1
|
Kinota N, Kameda H, Xiawei B, Fujii T, Kato D, Takahashi B, Morita R, Abo D, Majima R, Ishii H, Minowa K, Kudo K. Blockage of CSF Outflow in Rats after Deep Cervical Lymph Node Ligation Observed Using Gd-based MR Imaging. Magn Reson Med Sci 2024; 23:449-459. [PMID: 37258125 PMCID: PMC11447471 DOI: 10.2463/mrms.mp.2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
PURPOSE To investigate whether deep cervical lymph node (DCLN) ligation alters intracranial cerebrospinal fluid (CSF) tracer dynamics and outflow using a rat model with intrathecal dynamic contrast-enhanced (DCE) MRI. METHODS Six bilateral DCLN-ligated and six sham-operated rats were subjected to DCE MRI with Gd-BTDO3A, and dynamic T1-weighted images were acquired. ROIs were collected from the CSF at the C1 level (CSF_C1), CSF between the olfactory bulbs (CSF_OB), CSF at the pituitary recess (CSF_PitR), and CSF at the pineal recess (CSF_PinR), upper nasal turbinate (UNT), olfactory bulbs, cerebrum, and the jugular region. Time-intensity curves were evaluated, and the maximum slope, peak timing, peak signal ratio, and elimination half-life for the four CSF ROIs and UNT were calculated and compared. RESULTS Delayed tracer arrival in the rostral CSF space and the nasal cavity with tracer retention in the ventral CSF space were observed in the ligation group. The maximum slopes were smaller in the ligation group at UNT (sham: 0.075 ± 0.0061, ligation: 0.044 ± 0.0086/min, P = 0.011). A significant difference was not detected in peak timings. The peak signal ratio values were lower in the ligation group at UNT (sham: 2.12 ± 0.19, ligation: 1.72 ± 0.11, P = 0.011). The elimination half-life was delayed in the ligation group at CSF_C1 (sham: 30.5 ± 2.70, ligation: 44.4 ± 12.6 min, P = 0.043), CSF_OB (sham: 30.2 ± 2.67, ligation: 44.8 ± 7.47 min, P = 0.021), and CSF_PitR (sham: 30.2 ± 2.49, ligation: 41.3 ± 7.57 min, P = 0.021). CONCLUSION The DCLN ligation in rats blocked CSF outflow into the nasal cavity and caused CSF retention.
Collapse
Affiliation(s)
- Naoya Kinota
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Dental Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Bai Xiawei
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
| | - Takaaki Fujii
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Daisuke Kato
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Bunya Takahashi
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
| | - Ryo Morita
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Daisuke Abo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
| | - Ryusei Majima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Radiology, Sapporo City General Hospital
| | - Hiroshi Ishii
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Radiology, Obihiro Kosei Hospital
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University Hospital
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University
| |
Collapse
|
2
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Leaston J, Kulkarni P, Gharagouzloo C, Qiao J, Bens N, Ferris CF. Do We Swallow the Waste From Our Brain? Front Neurosci 2021; 15:763780. [PMID: 34887724 PMCID: PMC8649892 DOI: 10.3389/fnins.2021.763780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ferumoxytol, an iron oxide nanoparticle, was infused into the lateral cerebroventricle of awake rats to follow its movement and clearance from the brain using magnetic resonance imaging. Within minutes the contrast agent could be observed accumulating in the subarachnoid space, nasal cavity, nasal pharynx, and soft palate at the back of the throat. In a subsequent study fluorescent quantum dots were infused into the brain of rats and within 15 min could be observed in the esophagus using microscopy. These imaging studies clearly show that these large nanoparticle tracers (∼20 nm in diameter) leave the brain through the nasal cavity and end up in the gut. There are numerous studies going back decades reporting the clearance of tracers put directly into the brain. While these studies show the slow accumulation of trace in the blood and lymphatics, they report only accounting for less than 50% of what was originally put in the brain.
Collapse
Affiliation(s)
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Codi Gharagouzloo
- Imaginostics, Inc., Cambridge, MA, United States.,Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ju Qiao
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Nicole Bens
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Craig F Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| |
Collapse
|
4
|
Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci 2021; 78:2429-2457. [PMID: 33427948 PMCID: PMC8004496 DOI: 10.1007/s00018-020-03706-5] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Cerebrospinal fluid (CSF) is produced by the choroid plexuses within the ventricles of the brain and circulates through the subarachnoid space of the skull and spinal column to provide buoyancy to and maintain fluid homeostasis of the brain and spinal cord. The question of how CSF drains from the subarachnoid space has long puzzled scientists and clinicians. For many decades, it was believed that arachnoid villi or granulations, outcroppings of arachnoid tissue that project into the dural venous sinuses, served as the major outflow route. However, this concept has been increasingly challenged in recent years, as physiological and imaging evidence from several species has accumulated showing that tracers injected into the CSF can instead be found within lymphatic vessels draining from the cranium and spine. With the recent high-profile rediscovery of meningeal lymphatic vessels located in the dura mater, another debate has emerged regarding the exact anatomical pathway(s) for CSF to reach the lymphatic system, with one side favoring direct efflux to the dural lymphatic vessels within the skull and spinal column and another side advocating for pathways along exiting cranial and spinal nerves. In this review, a summary of the historical and contemporary evidence for the different outflow pathways will be presented, allowing the reader to gain further perspective on the recent advances in the field. An improved understanding of this fundamental physiological process may lead to novel therapeutic approaches for a wide range of neurological conditions, including hydrocephalus, neurodegeneration and multiple sclerosis.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Fowler MJ, Cotter JD, Knight BE, Sevick-Muraca EM, Sandberg DI, Sirianni RW. Intrathecal drug delivery in the era of nanomedicine. Adv Drug Deliv Rev 2020; 165-166:77-95. [PMID: 32142739 DOI: 10.1016/j.addr.2020.02.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022]
Abstract
Administration of substances directly into the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord is one approach that can circumvent the blood-brain barrier to enable drug delivery to the central nervous system (CNS). However, molecules that have been administered by intrathecal injection, which includes intraventricular, intracisternal, or lumbar locations, encounter new barriers within the subarachnoid space. These barriers include relatively high rates of turnover as CSF clears and potentially inadequate delivery to tissue or cellular targets. Nanomedicine could offer a solution. In contrast to the fate of freely administered drugs, nanomedicine systems can navigate the subarachnoid space to sustain delivery of therapeutic molecules, genes, and imaging agents within the CNS. Some evidence suggests that certain nanomedicine agents can reach the parenchyma following intrathecal administration. Here, we will address the preclinical and clinical use of intrathecal nanomedicine, including nanoparticles, microparticles, dendrimers, micelles, liposomes, polyplexes, and other colloidalal materials that function to alter the distribution of molecules in tissue. Our review forms a foundational understanding of drug delivery to the CSF that can be built upon to better engineer nanomedicine for intrathecal treatment of disease.
Collapse
Affiliation(s)
- M J Fowler
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - J D Cotter
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - B E Knight
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America
| | - E M Sevick-Muraca
- Brown Foundation Institute of Molecular Medicine, Center for Molecular Imaging, Houston, TX 77030, United States of America
| | - D I Sandberg
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Pediatric Surgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, United States of America
| | - R W Sirianni
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School/University of Texas Health Science Center at Houston, Houston, TX 77030, United States of America.
| |
Collapse
|
6
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
7
|
Fu Y, Li Y, Guo J, Liu B, Liu H, Zhang W, Sun W, Gao Y, Ren Q, Han H. Bloodletting at Jing-well points decreases interstitial fluid flow in the thalamus of rats. J TRADIT CHIN MED 2016; 36:107-12. [PMID: 26946627 DOI: 10.1016/s0254-6272(16)30016-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To investigate the changes in the neuronal microenvironment of the middle cerebral artery (MCA) territory induced by Jing-well points bloodletting acupuncture (WPBA) and to explore the neuroprotective mechanism of WPBA in stroke. METHODS Adult male Sprague Dawley (n = 32) rats were randomly divided into four groups of eight animals each: WPBA-thalamus group (WT), WPBA-caudate nucleus group (WC), sham-control thalamus group (ST) and sham-control caudate nucleus group (SC). Animals in the WT and WC groups received 2 µL of the extracellular tracer gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) injected into the thalamus or caudate nucleus, respectively, and 12 Jing-well points in the distal ends of the rats' digits were used for WPBA. Although 2 µL of Gd-DTPA was injected into the thalamus or caudate nucleus, respectively, for animals in the two sham groups (ST and SC), no acupuncture or bloodletting was performed. Brain extracellular space and interstitial fluid flow parameters were measured using Gd-DTPA-enhanced magnetic resonance imaging. RESULTS The brain interstitial fluid flow speed was decreased in the thalamus after WPBA, with a significantly lower Gd-DTPA clearance rate and longer half-life of Gd-DTPA in the thalamus of treated rats than those in sham-control rats [WPBA-treated rats' clearance rate, (7.47 ± 3.15) x 10(-5)/s (P.= 0.009); half-life, (1.52 ± 0.13) h, P = 0.000]. By contrast, no significant changes in brain extracellular space and interstitial fluid flow parameters were detected in the caudate nucleus after WPBA (P = 0.649). In addition, no differences in the morphology of the brain extracellular space or the final distribution of the traced brain interstitial fluid were demonstrated between the WT and WC groups (P = 0.631, P = 0.970, respectively). CONCLUSION The WPBA decreased the speed of the local thalamic ISF flow in rats, which is assumed to be a beneficial protection by down-modulated the metabolic rate of the attacked neurons under stroke.
Collapse
|
8
|
Clement J, Varlotto J, Rybka W, Frauenhoffer E, Drabick JJ. Unusual case of recurrent extraneural metastatic medulloblastoma in a young adult: durable complete remission with Ewing sarcoma chemotherapy regimen and consolidation with autologous bone marrow transplantation and local radiation. J Clin Oncol 2013; 31:e316-9. [PMID: 23715566 DOI: 10.1200/jco.2012.42.6700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jincy Clement
- Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| | | | | | | | | |
Collapse
|
9
|
Laman JD, Weller RO. Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 2013; 8:840-56. [PMID: 23695293 PMCID: PMC7088878 DOI: 10.1007/s11481-013-9470-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/28/2013] [Indexed: 12/25/2022]
Abstract
Despite the absence of conventional lymphatics, there is efficient drainage of both cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the CNS to regional lymph nodes. CSF drains from the subarachnoid space by channels that pass through the cribriform plate of the ethmoid bone to the nasal mucosa and cervical lymph nodes in animals and in humans; antigen presenting cells (APC) migrate along this pathway to lymph nodes. ISF and solutes drain from the brain parenchyma to cervical lymph nodes by a separate route along 100–150 nm wide basement membranes in the walls of cerebral capillaries and arteries. This pathway is too narrow for the migration of APC so it is unlikely that APC traffic directly from brain parenchyma to lymph nodes by this route. We present a model for the pivotal involvement of regional lymph nodes in immunological reactions of the CNS. The role of regional lymph nodes in immune reactions of the CNS in virus infections, the remote influence of the gut microbiota, multiple sclerosis and stroke are discussed. Evidence is presented for the role of cervical lymph nodes in the induction of tolerance and its influence on neuroimmunological reactions. We look to the future by examining how nanoparticle technology will enhance our understanding of CNS-lymph node connections and by reviewing the implications of lymphatic drainage of the brain for diagnosis and therapy of diseases of the CNS ranging from neuroimmunological disorders to dementias. Finally, we review the challenges and opportunities for progress in CNS-lymph node interactions and their involvement in disease processes.
Collapse
Affiliation(s)
- Jon D. Laman
- Department of Immunology, room NB-1148a Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Roy O. Weller
- Clinical Neurosciences, Faculty of Medicine, Southampton University, Mailpoint 813, Southampton General Hospital, Southampton, SO16 6YD UK
| |
Collapse
|
10
|
Yokel R, Grulke E, MacPhail R. Metal-based nanoparticle interactions with the nervous system: the challenge of brain entry and the risk of retention in the organism. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:346-73. [PMID: 23568784 DOI: 10.1002/wnan.1202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review of metal-based nanoparticles focuses on factors influencing their distribution into the nervous system, evidence they enter brain parenchyma, and nervous system responses. Gold is emphasized as a model metal-based nanoparticle and for risk assessment in the companion review. The anatomy and physiology of the nervous system, basics of colloid chemistry, and environmental factors that influence what cells see are reviewed to provide background on the biological, physical-chemical, and internal milieu factors that influence nervous system nanoparticle uptake. The results of literature searches reveal little nanoparticle research included the nervous system, which about equally involved in vitro and in vivo methods, and very few human studies. The routes of uptake into the nervous system and mechanisms of nanoparticle uptake by cells are presented with examples. Brain nanoparticle uptake inversely correlates with size. The influence of shape has not been reported. Surface charge has not been clearly shown to affect flux across the blood-brain barrier. There is very little evidence for metal-based nanoparticle distribution into brain parenchyma. Metal-based nanoparticle disruption of the blood-brain barrier and adverse brain changes have been shown, and are more pronounced for spheres than rods. Study concentrations need to be put in exposure contexts. Work with dorsal root ganglion cells and brain cells in vitro show the potential for metal-based nanoparticles to produce toxicity. Interpretation of these results must consider the ability of nanoparticles to distribute across the barriers protecting the nervous system. Effects of the persistence of poorly soluble metal-based nanoparticles are of particular concern.
Collapse
Affiliation(s)
- Robert Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
11
|
Abstract
The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.
Collapse
|
12
|
An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. SCIENCE CHINA-LIFE SCIENCES 2012; 55:782-7. [DOI: 10.1007/s11427-012-4361-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 01/13/2023]
|
13
|
Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011. [PMID: 21125445 DOI: 10.1007/978-3-7091-0356-2_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Substances and fluid in the brain and subarachnoid spaces may be drained into extracranial lymphatics. This study aimed to investigate the possible role of cerebral lymphatic drainage in the process of cerebral injury following subarachnoid hemorrhage (SAH). Wistar rats were divided into non-SAH, SAH, and SAH plus cervical lymphatic blockage (SAH + CLB) groups. Autologous arterial hemolysate was injected into rats' cisterna magna to induce SAH. At time of 24 and 72 h after SAH, the rats were sacrificed for serum lactate dehydrogenase (LDH) activity, brain tissue superoxide dismutase (SOD) activity, and brain tissue malonaldehyde (MDA) content detection. It was found that serum LDH activity increased in rats of SAH group comparing with non-SAH group. SAH also resulted in decreased brain tissue SOD activity and increased brain tissue MDA content. In rats of SAH + CLB group, the increase of serum LDH activity was to a lager extent. Meanwhile, brain tissue SOD activity decreased and MDA content increased to a lager extent, as compared with SAH group. It was concluded that blockage of cerebral lymphatic drainage deteriorates cerebral oxidative injury after SAH, indicating cerebral lymphatic drainage may exert intrinsic protective effects against cerebral injury following SAH.
Collapse
|
14
|
Oude Engberink RD, Blezer ELA, Dijkstra CD, van der Pol SMA, van der Toorn A, de Vries HE. Dynamics and fate of USPIO in the central nervous system in experimental autoimmune encephalomyelitis. NMR IN BIOMEDICINE 2010; 23:1087-1096. [PMID: 20665906 DOI: 10.1002/nbm.1536] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Signal loss observed in the brain by MRI following the administration of ultrasmall superparamagnetic particles of iron oxide (USPIO) has been correlated with immune cell activity in inflammatory areas during multiple sclerosis. Uptake of USPIO by circulating monocytes and their migration towards inflammatory areas have been considered as the most important mechanism for USPIO uptake by the brain parenchyma. However, the involvement of a damaged blood-brain barrier is also debated as a possible mechanism for cerebral USPIO uptake. Compared with these uptake-associated issues, little is known about the clearance of USPIO from the brain. The acute uptake and chronic clearance of USPIO in the brain were therefore studied with MRI in an animal model of multiple sclerosis. Lewis Hannover rats with acute experimental autoimmune encephalomyelitis received a single intravenous injection of USPIO (300 µmol Fe/kg), and repetitive MRI of the brain and cervical lymph nodes, a possible drainage pathway, was performed. USPIO were detected in the brain within 1 h after injection independent of the severity of experimental autoimmune encephalomyelitis, and histological analysis revealed extracellular iron clusters colocalising with a leaky blood-brain barrier. Loss of signal was not present 72 h after USPIO injection, irrespective of the disease state. MR images of cervical lymph nodes showed USPIO accumulation at 24 h after administration, which stabilised at 72 h. Histological analyses revealed that USPIO accumulated in infiltrated macrophages in the medulla and subcapsular sinus. The current study demonstrates that USPIO enter the central nervous system directly after administration, pointing to the involvement of a damaged blood-brain barrier in the appearance of USPIO-associated MR abnormalities. Furthermore, a possible role of the cervical lymph nodes as a drainage pathway of USPIO is suggested. These data shed new light on the use of USPIO in neuroinflammatory diseases, identifying USPIO as a marker for both cellular infiltration and blood-brain barrier damage.
Collapse
|
15
|
|
16
|
Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 2010; 30:15-35. [PMID: 19756021 PMCID: PMC2949106 DOI: 10.1038/jcbfm.2009.192] [Citation(s) in RCA: 310] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Superparamagnetic iron oxide nanoparticles have diverse diagnostic and potential therapeutic applications in the central nervous system (CNS). They are useful as magnetic resonance imaging (MRI) contrast agents to evaluate: areas of blood-brain barrier (BBB) dysfunction related to tumors and other neuroinflammatory pathologies, the cerebrovasculature using perfusion-weighted MRI sequences, and in vivo cellular tracking in CNS disease or injury. Novel, targeted, nanoparticle synthesis strategies will allow for a rapidly expanding range of applications in patients with brain tumors, cerebral ischemia or stroke, carotid atherosclerosis, multiple sclerosis, traumatic brain injury, and epilepsy. These strategies may ultimately improve disease detection, therapeutic monitoring, and treatment efficacy especially in the context of antiangiogenic chemotherapy and antiinflammatory medications. The purpose of this review is to outline the current status of superparamagnetic iron oxide nanoparticles in the context of biomedical nanotechnology as they apply to diagnostic MRI and potential therapeutic applications in neurooncology and other CNS inflammatory conditions.
Collapse
|
17
|
Mundt AP, Winter C, Mueller S, Wuerfel J, Tysiak E, Schnorr J, Taupitz M, Heinz A, Juckel G. Targeting activated microglia in Alzheimer's pathology by intraventricular delivery of a phagocytosable MRI contrast agent in APP23 transgenic mice. Neuroimage 2009; 46:367-72. [DOI: 10.1016/j.neuroimage.2009.01.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 2008; 30:52-7. [PMID: 18848723 DOI: 10.1016/j.biomaterials.2008.09.044] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 09/15/2008] [Indexed: 11/22/2022]
Abstract
Patients with glioblastoma multiforme (GBM), the most common primary brain tumor in adults, have still a poor prognosis though new strategies of radio- and chemotherapy have been developed. Recently, our group demonstrated the feasibility, tolerability and anti-tumoral effects of a newly developed therapeutic approach, termed thermotherapy using magnetic nanoparticles or magnetic fluid hyperthermia (MFH), in a murine model of malignant glioma. Currently, the efficacy of MFH is being evaluated in a phase II study. Here, we report on post-mortem neuropathological findings of patients with GBM receiving MFH. In brain autopsies the installed magnetic nanoparticles were dispersed or distributed as aggregates within geographic tumor necroses, restricted in distribution to the sites of instillation. Therefore, our results underscore the need for multiple trajectories of instillation. The typical GBM necrosis with pseudopalisading was free of particles. Dispersed particles and particle aggregates were phagocytosed mainly by macrophages whereas glioblastoma cells showed an uptake to a minor extent. MFH therapy further promotes uptake of nanoparticles in macrophages, likely as a consequence of tumor inherent and therapy induced formation of necrosis with subsequent infiltration and activation of phagocytes. We did not observe bystander effects of MFH such as sarcomatous tumour formation, formation of a sterile abscess or foreign body giant cell reaction. Furthermore, all patients did not present any clinical symptoms related to possible adverse effects of MFH.
Collapse
|
19
|
Choi JS, Park J, Nah H, Woo S, Oh J, Kim K, Cheon G, Chang Y, Yoo J, Cheon J. A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Choi JS, Park J, Nah H, Woo S, Oh J, Kim K, Cheon G, Chang Y, Yoo J, Cheon J. A Hybrid Nanoparticle Probe for Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. Angew Chem Int Ed Engl 2008; 47:6259-62. [DOI: 10.1002/anie.200801369] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Elder JB, Liu CY, Apuzzo MLJ. Neurosurgery in the realm of 10(-9), part 1: stardust and nanotechnology in neuroscience. Neurosurgery 2008; 62:1-20. [PMID: 18300888 DOI: 10.1227/01.neu.0000311058.80249.6b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nanotechnology as a science has evolved from notions and speculation to emerge as a prominent combination of science and engineering that stands to impact innumerable aspects of technology. Medicine in general and neurosurgery in particular will benefit greatly in terms of improved diagnostic and therapeutic capabilities. The recent explosion in nanotechnology products, including diverse applications such as beauty products and medical contrast agents, has been accompanied by an ever increasing volume of literature. Recent articles from our institution provided an historical and scientific background of nanotechnology, with a purposeful focus on nanomedicine. Future applications of nanotechnology to neuroscience and neurosurgery were briefly addressed. The present article is the first of two that will further this discussion by providing specific details of current nanotechnology applications and research related to neuroscience and clinical neurosurgery. This article also provides relevant perspective in scale, history, economics, and toxicology. Topics of specific importance to developments or advances of technologies used by neuroscientists and neurosurgeons are presented. In addition, advances in the field of microelectromechanical systems technology are discussed. Although larger than nanoscale, microelectromechanical systems technologies will play an important role in the future of medicine and neurosurgery. The second article will discuss current nanotechnologies that are being, or will be in the near future, incorporated into the armamentarium of the neurosurgeon. The goal of these articles is to keep the neuroscience community abreast of current developments in nanotechnology, nanomedicine, and, in particular, nanoneurosurgery, and to present possibilities for future applications of nanotechnology. As applications of nanotechnology permeate all forms of scientific and medical research, clinical applications will continue to emerge. Physicians of the present and future must take an active role in shaping the design and research of nanotechnologies to ensure maximal clinical relevance and patient benefit.
Collapse
Affiliation(s)
- James B Elder
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | |
Collapse
|
22
|
Elder JB, Liu CY, Apuzzo ML. NEUROSURGERY IN THE REALM OF 10−9, PART 2. Neurosurgery 2008; 62:269-84; discussion 284-5. [DOI: 10.1227/01.neu.0000315995.73269.c3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- James B. Elder
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Charles Y. Liu
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Michael L.J. Apuzzo
- Department of Neurological Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California
| |
Collapse
|
23
|
Wu YJ, Muldoon LL, Varallyay C, Markwardt S, Jones RE, Neuwelt EA. In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. Am J Physiol Cell Physiol 2007; 293:C1698-708. [PMID: 17898131 DOI: 10.1152/ajpcell.00215.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular labeling with ferumoxides (Feridex IV) superparamagnetic iron oxide nanoparticles can be used to monitor cells in vivo by MRI. The objective of this study was to use histology and MRI to evaluate an in vivo, as opposed to in vitro, technique for labeling of mononuclear leukocytes as a means of tracking inflammatory processes in the brain. Long-Evans rats were intravenously injected with 20 mg/kg ferumoxides, ferumoxtran-10, or ferumoxytol with or without protamine sulfate. Leukocytes and splenocytes were evaluated by cell sorting and iron histochemistry or were implanted into the brain for MRI. Injection of ferumoxides/protamine sulfate complex IV resulted in iron labeling of leukocytes (ranging from 7.4 ± 0.5% to 12.5 ± 0.9% with average 9.2 ± 0.8%) compared with ferumoxides (ranging from 3.9 ± 0.4% to 6.3 ± 0.5% with average 5.0 ± 0.5%) or protamine sulfate alone (ranging from 0% to 0.9 ± 0.7% with average 0.3 ± 0.3%). Cell sorting analysis indicated that iron-labeled cells were enriched for cell types positive for the myelomonocytic marker (CD11b/c) and the B lymphocyte marker (CD45RA) and depleted in the T cell marker (CD3). Neither ferumoxtran-10 nor ferumoxytol with protamine sulfate labeled leukocytes. In vivo ferumoxides/protamine sulfate-loaded leukocytes and splenocytes were detected by MRI after intracerebral injection. Ferumoxides/protamine complex labeled CD45RA-positive and CD11b/c-positive leukocytes in vivo without immediate toxicity. The dose of feumoxides in this report is much higher than the approved human dose, so additional animal studies are required before this approach could be translated to the clinic. These results might provide useful information for monitoring leukocyte trafficking into the brain.
Collapse
Affiliation(s)
- Y Jeffrey Wu
- Research Service, Veterans Administration Medical Center, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
24
|
Liu CH, Huang S, Cui J, Kim YR, Farrar CT, Moskowitz MA, Rosen BR, Liu PK. MR contrast probes that trace gene transcripts for cerebral ischemia in live animals. FASEB J 2007; 21:3004-15. [PMID: 17478745 PMCID: PMC2657320 DOI: 10.1096/fj.07-8203com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this research was to validate transcription magnetic resonance (MR) imaging (MRI) for gene transcript targeting in acute neurological disorders in live subjects. We delivered three MR probe variants with superparamagnetic iron oxide nanoparticles (SPION, a T2 susceptibility agent) linked to a phosphorothioate-modified oligodeoxynucleotide (sODN) complementary to c-fos mRNA (SPION-cfos) or beta-actin mRNA (SPION-beta-actin) and to sODN with random sequence (SPION-Ran). Each probe (1 microg Fe in 2 microl) was delivered via intracerebroventricular infusion to the left cerebral ventricle of male C57Black6 mice. We demonstrated SPION retention, measured as decreased T2* signal or increased R2* value (R2* = 1/T2*). Animals that received the SPION-beta-actin probe exhibited the highest R2* values, followed (in descending order) by SPION-cfos and SPION-Ran. SPION-cfos retention was localized in brain regions where SPION-cfos was present and where hybrids of SPION-cfos and its target c-fos mRNA were detected by in situ reverse transcription PCR. In animals that experienced cerebral ischemia, SPION-cfos retention was significantly increased in locations where c-fos mRNA increased in response to the ischemic insult; these elevations were not observed for SPION-beta-actin and SPION-Ran. This study should enable MR detection of mRNA alteration in disease models of the central nervous system.
Collapse
Affiliation(s)
- Christina H. Liu
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Shuning Huang
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Techonology Cambridge, Massachusetts, USA
| | - Jiankun Cui
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
| | - Young R. Kim
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Christian T. Farrar
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Michael A. Moskowitz
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bruce R. Rosen
- AA Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Philip K. Liu
- NeuroRepair Laboratory/NeuroRadiology Division, Charlestown, Massachusetts, USA
- Department of Radiology Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
25
|
Liu CH, Huang S, Kim YR, Rosen BR, Liu PK. Forebrain Ischemia-Reperfusion Simulating Cardiac Arrest in Mice Induces Edema and DNA Fragmentation in the Brain. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christina H. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Shuning Huang
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Young R. Kim
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Bruce R. Rosen
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Philip K. Liu
- From the A.A. Martinos Center for Biomedical Imaging Charlestown, MA; the Transcript Imaging and NeuroRepair Laboratory, Department of Radiology, Massachusetts General Hospital Charlestown, MA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
26
|
Palmieri D, Chambers AF, Felding-Habermann B, Huang S, Steeg PS. The Biology of Metastasis to a Sanctuary Site. Clin Cancer Res 2007; 13:1656-62. [PMID: 17363518 DOI: 10.1158/1078-0432.ccr-06-2659] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis to the brain is prevalent in solid tumors and lymphomas, and is associated with shortened survival. The brain is regarded as a sanctuary site for metastatic tumor cells where they exist partially protected from drugs by the blood-tumor barrier. Model systems for brain metastasis have been developed and are now yielding mechanistic insights into the roles of angiogenesis, energy metabolism, the Her-2 and Stat3 signaling pathways, and dormancy. Specific, new approaches to combat brain metastatic disease are needed.
Collapse
Affiliation(s)
- Diane Palmieri
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Liu CH, Kim YR, Ren JQ, Eichler F, Rosen BR, Liu PK. Imaging cerebral gene transcripts in live animals. J Neurosci 2007; 27:713-22. [PMID: 17234603 PMCID: PMC2647966 DOI: 10.1523/jneurosci.4660-06.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/30/2006] [Accepted: 12/13/2006] [Indexed: 01/14/2023] Open
Abstract
To circumvent the limitations of using postmortem brain in molecular assays, we used avidin-biotin binding to couple superparamagnetic iron oxide nanoparticles (SPIONs) (15-20 nm) to phosphorothioate-modified oligodeoxynucleotides (sODNs) with sequence complementary to c-fos and beta-actin mRNA (SPION-cfos and SPION-beta-actin, respectively) (14-22 nm). The Stern-Volmer constant for the complex of SPION and fluorescein isothiocyanate (FITC)-sODN is 3.1 x 10(6)/m. We studied the feasibility of using the conjugates for in vivo magnetic resonance imaging (MRI) to monitor gene transcription, and demonstrated that these complexes at 40 mug of Fe per kilogram of body weight were retained at least 1 d after intracerebroventricular infusion into the left ventricle of C57Black6 mice. SPION retention measured by MRI as T(2)* or R(2)* maps (R(2)* = 1/T(2)*) was compared with histology of iron oxide (Prussian blue) and FITC-labeled sODN. We observed significant reduction in magnetic resonance (MR) T(2)* signal in the right cortex and striatum; retention of SPION-cfos and SPION-beta-actin positively correlated with c-fos and beta-actin mRNA maps obtained from in situ hybridization. Histological examination showed that intracellular iron oxide and FITC-sODN correlated positively with in vivo MR signal reduction. Furthermore, in animals that were administered SPION-cfos and amphetamine (4 mg/kg, i.p.), retention was significantly elevated in the nucleus accumbens, striatum, and medial prefrontal cortex of the forebrain. Control groups that received SPION-cfos and saline or that received a SPION conjugate with a random-sequence probe and amphetamine showed no retention. These results demonstrated that SPION-sODN conjugates can detect active transcriptions of specific mRNA species in living animals with MRI.
Collapse
Affiliation(s)
- Christina H. Liu
- Athinoula A. Martinos Center for Biomedical Imaging
- Transcript Imaging and NeuroRepair Laboratory
- Department of Radiology, and
| | - Young R. Kim
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology, and
| | - Jia Q. Ren
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology, and
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging
- Department of Radiology, and
| | - Philip K. Liu
- Transcript Imaging and NeuroRepair Laboratory
- Department of Radiology, and
| |
Collapse
|
28
|
Walter BA, Valera VA, Takahashi S, Ushiki T. The olfactory route for cerebrospinal fluid drainage into the peripheral lymphatic system. Neuropathol Appl Neurobiol 2006; 32:388-96. [PMID: 16866984 DOI: 10.1111/j.1365-2990.2006.00737.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drainage of the cerebrospinal fluid through the olfactory nerves into the nasal lymphatics has been suggested repeatedly. To investigate precisely the morphology of this pathway, India ink was injected into the subarachnoidal space of the rat brain, and samples including the olfactory bulbs, olfactory tracts and the nasal mucosa were observed by light and electron microscopy. Under the dissecting microscope, ink particles were found within the subarachnoid space and along the olfactory nerves. At the nasal mucosa, a lymphatic network stained in black was identified near the olfactory nerves, which finally emptied into the superficial and deep cervical lymph nodes. Light microscopically, ink particles were found in the subarachnoid space, partially distributed around the olfactory nerves and within the lymphatic vessels. By electron microscopy, the subarachnoid space often formed a pocket-like space in the entrance of the fila olfactoria. The olfactory nerves were partially surrounded by ink particles within the space between perineurial cells and epineurial fibroblasts. At the nasal mucosa, the lymphatics were frequently located close to the nerves. These results indicate that the cerebrospinal fluid drains from the subarachnoid space along the olfactory nerves to the nasal lymphatics, which in turn, empties into the cervical lymph nodes. This anatomical communication, thus, allows the central nervous system to connect with the lymphatic system. The presence of this route may play an important role in the movement of antigens from the subarachnoidal space to the extracranial lymphatic vessels, resulting in inducement of an immune response of the central nervous system.
Collapse
Affiliation(s)
- B A Walter
- Department of Otolaryngology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
29
|
Räty JK, Liimatainen T, Wirth T, Airenne KJ, Ihalainen TO, Huhtala T, Hamerlynck E, Vihinen-Ranta M, Närvänen A, Ylä-Herttuala S, Hakumäki JM. Magnetic resonance imaging of viral particle biodistribution in vivo. Gene Ther 2006; 13:1440-6. [PMID: 16855615 DOI: 10.1038/sj.gt.3302828] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We describe here a technique for the visualization of viral vector delivery by magnetic resonance imaging (MRI) in vivo. By conjugating avidin-coated baculoviral vectors (Baavi) with biotinylated ultra-small superparamagnetic iron oxide particles (USPIO), we are able to produce vector-related MRI contrast in the choroid plexus cells of rat brain in vivo over a period of 14 days. Ten microlitres of 2.5 x 10(10) PFU/ml nuclear-targeted LacZ-encoding Baavi with bUSPIO coating was injected into rat brain ventricles and visualized by MRI at 4.7 T. As baculoviruses exhibit restricted cell-type specificity in the rat brain, altered MRI contrast was detected in the choroid plexus of the injected ventricles. No specific signal loss was detected when wild-type baculoviruses or intact biotinylated USPIO particles were injected into the lateral ventricles. Cryosectioned brains were stained for nuclear-targeted beta-galactosidase gene expression, which was found to colocalize with MRI contrast. This study provides the first proof of principle for robust and non-invasive viral vector MRI by using avidin-displaying viruses in vivo. Considering the widespread use of MRI in current medical imaging, the approach is likely to provide numerous future applications in imaging of therapeutic gene transfer.
Collapse
Affiliation(s)
- J K Räty
- Department of Biotechnology and Molecular Medicine, University of Kuopio, Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 2006; 57:785-96; discussion 785-96. [PMID: 16239893 DOI: 10.1093/neurosurgery/57.4.785] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Superparamagnetic iron oxide nanoparticle magnetic resonance imaging (MRI) contrast agents are gaining use in the central nervous system. The purpose of this study was to evaluate the imaging characteristics, distribution, time course, and neurotoxicity of the clinical agents ferumoxtran-10, ferumoxides, and ferumoxytol, and the laboratory preparation MION-46 in rat brain. METHODS Iron oxide agents were administered by intracerebral inoculation or intraarterially after osmotic blood-brain barrier opening in normal rats and intravenously in nude rats with intracerebral tumor xenografts. Rat brains were imaged by MRI at multiple time points and then were assessed for iron histochemistry and pathological features. RESULTS After intracerebral injection, MRI signal changes declined slowly over weeks to months. After transvascular delivery, transient (3 d) enhancement was seen with ferumoxtran-10 or ferumoxytol, whereas ferumoxides induced long-term (28 d) signal dropout. No pathological brain cell or myelin changes were detected after delivery of the clinical iron oxide agents to normal brains. In tumor models, ferumoxtran-10 enhanced one small-cell lung carcinoma intracerebral tumor, which correlated with iron staining in cells with macrophage morphological features at the tumor margin. Little enhancement was seen in two other models. CONCLUSION These studies demonstrate the safety and efficacy of iron oxide-based MRI contrast agents in the brain and provide imaging parameters and time course data for future studies in brain tumors and neurological lesions.
Collapse
Affiliation(s)
- Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon, USA
| | | | | | | |
Collapse
|
31
|
Will O, Purkayastha S, Chan C, Athanasiou T, Darzi AW, Gedroyc W, Tekkis PP. Diagnostic precision of nanoparticle-enhanced MRI for lymph-node metastases: a meta-analysis. Lancet Oncol 2006; 7:52-60. [PMID: 16389184 DOI: 10.1016/s1470-2045(05)70537-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND At present, there is no accepted, ideal imaging modality or technique for diagnosis of lymph-node metastases. We aimed to assess the diagnostic precision of MRI with ferumoxtran-10-an ultrasmall superparamagnetic iron-oxide nanoparticle used as a contrast agent for diagnosis of lymph-node metastases, compared with that of unenhanced MRI and final histological diagnosis. METHODS We did a meta-analysis of prospective studies that compared MRI, with and without ferumoxtran-10, with histological diagnosis after surgery or biopsy. Sensitivity, specificity, and diagnostic odds ratio (DOR) were calculated for every study; summary receiver operating characteristic (ROC) and subgroup analyses were done; and study quality and heterogeneity were assessed. Metaregression analysis was used to analyse the effect of ferumoxtran-10 in diagnostic precision of MRI. FINDINGS Summary ROC curve analysis for per-lymph-node data showed an overall sensitivity of 0.88 (95% CI 0.85-0.91) and overall specificity of 0.96 (0.95-0.97) for ferumoxtran-10-enhanced MRI. Overall weighted area under the curve for ferumoxtran-10-enhanced MRI was 0.96 (SE 0.01), DOR 123.05 (95% CI 5.93-256.93). Unenhanced MRI had less overall sensitivity (0.63 [0.57-0.69]) and specificity (0.93 [0.91-0.94]), with an overall weighted area under the ROC curve of 0.84 (SE 0.11) and DOR of 26.75 (95% CI 8.48-84.42). Significant heterogeneity was noted for studies reporting enhanced MRI and unenhanced MRI. Metaregression analysis confirmed the significant effect of ferumoxtran-10 in the diagnostic precision of MRI (p=0.001). INTERPRETATION Ferumoxtran-10-enhanced MRI is sensitive and specific in detection of lymph-node metastases for various tumours. It offers higher diagnostic precision than does unenhanced MRI for detection of lymph-node metastases, and allows functional and anatomical definition when used as an imaging modality.
Collapse
Affiliation(s)
- Olivia Will
- Centre for Academic Surgery, Barts and The London, Queen Mary's School of Medicine and Dentistry, Whitechapel, London, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Muldoon LL, Sàndor M, Pinkston KE, Neuwelt EA. Imaging, Distribution, and Toxicity of Superparamagnetic Iron Oxide Magnetic Resonance Nanoparticles in the Rat Brain and Intracerebral Tumor. Neurosurgery 2005. [DOI: 10.1227/01.neu.0000175731.25414.4c] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Leslie L. Muldoon
- Departments of Neurology and Cell and Developmental Biology, Oregon Health & Sciences University, Portland, Oregon
| | - Manninger Sàndor
- Departments of Neurology and Cell and Developmental Biology, Oregon Health & Sciences University, Portland, Oregon
| | | | - Edward A. Neuwelt
- Departments of Neurology and Neurosurgery, Oregon Health & Sciences University, and Department of Neurosurgery, Veterans Administration Medical Center, Portland, Oregon
| |
Collapse
|
33
|
Lynch PM, Schmid-Schönbein GW. Literature watch. Parker LH, Schmidt M, Jin S-W, Gray AM, Beis D, Pham T, Frantz G, Paliert S, Hillan K, Stainier DYR, de Sauvage FJ, Ye W. The endothelial-cell-derived secreted factor Egf17 regulates vascular tube formation. Nature 2004; 428(6984):754-758. Lymphat Res Biol 2005; 2:96-100. [PMID: 15615491 DOI: 10.1089/lrb.2004.2.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Patrick M Lynch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
34
|
McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 2005; 11:335-9. [PMID: 15735651 DOI: 10.1038/nm1202] [Citation(s) in RCA: 518] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 02/01/2005] [Indexed: 11/09/2022]
Abstract
Chronic progression of two T cell-mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139-151-specific T cells in SJL mice undergoing PLP178-191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178-191-induced R-EAE shows that only F4/80-CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139-151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139-151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.
Collapse
Affiliation(s)
- Eileen J McMahon
- Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
35
|
Lo LW, Tsai PJ, Huang SHY, Chen WY, Wang YT, Chang CH, Yang CS. In Vivo Monitoring of Fluorescent Nanosphere Delivery in Anesthetized Rats Using an Implantable Fiber-Optic Microprobe. Anal Chem 2005; 77:1125-31. [PMID: 15858995 DOI: 10.1021/ac0487552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An implantable needle-type fiber-optic microprobe was constructed to monitor in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers that were catheterized using a thin-wall tube of stainless steel (o.d. approximately 400 microm; i.d. approximately 300 microm). When the fiber-optic microprobe was placed in solutions containing various concentrations of fluorescent nanospheres (20 nm), either in the presence or in the absence of 10% Lipofundin acting as an optical phantom, we observed nanosphere concentration-dependent responses of the fluorescence intensity. The microprobe was then implanted into the livers and brains of anesthetized rats to monitor the in situ extravasation of preadministered fluorescent nanospheres from vasculature following the hepatic and cerebral ischemic insults. Both types of ischemic insults showed immediate increases in fluorescent intensities when 20-nm fluorescent nanosphere were administered, but neither ischemic insult induces such an increase when we administered 1000-nm fluorescent nanospheres. Additional experiments can be performed to further narrow the size range of the increase in blood vessel permeability following ischemic insult; such "size" information may be valuable when formulating drugs for optimal local delivery. Although a wide variety of fluorescent substances are used intensively for in vitro biological studies, the in vivo and in situ monitoring of these substances is studied much less often, probably because of difficulties in the efficient assembly of miniaturized fiber optics to detect the relatively weak fluorescence signal arising within such a turbid medium as tissue. To our knowledge, the use of our implantable fiber-optic microprobe is the first minimally invasive technique capable of investigating the "size window" of vascular permeability for the in vivo delivery of nanospheres in both ischemic livers and brains.
Collapse
Affiliation(s)
- Leu-Wei Lo
- Center for Nanomedicine Research, National Health Research Institutes, Zhunan 350, Taiwan
| | | | | | | | | | | | | |
Collapse
|