biorefinery.
Collapse
Affiliation(s)
- Jinzhong Tian
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Xianghu Laboratory, Hangzhou, 311231, China.
| | - Wangshuying Deng
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziwen Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Xu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | | | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
24
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
25
|
Wu F, Wang S, Peng Y, Guo Y, Wang Q. Metabolic engineering of fast-growing Vibrio natriegens for efficient pyruvate production. Microb Cell Fact 2023; 22:172. [PMID: 37667234 PMCID: PMC10476420 DOI: 10.1186/s12934-023-02185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pyruvate is a widely used value-added chemical which also serves as a hub of various metabolic pathways. The fastest-growing bacterium Vibrio natriegens is a promising chassis for synthetic biology applications with high substrate uptake rates. The aim of this study was to investigate if the high substrate uptake rates of V. natriegens enable pyruvate production at high productivities. RESULTS Two prophage gene clusters and several essential genes for the biosynthesis of byproducts were first deleted. In order to promote pyruvate accumulation, the key gene aceE encoding pyruvate dehydrogenase complex E1 component was down-regulated to reduce the carbon flux into the tricarboxylic acid cycle. Afterwards, the expression of ppc gene encoding phosphoenolpyruvate carboxylase was fine-tuned to balance the cell growth and pyruvate synthesis. The resulting strain PYR32 was able to produce 54.22 g/L pyruvate from glucose within 16 h, with a yield of 1.17 mol/mol and an average productivity of 3.39 g/L/h. In addition, this strain was also able to efficiently convert sucrose or gluconate into pyruvate at high titers. CONCLUSION A novel strain of V. natriegens was engineered which was capable to provide higher productivity in pyruvate synthesis. This study lays the foundation for the biosynthesis of pyruvate and its derivatives in fast-growing V. natriegens.
Collapse
Affiliation(s)
- Fengli Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Shucai Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanfeng Peng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yufeng Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
26
|
Gemünde A, Gail J, Holtmann D. Anodic Respiration of Vibrio natriegens in a Bioelectrochemical System. CHEMSUSCHEM 2023; 16:e202300181. [PMID: 37089008 DOI: 10.1002/cssc.202300181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Vibrio natriegens promises to be a new standard biotechnological working organism since it grows extraordinarily fast, its productivity surpasses E. coli by far, and genomic tools are getting readily available. Recent studies provided insights into its extracellular electron transfer pathway, revealing it to be similar to other well-known electroactive organisms. Therefore, we aimed to show for the first time that V. natriegens donates electrons from its metabolism to an electrode by direct contact as well as via an artificial redox mediator. Our results demonstrate current densities up to 196 μA cm-2 using an artificial mediator. Via direct electron transfer, 6.6 μA cm-2 were achieved within the first 24 h of cultivation. In the mediated system, mainly formate, acetate, and succinate were produced from glucose. These findings favor V. natriegens over established electroactive organisms due to its superior electron-transfer capabilities combined with an outstanding metabolism.
Collapse
Affiliation(s)
- André Gemünde
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390, Gießen, Germany
| | - Jonas Gail
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390, Gießen, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390, Gießen, Germany
| |
Collapse
|
27
|
Shin J, Rychel K, Palsson BO. Systems biology of competency in Vibrio natriegens is revealed by applying novel data analytics to the transcriptome. Cell Rep 2023; 42:112619. [PMID: 37285268 DOI: 10.1016/j.celrep.2023.112619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Vibrio natriegens regulates natural competence through the TfoX and QstR transcription factors, which are involved in external DNA capture and transport. However, the extensive genetic and transcriptional regulatory basis for competency remains unknown. We used a machine-learning approach to decompose Vibrio natriegens's transcriptome into 45 groups of independently modulated sets of genes (iModulons). Our findings show that competency is associated with the repression of two housekeeping iModulons (iron metabolism and translation) and the activation of six iModulons; including TfoX and QstR, a novel iModulon of unknown function, and three housekeeping iModulons (representing motility, polycations, and reactive oxygen species [ROS] responses). Phenotypic screening of 83 gene deletion strains demonstrates that loss of iModulon function reduces or eliminates competency. This database-iModulon-discovery cycle unveils the transcriptomic basis for competency and its relationship to housekeeping functions. These results provide the genetic basis for systems biology of competency in this organism.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Li X, Liang Y, Wang Z, Yao Y, Chen X, Shao A, Lu L, Dang H. Isolation and Characterization of a Novel Vibrio natriegens—Infecting Phage and Its Potential Therapeutic Application in Abalone Aquaculture. BIOLOGY 2022; 11:biology11111670. [PMID: 36421384 PMCID: PMC9687132 DOI: 10.3390/biology11111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Phage-based pathogen control (i.e., phage therapy) has received increasing scientific attention to reduce and prevent the emergence, transmission, and detrimental effects of antibiotic resistance. In the current study, multidrug-resistant Vibrio natriegens strain AbY-1805 was isolated and tentatively identified as a pathogen causing the death of juvenile Pacific abalones (Haliotis discus hannai Ino). In order to apply phage therapy, instead of antibiotics, to treat and control V. natriegens infections in marine aquaculture environments, a lytic phage, vB_VnaS-L3, was isolated. It could effectively infect V. natriegens AbY-1805 with a short latent period (40 min) and high burst size (~890 PFU/cell). Treatment with vB_VnaS-L3 significantly reduced the mortality of juvenile abalones and maintained abalone feeding capacity over a 40-day V. natriegens challenge experiment. Comparative genomic and phylogenetic analyses suggested that vB_VnaS-L3 was a novel marine Siphoviridae-family phage. Furthermore, vB_VnaS-L3 had a narrow host range, possibly specific to the pathogenic V. natriegens strains. It also exhibited viability at a wide range of pH, temperature, and salinity. The short latent period, large burst size, high host specificity, and broad environmental adaptation suggest that phage vB_VnaS-L3 could potentially be developed as an alternative antimicrobial for the control and prevention of marine animal infections caused by pathogenic V. natriegens.
Collapse
Affiliation(s)
- Xuejing Li
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Zhenhua Wang
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Yanyan Yao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Xiaoli Chen
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Anran Shao
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264316, China
- Correspondence: (L.L.); (H.D.)
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (L.L.); (H.D.)
| |
Collapse
|
29
|
Kang CW, Lim HG, Won J, Cha S, Shin G, Yang JS, Sung J, Jung GY. Circuit-guided population acclimation of a synthetic microbial consortium for improved biochemical production. Nat Commun 2022; 13:6506. [PMID: 36344561 PMCID: PMC9640620 DOI: 10.1038/s41467-022-34190-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial consortia have been considered potential platforms for bioprocessing applications. However, the complexity in process control owing to the use of multiple strains necessitates the use of an efficient population control strategy. Herein, we report circuit-guided synthetic acclimation as a strategy to improve biochemical production by a microbial consortium. We designed a consortium comprising alginate-utilizing Vibrio sp. dhg and 3-hydroxypropionic acid (3-HP)-producing Escherichia coli strains for the direct conversion of alginate to 3-HP. We introduced a genetic circuit, named "Population guider", in the E. coli strain, which degrades ampicillin only when 3-HP is produced. In the presence of ampicillin as a selection pressure, the consortium was successfully acclimated for increased 3-HP production by 4.3-fold compared to that by a simple co-culturing consortium during a 48-h fermentation. We believe this concept is a useful strategy for the development of robust consortium-based bioprocesses.
Collapse
Affiliation(s)
- Chae Won Kang
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Hyun Gyu Lim
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jaehyuk Won
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Sanghak Cha
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Giyoung Shin
- grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| | - Jae-Seong Yang
- grid.423637.70000 0004 1763 5862Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, 08193 Spain
| | - Jaeyoung Sung
- grid.254224.70000 0001 0789 9563Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea ,grid.254224.70000 0001 0789 9563Department of Chemistry, Chung-Ang University, 84 Heukseok-Ro, Dongjak-gu, Seoul 06974 Republic of Korea
| | - Gyoo Yeol Jung
- grid.49100.3c0000 0001 0742 4007Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea ,grid.49100.3c0000 0001 0742 4007School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673 Korea
| |
Collapse
|
30
|
Meng W, Zhang Y, Ma L, Lü C, Xu P, Ma C, Gao C. Non-Sterilized Fermentation of 2,3-Butanediol with Seawater by Metabolic Engineered Fast-Growing Vibrio natriegens. Front Bioeng Biotechnol 2022; 10:955097. [PMID: 35903792 PMCID: PMC9315368 DOI: 10.3389/fbioe.2022.955097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable and environment-friendly microbial fermentation processes have been developed to produce numerous chemicals. However, the high energy input required for sterilization and substantial fresh water consumption restrict the economic feasibility of traditional fermentation processes. To address these problems, Vibrio natriegens, a promising microbial chassis with low nutritional requirements, high salt tolerance and rapid growth rate can be selected as the host for chemical production. In this study, V. natriegens was metabolic engineered to produce 2,3-butanediol (2,3-BD), an important platform chemical, through non-sterilized fermentation with seawater-based minimal medium after expressing a 2,3-BD synthesis cluster and deleting two byproduct encoding genes. Under optimized fermentative conditions, 41.27 g/L 2,3-BD was produced with a productivity of 3.44 g/L/h and a yield of 0.39 g/g glucose by recombinant strain V. natriegensΔfrdAΔldhA-pETRABC. This study confirmed the feasibility of non-sterilized fermentation using seawater to replace freshwater and other valuable chemicals may also be produced through metabolic engineering of the emerging synthetic biology chassis V. natriegens.
Collapse
Affiliation(s)
- Wensi Meng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Liting Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Chao Gao,
| |
Collapse
|
31
|
Stadler KA, Becker W, Darnhofer B, Birner-Gruenberger R, Zangger K. Overexpression of recombinant proteins containing non-canonical amino acids in Vibrio natriegens: p-azido-L-phenylalanine as coupling site for 19F-tags. Amino Acids 2022; 54:1041-1053. [PMID: 35419750 PMCID: PMC9217835 DOI: 10.1007/s00726-022-03148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
Abstract
Vibrio natriegens is the fastest growing organism identified so far. The minimum doubling time of only 9.4 min, the ability to utilize over 60 different carbon sources and its non-pathogenic properties make it an interesting alternative to E. coli as a new production host for recombinant proteins. We investigated the ability of the engineered V. natriegens strain, Vmax™ Express, to incorporate the non-canonical amino acid (ncAA) p-azido-L-phenylalanine (AzF) into recombinant proteins for NMR applications. AzF was incorporated into enhanced yellow fluorescent protein (EYFP) and MlaC, an intermembrane transport protein, by stop codon suppression. AzF incorporation into EYFP resulted in an improved suppression efficiency (SE) of up to 35.5 ± 0.8% and a protein titer of 26.7 ± 0.7 mg/L. The expression levels of MlaC-AzF even exceeded those of E. coli BL21 cells. For the recording of 1H-15N and 19F NMR spectra, EYFP-AzF was expressed and isotopically labeled in minimal medium and the newly introduced azido-group was used as coupling site for NMR sensitive 19F-tags. Our findings show that Vmax is a flexible expression host, suitable for the incorporation of ncAAs in recombinant proteins with the potential to surpass protein yields of E. coli. The presented method suggests the implementation of V. natriegens for expression of isotopically labeled proteins containing ncAAs, which can be chemically modified for the application in protein-observed 19F-NMR.
Collapse
Affiliation(s)
- Karina A Stadler
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Walter Becker
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Barbara Darnhofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
| | - Ruth Birner-Gruenberger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Stiftingtalstrasse 6, 8010, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Stiftingtalstrasse 24, 8010, Graz, Austria
- Institute of Chemical Technologies and Analytics, Faculty of Technical Chemistry, Technische Universität Wien, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
32
|
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:58. [PMID: 35614459 PMCID: PMC9134653 DOI: 10.1186/s13068-022-02157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Background Owing to increasing concerns about climate change and the depletion of fossil fuels, the development of efficient microbial processes for biochemical production from lignocellulosic biomass has been a key issue. Because process efficiency is greatly affected by the inherent metabolic activities of host microorganisms, it is essential to utilize a microorganism that can rapidly convert biomass-derived sugars. Here, we report a novel Vibrio-based microbial platform that can rapidly and simultaneously consume three major lignocellulosic sugars (i.e., glucose, xylose, and arabinose) faster than any previously reported microorganisms. Results The xylose isomerase pathway was constructed in Vibrio sp. dhg, which naturally displays high metabolic activities on glucose and arabinose but lacks xylose catabolism. Subsequent adaptive laboratory evolution significantly improved xylose catabolism of initial strain and led to unprecedently high growth and sugar uptake rate (0.67 h−1 and 2.15 g gdry cell weight−1 h−1, respectively). Furthermore, we achieved co-consumption of the three sugars by deletion of PtsG and introduction of GalP. We validated its superior performance and applicability by demonstrating efficient lactate production with high productivity (1.15 g/L/h) and titer (83 g/L). Conclusions In this study, we developed a Vibrio-based microbial platform with rapid and simultaneous utilization of the three major sugars from lignocellulosic biomass by applying an integrated approach of rational and evolutionary engineering. We believe that the developed strain can be broadly utilized to accelerate the production of diverse biochemicals from lignocellulosic biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02157-3.
Collapse
|
33
|
Tietze L, Mangold A, Hoff MW, Lale R. Identification and Cross-Characterisation of Artificial Promoters and 5' Untranslated Regions in Vibrio natriegens. Front Bioeng Biotechnol 2022; 10:826142. [PMID: 35155395 PMCID: PMC8830501 DOI: 10.3389/fbioe.2022.826142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio natriegens has recently gained attention as a novel fast-growing bacterium in synthetic biology applications. Currently, a limited set of genetic elements optimised for Escherichia coli are used in V. natriegens due to the lack of DNA parts characterised in this novel host. In this study, we report the identification and cross-characterisation of artificial promoters and 5' untranslated regions (artificial regulatory sequence, ARES) that lead to production of fluorescent proteins with a wide-range of expression levels. We identify and cross-characterise 52 constructs in V. natriegens and E. coli. Furthermore, we report the DNA sequence and motif analysis of the ARESs using various algorithms. With this study, we expand the pool of characterised genetic DNA parts that can be used for different biotechnological applications using V. natriegens as a host microorganism.
Collapse
Affiliation(s)
| | | | | | - Rahmi Lale
- Department of Biotechnology and Food Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Stella RG, Baumann P, Lorke S, Münstermann F, Wirtz A, Wiechert J, Marienhagen J, Frunzke J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metab Eng Commun 2021; 13:e00187. [PMID: 34824977 PMCID: PMC8605253 DOI: 10.1016/j.mec.2021.e00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 12/28/2022] Open
Abstract
The marine bacterium Vibrio natriegens has recently been demonstrated to be a promising new host for molecular biology and next generation bioprocesses. V. natriegens is a Gram-negative, non-pathogenic slight-halophilic bacterium, with a high nutrient versatility and a reported doubling time of under 10 min. However, V. natriegens is not an established model organism yet, and further research is required to promote its transformation into a microbial workhorse. In this work, the potential of V. natriegens as an amino acid producer was investigated. First, the transcription factor-based biosensor LysG, from Corynebacterium glutamicum, was adapted for expression in V. natriegens to facilitate the detection of positively charged amino acids. A set of different biosensor variants were constructed and characterized, using the expression of a fluorescent protein as sensor output. After random mutagenesis, one of the LysG-based sensors was used to screen for amino acid producer strains. Here, fluorescence-activated cell sorting enabled the selective sorting of highly fluorescent cells, i.e. potential producer cells. Using this approach, individual L-lysine, L-arginine and L-histidine producers could be obtained producing up to 1 mM of the effector amino acid, extracellularly. Genome sequencing of the producer strains provided insight into the amino acid production metabolism of V. natriegens. This work demonstrates the successful expression and application of transcription factor-based biosensors in V. natriegens and provides insight into the underlying physiology, forming a solid basis for further development of this promising microbe.
Collapse
Affiliation(s)
- Roberto Giuseppe Stella
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Baumann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sophia Lorke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Felix Münstermann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johanna Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, D-52074, Aachen, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
35
|
González S, Ad O, Shah B, Zhang Z, Zhang X, Chatterjee A, Schepartz A. Genetic Code Expansion in the Engineered Organism Vmax X2: High Yield and Exceptional Fidelity. ACS CENTRAL SCIENCE 2021; 7:1500-1507. [PMID: 34584951 PMCID: PMC8461772 DOI: 10.1021/acscentsci.1c00499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/05/2023]
Abstract
We report that the recently introduced commercial strain of Vibrio natriegens (Vmax X2) supports robust unnatural amino acid mutagenesis, generating exceptional yields of soluble protein containing up to 5 noncanonical α-amino acids (ncAA). The isolated yields of ncAA-containing superfolder green fluorescent protein (sfGFP) expressed in Vmax X2 are up to 25-fold higher than those achieved using commercial expression strains (Top10 and BL21) and more than 10-fold higher than those achieved using two different genomically recodedEscherichia colistrains that lack endogenous UAG stop codons and release factor 1 and have been optimized for improved fitness and preferred growth temperature (C321.ΔA.opt and C321.ΔA.exp). In addition to higher yields of soluble protein, Vmax X2 cells also generate proteins with significantly lower levels of misincorporated natural α-amino acids at the UAG-programmed position, especially in cases where the ncAA is a moderate substrate for the chosen orthogonal aminoacyl tRNA synthetase (aaRS). This increase in fidelity implies that the use of Vmax X2 cells as the expression host can obviate the need for time-consuming directed evolution experiments to improve the selectivity of an aaRS toward highly desired but suboptimal ncAA substrates.
Collapse
Affiliation(s)
| | - Omer Ad
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Bhavana Shah
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process
Development, Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Xizi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Abhishek Chatterjee
- Department
of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Blombach B, Grünberger A, Centler F, Wierckx N, Schmid J. Exploiting unconventional prokaryotic hosts for industrial biotechnology. Trends Biotechnol 2021; 40:385-397. [PMID: 34482995 DOI: 10.1016/j.tibtech.2021.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Developing cost-efficient biotechnological processes is a major challenge in replacing fossil-based industrial production processes. The remarkable progress in genetic engineering ensures efficient and fast tailoring of microbial metabolism for a wide range of bioconversions. However, improving intrinsic properties such as tolerance, handling, growth, and substrate consumption rates is still challenging. At the same time, synthetic biology tools are becoming easier applicable and transferable to nonmodel organisms. These trends have resulted in the exploitation of new and unconventional microbial systems with sophisticated properties, which render them promising hosts for the bio-based industry. Here, we highlight the metabolic and cellular capabilities of representative prokaryotic newcomers and discuss the potential and drawbacks of these hosts for industrial application.
Collapse
Affiliation(s)
- Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany; SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | | | - Florian Centler
- Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Nick Wierckx
- Forschungszentrum Jülich, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany
| | - Jochen Schmid
- Institute of Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany.
| |
Collapse
|
37
|
Microbial cell factories: a biotechnology journey across species. Essays Biochem 2021. [DOI: 10.1042/ebc20210037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
An increasingly large number of microbial species with potential for synthetic biology and metabolic engineering has been introduced over the last few years, adding huge variety to the opportunities of biotechnology. Historically, however, only a handful of microbes have attained the acceptance and widespread use that are needed to fulfil the needs of industrial bioproduction. Synthetic biology is setting out to standardise the methods, parts and platform organisms for bioproduction. These platform organisms, or chassis cells, derive from what has been termed microbial cell factories since the 1990s. In this collection of reviews, 18 microbial cell factories are featured, which belong to one of these three groups: (i) microbes already used before modern biotechnology was introduced; (ii) the first generation of engineered microbes; and (iii) promising new host organisms. The reviews are intended to provide readers with an overview of the current state of methodology and application of these cell factories, and with guidelines of how to use them for bioproduction.
Collapse
|