1
|
Metwaly A, Kriaa A, Hassani Z, Carraturo F, Druart C, Arnauts K, Wilmes P, Walter J, Rosshart S, Desai MS, Dore J, Fasano A, Blottiere HM, Maguin E, Haller D. A Consensus Statement on establishing causality, therapeutic applications and the use of preclinical models in microbiome research. Nat Rev Gastroenterol Hepatol 2025; 22:343-356. [PMID: 40033063 DOI: 10.1038/s41575-025-01041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
The gut microbiome comprises trillions of microorganisms and profoundly influences human health by modulating metabolism, immune responses and neuronal functions. Disruption in gut microbiome composition is implicated in various inflammatory conditions, metabolic disorders and neurodegenerative diseases. However, determining the underlying mechanisms and establishing cause and effect is extremely difficult. Preclinical models offer crucial insights into the role of the gut microbiome in diseases and help identify potential therapeutic interventions. The Human Microbiome Action Consortium initiated a Delphi survey to assess the utility of preclinical models, including animal and cell-based models, in elucidating the causal role of the gut microbiome in these diseases. The Delphi survey aimed to address the complexity of selecting appropriate preclinical models to investigate disease causality and to study host-microbiome interactions effectively. We adopted a structured approach encompassing a literature review, expert workshops and the Delphi questionnaire to gather insights from a diverse range of stakeholders. Experts were requested to evaluate the strengths, limitations, and suitability of these models in addressing the causal relationship between the gut microbiome and disease pathogenesis. The resulting consensus statements and recommendations provide valuable insights for selecting preclinical models in future studies of gut microbiome-related diseases.
Collapse
Affiliation(s)
- Amira Metwaly
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany
| | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Federica Carraturo
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Kaline Arnauts
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Stephan Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Joel Dore
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
- Department of Paediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center,Massachusetts General Hospital Brigham, Harvard Medical School, Boston, MA, USA
| | - Hervé M Blottiere
- Université Paris-Saclay, INRAE, MetaGenoPolis, Jouy-en-Josas, France
- Nantes Université, INRAE, UMR1280, PhAN, Nantes, France
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Dirk Haller
- Chair of Nutrition and Immunology, TUM School of Life Sciences, Technical University Munich, Freising, Germany.
- ZIEL Institute for Food & Health, Technical University Munich, Freising, Germany.
| |
Collapse
|
2
|
Slykerman RF, Davies N, Vlckova K, O'Riordan KJ, Bassett SA, Dekker J, Schellekens H, Hyland NP, Clarke G, Patterson E. Precision Psychobiotics for Gut-Brain Axis Health: Advancing the Discovery Pipelines to Deliver Mechanistic Pathways and Proven Health Efficacy. Microb Biotechnol 2025; 18:e70079. [PMID: 39815671 PMCID: PMC11735468 DOI: 10.1111/1751-7915.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo. For the therapeutic application of live microbial psychobiotics, consensus on their application as adjunct treatments to conventional neuromodulators, use in unmedicated populations or in at-risk cohorts with sub-clinical symptomatology is warranted. This missing information on both sides of the therapeutic equation when treating central nervous system (CNS) conditions makes psychobiotic research challenging, especially when compared to other pharmaceutical or functional food approaches. Expediting the transition from positive preclinical data to proven benefits in humans includes interpreting the promises and pitfalls of animal behavioural assays, as well as navigating mechanism-informed decision making to select the right microbe(s) for the job. In this review, we consider how these decisions can be supported in light of information accrued from a range of clinical studies across healthy, at-risk and pathological study populations, where specific strains have been evaluated in the context of gastrointestinal physiology, brain function and behaviour. Examples of successful, partial and unsuccessful translation from bench to bedside are considered. We also discuss the developments in in silico analyses that have enhanced our understanding of the gut microbiome and that have moved research towards pinpointing the host-microbe interactions most important for optimal gut-brain axis function. Combining this information with knowledge from functional assays across in vitro and ex vivo domains and incorporating model organisms can prime the discovery pipelines with the most promising and rationally selected psychobiotic candidates.
Collapse
Affiliation(s)
| | - Naomi Davies
- Department of Psychological MedicineUniversity of AucklandAucklandNew Zealand
| | - Klara Vlckova
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| | | | - Shalome A. Bassett
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
- Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - James Dekker
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
| | - Harriët Schellekens
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Niall P. Hyland
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of PhysiologyUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Elaine Patterson
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| |
Collapse
|
3
|
Santillán-Cortez D, Castell-Rodríguez AE, González-Arenas A, Suárez-Cuenca JA, Pérez-Koldenkova V, Añorve-Bailón D, Toledo-Lozano CG, García S, Escamilla-Tilch M, Mondragón-Terán P. A Versatile Microfluidic Device System that Lacks a Synthetic Extracellular Matrix Recapitulates the Blood-Brain Barrier and Dynamic Tumor Cell Interaction. Bioengineering (Basel) 2024; 11:1008. [PMID: 39451383 PMCID: PMC11505467 DOI: 10.3390/bioengineering11101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Microfluidic systems offer controlled microenvironments for cell-to-cell and cell-to-stroma interactions, which have precise physiological, biochemical, and mechanical features. The optimization of their conditions to best resemble tumor microenvironments constitutes an experimental modeling challenge, particularly regarding carcinogenesis in the central nervous system (CNS), given the specific features of the blood-brain barrier (BBB). Gel-free 3D microfluidic cell culture systems (gel-free 3D-mFCCSs), including features such as self-production of extracellular matrices, provide significant benefits, including promoting cell-cell communication, interaction, and cell polarity. The proposed microfluidic system consisted of a gel-free culture device inoculated with human brain microvascular endothelial cells (HBEC5i), glioblastoma multiforme cells (U87MG), and astrocytes (ScienCell 1800). The gel-free 3D-mFCCS showed a diffusion coefficient of 4.06 × 10-9 m2·s-1, and it reconstructed several features and functional properties that occur at the BBB, such as the vasculogenic ability of HBEC5i and the high duplication rate of U87MG. The optimized conditions of the gel-free 3D-mFCCS allowed for the determination of cellular proliferation, invasion, and migration, with evidence of both physical and biochemical cellular interactions, as well as the production of pro-inflammatory cytokines. In conclusion, the proposed gel-free 3D-mFCCSs represent a versatile and suitable alternative to microfluidic systems, replicating several features that occur within tumor microenvironments in the CNS. This research contributes to the characterization of microfluidic approaches and could lead to a better understanding of tumor biology and the eventual development of personalized therapies.
Collapse
Affiliation(s)
- Daniel Santillán-Cortez
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios So Ciales para los Trabajadores del Estado, San Lorenzo 502, 3er Piso. Col. Del Valle, Del. Benito Juárez, Mexico City 03100, Mexico
| | - Andrés Eliú Castell-Rodríguez
- Laboratorio de Medicina Regenerativa e Inmunoterapia Experimental, Departamento de Biología Celular y Tisular, Facultad de Medicina-Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Aliesha González-Arenas
- Departamento Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciónes Biomédicas-Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico;
| | - Juan Antonio Suárez-Cuenca
- Experimental Metabolism and Clinical Research Laboratory, Clinical Research Department, Division of Biomedical Research, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico;
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Denisse Añorve-Bailón
- Subdireccion de Investigacion, Centro Médico Nacional ‘20 de Noviembre’—ISSSTE, San Lorenzo 502, 2do Piso. Col. Del Valle, Del. Benito Juárez, Mexico City 03100, Mexico
| | - Christian Gabriel Toledo-Lozano
- Coordinación de Investigación, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Silvia García
- Coordinación de Investigación, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico
| | - Mónica Escamilla-Tilch
- Laboratorio de Inmunogenética, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado, Mexico City 03229, Mexico;
| | - Paul Mondragón-Terán
- Laboratorio de Medicina Regenerativa e Ingeniería de Tejidos, Centro Médico Nacional ‘20 de Noviembre’, Instituto de Seguridad y Servicios So Ciales para los Trabajadores del Estado, San Lorenzo 502, 3er Piso. Col. Del Valle, Del. Benito Juárez, Mexico City 03100, Mexico
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Morelos, Instituto Polítecnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya 62790, Mexico
| |
Collapse
|
4
|
Papp D, Korcsmaros T, Hautefort I. Revolutionizing immune research with organoid-based co-culture and chip systems. Clin Exp Immunol 2024; 218:40-54. [PMID: 38280212 PMCID: PMC11404127 DOI: 10.1093/cei/uxae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
The intertwined interactions various immune cells have with epithelial cells in our body require sophisticated experimental approaches to be studied. Due to the limitations of immortalized cell lines and animal models, there is an increasing demand for human in vitro model systems to investigate the microenvironment of immune cells in normal and in pathological conditions. Organoids, which are self-renewing, 3D cellular structures that are derived from stem cells, have started to provide gap-filling tissue modelling solutions. In this review, we first demonstrate with some of the available examples how organoid-based immune cell co-culture experiments can advance disease modelling of cancer, inflammatory bowel disease, and tissue regeneration. Then, we argue that to achieve both complexity and scale, organ-on-chip models combined with cutting-edge microfluidics-based technologies can provide more precise manipulation and readouts. Finally, we discuss how genome editing techniques and the use of patient-derived organoids and immune cells can improve disease modelling and facilitate precision medicine. To achieve maximum impact and efficiency, these efforts should be supported by novel infrastructures such as organoid biobanks, organoid facilities, as well as drug screening and host-microbe interaction testing platforms. All these together or in combination can allow researchers to shed more detailed, and often patient-specific, light on the crosstalk between immune cells and epithelial cells in health and disease.
Collapse
Affiliation(s)
- Diana Papp
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
| | - Tamas Korcsmaros
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Isabelle Hautefort
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- NIHR Imperial BRC Organoid Facility, Imperial College London, London, UK
- Food, Microbiome and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
5
|
Yadav A, Ahlawat S, Sharma KK. Culturing the unculturables: strategies, challenges, and opportunities for gut microbiome study. J Appl Microbiol 2023; 134:lxad280. [PMID: 38006234 DOI: 10.1093/jambio/lxad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
Metagenome sequencing techniques revolutionized the field of gut microbiome study. However, it is equipped with experimental and computational biases, which affect the downstream analysis results. Also, live microbial strains are needed for a better understanding of host-microbial crosstalks and for designing next-generation treatment therapies based on probiotic strains and postbiotic molecules. Conventional culturing methodologies are insufficient to get the dark gut matter on the plate; therefore, there is an urgent need to propose novel culturing methods that can fill the limitations of metagenomics. The current work aims to provide a consolidated evaluation of the available methods for host-microbe interaction with an emphasis on in vitro culturing of gut microbes using organoids, gut on a chip, and gut bioreactor. Further, the knowledge of microbial crosstalk in the gut helps us to identify core microbiota, and key metabolites that will aid in designing culturing media and co-culturing systems for gut microbiome study. After the deeper mining of the current culturing methods, we recommend that 3D-printed intestinal cells in a multistage continuous flow reactor equipped with an extended organoid system might be a good practical choice for gut microbiota-based studies.
Collapse
Affiliation(s)
- Asha Yadav
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurugram 122505, Haryana, India
| | - Krishna K Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
6
|
Sena F, Cancela S, Bollati-Fogolín M, Pagotto R, Francia ME. Exploring Toxoplasma gondii´s Biology within the Intestinal Epithelium: intestinal-derived models to unravel sexual differentiation. Front Cell Infect Microbiol 2023; 13:1134471. [PMID: 37313339 PMCID: PMC10258352 DOI: 10.3389/fcimb.2023.1134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
A variety of intestinal-derived culture systems have been developed to mimic in vivo cell behavior and organization, incorporating different tissue and microenvironmental elements. Great insight into the biology of the causative agent of toxoplasmosis, Toxoplasma gondii, has been attained by using diverse in vitro cellular models. Nonetheless, there are still processes key to its transmission and persistence which remain to be elucidated, such as the mechanisms underlying its systemic dissemination and sexual differentiation both of which occur at the intestinal level. Because this event occurs in a complex and specific cellular environment (the intestine upon ingestion of infective forms, and the feline intestine, respectively), traditional reductionist in vitro cellular models fail to recreate conditions resembling in vivo physiology. The development of new biomaterials and the advances in cell culture knowledge have opened the door to a next generation of more physiologically relevant cellular models. Among them, organoids have become a valuable tool for unmasking the underlying mechanism involved in T. gondii sexual differentiation. Murine-derived intestinal organoids mimicking the biochemistry of the feline intestine have allowed the generation of pre-sexual and sexual stages of T. gondii for the first time in vitro, opening a window of opportunity to tackling these stages by "felinizing" a wide variety of animal cell cultures. Here, we reviewed intestinal in vitro and ex vivo models and discussed their strengths and limitations in the context of a quest for faithful models to in vitro emulate the biology of the enteric stages of T. gondii.
Collapse
Affiliation(s)
- Florencia Sena
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Universidad de la República, Montevideo, Uruguay
| | - Saira Cancela
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Mariela Bollati-Fogolín
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
- Molecular, Cellular, and Animal Technology Program (ProTeMCA), Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - María E. Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay
- Departamento de Parasitología y Micología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunol 2022; 15:1071-1084. [PMID: 35970917 DOI: 10.1038/s41385-022-00553-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
Advances in technology and software have radically expanded the scope of metabolomics studies and allow us to monitor a broad transect of central carbon metabolism in routine studies. These increasingly sophisticated tools have shown that many human diseases are modulated by microbial metabolism. Despite this, it remains surprisingly difficult to move beyond these statistical associations and identify the specific molecular mechanisms that link dysbiosis to the progression of human disease. This difficulty stems from both the biological intricacies of host-microbiome dynamics as well as the analytical complexities inherent to microbiome metabolism research. The primary objective of this review is to examine the experimental and computational tools that can provide insights into the molecular mechanisms at work in host-microbiome interactions and to highlight the undeveloped frontiers that are currently holding back microbiome research from fully leveraging the benefits of modern metabolomics.
Collapse
|
8
|
Hautefort I, Poletti M, Papp D, Korcsmaros T. Everything You Always Wanted to Know About Organoid-Based Models (and Never Dared to Ask). Cell Mol Gastroenterol Hepatol 2022; 14:311-331. [PMID: 35643188 PMCID: PMC9233279 DOI: 10.1016/j.jcmgh.2022.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Homeostatic functions of a living tissue, such as the gastrointestinal tract, rely on highly sophisticated and finely tuned cell-to-cell interactions. These crosstalks evolve and continuously are refined as the tissue develops and give rise to specialized cells performing general and tissue-specific functions. To study these systems, stem cell-based in vitro models, often called organoids, and non-stem cell-based primary cell aggregates (called spheroids) appeared just over a decade ago. These models still are evolving and gaining complexity, making them the state-of-the-art models for studying cellular crosstalk in the gastrointestinal tract, and to investigate digestive pathologies, such as inflammatory bowel disease, colorectal cancer, and liver diseases. However, the use of organoid- or spheroid-based models to recapitulate in vitro the highly complex structure of in vivo tissue remains challenging, and mainly restricted to expert developmental cell biologists. Here, we condense the founding knowledge and key literature information that scientists adopting the organoid technology for the first time need to consider when using these models for novel biological questions. We also include information that current organoid/spheroid users could use to add to increase the complexity to their existing models. We highlight the current and prospective evolution of these models through bridging stem cell biology with biomaterial and scaffold engineering research areas. Linking these complementary fields will increase the in vitro mimicry of in vivo tissue, and potentially lead to more successful translational biomedical applications. Deepening our understanding of the nature and dynamic fine-tuning of intercellular crosstalks will enable identifying novel signaling targets for new or repurposed therapeutics used in many multifactorial diseases.
Collapse
Affiliation(s)
- Isabelle Hautefort
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom
| | - Martina Poletti
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Diana Papp
- Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Organisms and Ecosystems Programme, Norwich, United Kingdom; Quadram Institute Bioscience, Gut Microbes and Health Programme, Norwich, United Kingdom; Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom.
| |
Collapse
|
9
|
Zarrintaj P, Saeb MR, Stadler FJ, Yazdi MK, Nezhad MN, Mohebbi S, Seidi F, Ganjali MR, Mozafari M. Human Organs-on-Chips: A Review of the State-of-the-Art, Current Prospects, and Future Challenges. Adv Biol (Weinh) 2022; 6:e2000526. [PMID: 34837667 DOI: 10.1002/adbi.202000526] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/03/2021] [Indexed: 01/09/2023]
Abstract
New emerging technologies, remarkably miniaturized 3D organ models and microfluidics, enable simulation of the real in vitro microenvironment ex vivo more closely. There are many fascinating features of innovative organ-on-a-chip (OOC) technology, including the possibility of integrating semipermeable and/or stretchable membranes, creating continuous perfusion of fluids into microchannels and chambers (while maintaining laminar flow regime), embedding microdevices like microsensors, microstimulators, micro heaters, or different cell lines, along with other 3D cell culture technologies. OOC systems are designed to imitate the structure and function of human organs, ranging from breathing lungs to beating hearts. This technology is expected to be able to revolutionize cell biology studies, personalized precision medicine, drug development process, and cancer diagnosis/treatment. OOC systems can significantly reduce the cost associated with tedious drug development processes and the risk of adverse drug reactions in the body, which makes drug screening more effective. The review mainly focus on presenting an overview of the several previously developed OOC systems accompanied by subjects relevant to pharmacy-, cancer-, and placenta-on-a-chip. The challenging issues and opportunities related to these systems are discussed, along with a future perspective for this technology.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK, 74078, USA
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen, 518060, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
| | - Mojtaba Nasiri Nezhad
- Department of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran
| | - Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, 51335-1996, Iran
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, 1417466191, Iran
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14395-1179, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
10
|
Sekine K. Human Organoid and Supporting Technologies for Cancer and Toxicological Research. Front Genet 2021; 12:759366. [PMID: 34745227 PMCID: PMC8569236 DOI: 10.3389/fgene.2021.759366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the field of organoid-based cell culture systems has enabled the use of patient-derived cells in conditions that resemble those in cancer tissue, which are better than two-dimensional (2D) cultured cell lines. In particular, organoids allow human cancer cells to be handled in conditions that resemble those in cancer tissue, resulting in more efficient establishment of cells compared with 2D cultured cell lines, thus enabling the use of multiple patient-derived cells with cells from different genetic background, in keeping with the heterogeneity of the cells. One of the most valuable points of using organoids is that human cells from either healthy or cancerous tissue can be used. Using genome editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein, organoid genomes can be modified to, for example, cancer-prone genomes. The normal, cancer, or genome-modified organoids can be used to evaluate whether chemicals have genotoxic or non-genotoxic carcinogenic activity by evaluating the cancer incidence, cancer progression, and cancer metastasis. In this review, the organoid technology and the accompanying technologies were summarized and the advantages of organoid-based toxicology and its application to pancreatic cancer study were discussed.
Collapse
Affiliation(s)
- Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
11
|
Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Bossink EGBM, Zakharova M, de Bruijn DS, Odijk M, Segerink LI. Measuring barrier function in organ-on-chips with cleanroom-free integration of multiplexable electrodes. LAB ON A CHIP 2021; 21:2040-2049. [PMID: 33861228 DOI: 10.1016/j.ooc.2021.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) measurements can be applied in organ-on-chips (OoCs) to estimate the barrier properties of a tissue or cell layer in a continuous, non-invasive, and label-free manner. Assessing the barrier integrity in in vitro models is valuable for studying and developing barrier targeting drugs. Several systems for measuring the TEER have been shown, but each of them having their own drawbacks. This article presents a cleanroom-free fabrication method for the integration of platinum electrodes in a polydimethylsiloxane OoC, allowing the real-time assessment of the barrier function by employing impedance spectroscopy. The proposed method and electrode arrangement allow visual inspection of the cells cultured in the device at the site of the electrodes, and multiplexing of both the electrodes in one OoC and the number of OoCs in one device. The effectiveness of our system is demonstrated by lining the OoC with intestinal epithelial cells, creating a gut-on-chip, where we monitored the formation, as well as the disruption and recovery of the cell barrier during a 21 day culture period. The application is further expanded by creating a blood-brain-barrier, to show that the proposed fabrication method can be applied to monitor the barrier formation in the OoC for different types of biological barriers.
Collapse
Affiliation(s)
- Elsbeth G B M Bossink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mariia Zakharova
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Douwe S de Bruijn
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Mathieu Odijk
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Center and Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
14
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Gough A, Soto-Gutierrez A, Vernetti L, Ebrahimkhani MR, Stern AM, Taylor DL. Human biomimetic liver microphysiology systems in drug development and precision medicine. Nat Rev Gastroenterol Hepatol 2021; 18:252-268. [PMID: 33335282 PMCID: PMC9106093 DOI: 10.1038/s41575-020-00386-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Microphysiology systems (MPS), also called organs-on-chips and tissue chips, are miniaturized functional units of organs constructed with multiple cell types under a variety of physical and biochemical environmental cues that complement animal models as part of a new paradigm of drug discovery and development. Biomimetic human liver MPS have evolved from simpler 2D cell models, spheroids and organoids to address the increasing need to understand patient-specific mechanisms of complex and rare diseases, the response to therapeutic treatments, and the absorption, distribution, metabolism, excretion and toxicity of potential therapeutics. The parallel development and application of transdisciplinary technologies, including microfluidic devices, bioprinting, engineered matrix materials, defined physiological and pathophysiological media, patient-derived primary cells, and pluripotent stem cells as well as synthetic biology to engineer cell genes and functions, have created the potential to produce patient-specific, biomimetic MPS for detailed mechanistic studies. It is projected that success in the development and maturation of patient-derived MPS with known genotypes and fully matured adult phenotypes will lead to advanced applications in precision medicine. In this Review, we examine human biomimetic liver MPS that are designed to recapitulate the liver acinus structure and functions to enhance our knowledge of the mechanisms of disease progression and of the absorption, distribution, metabolism, excretion and toxicity of therapeutic candidates and drugs as well as to evaluate their mechanisms of action and their application in precision medicine and preclinical trials.
Collapse
Affiliation(s)
- Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Baddal B, Marrazzo P. Refining Host-Pathogen Interactions: Organ-on-Chip Side of the Coin. Pathogens 2021; 10:203. [PMID: 33668558 PMCID: PMC7918822 DOI: 10.3390/pathogens10020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Bioinspired organ-level in vitro platforms that recapitulate human organ physiology and organ-specific responses have emerged as effective technologies for infectious disease research, drug discovery, and personalized medicine. A major challenge in tissue engineering for infectious diseases has been the reconstruction of the dynamic 3D microenvironment reflecting the architectural and functional complexity of the human body in order to more accurately model the initiation and progression of host-microbe interactions. By bridging the gap between in vitro experimental models and human pathophysiology and providing alternatives for animal models, organ-on-chip microfluidic devices have so far been implemented in multiple research areas, contributing to major advances in the field. Given the emergence of the recent pandemic, plug-and-play organ chips may hold the key for tackling an unmet clinical need in the development of effective therapeutic strategies. In this review, latest studies harnessing organ-on-chip platforms to unravel host-pathogen interactions are presented to highlight the prospects for the microfluidic technology in infectious diseases research.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
17
|
Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis 2020; 15:1222-1235. [PMID: 33341879 PMCID: PMC8256633 DOI: 10.1093/ecco-jcc/jjaa257] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Development and Regeneration, Stem Cell Institute Leuven [SCIL], KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium,Corresponding author: Marc Ferrante, MD, PhD, Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32 16 344225;
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
18
|
Parvatam S, Bharadwaj S, Radha V, Rao M. The need to develop a framework for human-relevant research in India: Towards better disease models and drug discovery. J Biosci 2020. [DOI: 10.1007/s12038-020-00112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol 2020; 28:401-423. [PMID: 32298617 DOI: 10.1016/j.tim.2020.01.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Mounting evidence from metagenomic analyses suggests that a state of pathological microbial imbalance or dysbiosis is prevalent in the gut of patients with colorectal cancer. Several bacterial taxa have been identified of which representative isolate cultures interact with human cancer cells in vitro and trigger disease pathways in animal models. However, how the complex interrelationships in dysbiotic communities may be involved in cancer pathogenesis remains a crucial question. Here, we provide a survey of current knowledge of the gut microbiome in colorectal cancer. Moving beyond observational studies, we outline new experimental approaches for gaining ecosystem-level mechanistic understanding of the gut microbiome's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Dominik Ternes
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jessica Karta
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mina Tsenkova
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Paul Wilmes
- Eco-Systems Biology group, Luxembourg Center for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Serge Haan
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
20
|
Baydoun M, Treizeibré A, Follet J, Benamrouz Vanneste S, Creusy C, Dercourt L, Delaire B, Mouray A, Viscogliosi E, Certad G, Senez V. An Interphase Microfluidic Culture System for the Study of Ex Vivo Intestinal Tissue. MICROMACHINES 2020; 11:E150. [PMID: 32019215 PMCID: PMC7074597 DOI: 10.3390/mi11020150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
Ex vivo explant culture models offer unique properties to study complex mechanisms underlying tissue growth, renewal, and disease. A major weakness is the short viability depending on the biopsy origin and preparation protocol. We describe an interphase microfluidic culture system to cultivate full thickness murine colon explants which keeps morphological structures of the tissue up to 192 h. The system was composed of a central well on top of a porous membrane supported by a microchannel structure. The microfluidic perfusion allowed bathing the serosal side while preventing immersion of the villi. After eight days, up to 33% of the samples displayed no histological abnormalities. Numerical simulation of the transport of oxygen and glucose provided technical solutions to improve the functionality of the microdevice.
Collapse
Affiliation(s)
- Martha Baydoun
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- ISA-YNCREA Hauts de France, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
| | | | - Jérôme Follet
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- ISA-YNCREA Hauts de France, F-59000 Lille, France
| | - Sadia Benamrouz Vanneste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
- Laboratoire Ecologie et Biodiversité, Unité de Recherche Smart and Sustainable Cities, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, F-59800 Lille, France
| | - Colette Creusy
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Université Catholique de Lille, 59000 Lille, France
| | - Lucie Dercourt
- CNRS, Univ. Tokyo, UMI 2820 — LIMMS, F-59000 Lille, France
| | - Baptiste Delaire
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Université Catholique de Lille, 59000 Lille, France
| | - Anthony Mouray
- Plateforme d’Expérimentations et de Hautes Technologies Animales, Institut Pasteur de Lille Lille, 59019 Lille, France
| | - Eric Viscogliosi
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
| | - Gabriela Certad
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9107-CIIL-Centre d’Infection et d’Immunité de Lille, F-59019 Lille, France
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), Faculté de Médecine et Maïeutique, Université Catholique de Lille, 59800 Lille, France
| | - Vincent Senez
- Univ. Lille, CNRS, ISEN-YNCREA, UMR 8520-IEMN, F-59000 Lille, France
- CNRS, Univ. Tokyo, UMI 2820 — LIMMS, F-59000 Lille, France
| |
Collapse
|
21
|
Schwerdtfeger LA, Tobet SA. From organotypic culture to body-on-a-chip: A neuroendocrine perspective. J Neuroendocrinol 2019; 31:e12650. [PMID: 30307079 DOI: 10.1111/jne.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
The methods used to study neuroendocrinology have been as diverse as the discoveries to come out of the field. Maintaining live neurones outside of a body in vitro was important from the beginning, building on methods that dated back to at least the first decade of the 20th Century. Neurosecretion defines an essential foundation of neuroendocrinology based on work that began in the 1920s and 1930s. Throughout the first half of the 20th Century, many paradigms arose for studying everything from single neurones to whole organs in vitro. Two of these survived as preeminent systems for use throughout the second half of the century: cell cultures and explant systems. Slice cultures and explants that emerged as organotypic technologies included such neuroendocrine organs such as the brain, pituitary, adrenals and intestine. The vast majority of these studies were carried out in static cultures for which media were changed over a time scale of days. Tissues were used for experimental techniques such as electrical recording of neuronal physiology in single cells and observation by live microscopy. When maintained in vitro, many of these systems only partially capture the in vivo physiology of the organ system of interest, often because of a lack of cellular diversity (eg, neuronal cultures lacking glia). Modern microfluidic methodologies show promise for organ systems, ranging from the reproductive to the gastrointestinal to the brain. Moving forward and striving to understand the mechanisms that drive neuroendocrine signalling centrally and peripherally, there will always be a need to consider the heterogeneous cellular compositions of organs in vivo.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
22
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Liu Y, Chen YG. 2D- and 3D-Based Intestinal Stem Cell Cultures for Personalized Medicine. Cells 2018; 7:E225. [PMID: 30469504 PMCID: PMC6316377 DOI: 10.3390/cells7120225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/05/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers that have high occurrence and death in both males and females. As various factors have been found to contribute to CRC development, personalized therapies are critical for efficient treatment. To achieve this purpose, the establishment of patient-derived tumor models is critical for diagnosis and drug test. The establishment of three-dimensional (3D) organoid cultures and two-dimensional (2D) monolayer cultures of patient-derived epithelial tissues is a breakthrough for expanding living materials for later use. This review provides an overview of the different types of 2D- and 3D-based intestinal stem cell cultures, their potential benefits, and the drawbacks in personalized medicine in treatment of the intestinal disorders.
Collapse
Affiliation(s)
- Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
25
|
Vargason AM, Anselmo AC. Clinical translation of microbe-based therapies: Current clinical landscape and preclinical outlook. Bioeng Transl Med 2018; 3:124-137. [PMID: 30065967 PMCID: PMC6063871 DOI: 10.1002/btm2.10093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Next generation microbe-based therapeutics, inspired by the success of fecal microbiota transplants, are being actively investigated in clinical trials to displace or eliminate pathogenic microbes to treat various diseases in the gastrointestinal tract, skin, and vagina. Genetically engineered microbes are also being investigated in the clinic as drug producing factories for biologic delivery, which can provide a constant local source of drugs. In either case, microbe-therapeutics have the opportunity to address unmet clinical needs and open new areas of research by reducing clinical side effects associated with current treatment modalities or by facilitating the delivery of biologics. This review will discuss examples of past and current clinical trials that are investigating microbe-therapeutics, both microbiome-modulating and drug-producing, for the treatment of a range of diseases. We then offer a perspective on how preclinical approaches, both those focused on developing advanced delivery systems and those that use in vitro microbiome model systems to inform formulation design, will lead to the realization of next-generation microbe-therapeutics.
Collapse
Affiliation(s)
- Ava M. Vargason
- Div. of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC 27599
| | - Aaron C. Anselmo
- Div. of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC 27599
| |
Collapse
|