1
|
Laupheimer S, Ghirardo A, Kurzweil L, Weber B, Stark TD, Dawid C, Schnitzler J, Hückelhoven R. Blumeria hordei affects volatile emission of susceptible and resistant barley plants and modifies the defense response of recipient plants. PHYSIOLOGIA PLANTARUM 2024; 176:e14646. [PMID: 39648862 PMCID: PMC11626344 DOI: 10.1111/ppl.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
The barley powdery mildew disease caused by the biotrophic fungus Blumeria hordei (Bh) poses enormous risks to crop production due to yield and quality losses. Plants and fungi can produce and release volatile organic compounds (VOCs) that serve as signals in plant communication and defense response to protect themselves. The present study aims to identify VOCs released by barley (Hordeum vulgare) during Bh-infection and to decipher VOC-induced disease resistance in receiver plants. VOC profiles of susceptible MLO wild type (MLO WT) and a resistant near-isogenic backcross line (mlo5) were characterized over time (one day or three days after Bh inoculation) using TD-GC/MS. Comparative analysis revealed genotype-dependent VOC profiles and significant differences in emission rates for β-caryophyllene, linalool, (Z)-3-hexenol, and methyl salicylate. Furthermore, susceptible barley plants were exposed to the complex VOC bouquet of MLO WT or mlo5 sender plants in plant-to-plant communication. We found that VOC-induced resistance in receiver plants depended on the sender genotype in a Bh susceptibility assay. Additionally, untargeted metabolomics and gene expression studies provide evidence toward an SA-dependent pathway mediating VOC-induced resistance against powdery mildew. The exogenous application of methyl salicylate resulted in the enhanced expression of the BARLEY CHEMICALLY INDUCED-4 marker gene and induced resistance in receiver plants. The findings suggest genotype-dependent alterations in barley VOC profiles during biotrophic plant-fungus interactions and show a VOC-mediated resistance that shares components with salicylic acid-related pathways. The VOC signals identified here could serve as non-invasive markers for disease progression in barley-powdery mildew interactions and as signals for resistance induction in recipient plants.
Collapse
Affiliation(s)
- Silvana Laupheimer
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Lisa Kurzweil
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Baris Weber
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichFreisingGermany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation (EUS)Helmholtz Center MunichNeuherbergGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
2
|
Zhao S, Li M, Ren X, Wang C, Sun X, Sun M, Yu X, Wang X. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1355178. [PMID: 38463563 PMCID: PMC10921362 DOI: 10.3389/fpls.2024.1355178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Laupheimer S, Kurzweil L, Proels R, Unsicker SB, Stark TD, Dawid C, Hückelhoven R. Volatile-mediated signalling in barley induces metabolic reprogramming and resistance against the biotrophic fungus Blumeria hordei. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:72-84. [PMID: 36377298 DOI: 10.1111/plb.13487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Plants have evolved diverse secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signalling molecules in plant defence and induce resistance in distant organs and neighbouring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants. We analysed VOCs emitted by 13 ± 1-day-old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS. We investigated the effect of pure VOC and complex VOC mixtures released from wounded plants on the barley-powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants. Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants, with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant-pathogen interaction in a concentration-dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defence. The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids, as well as defence-related secondary metabolites, such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.
Collapse
Affiliation(s)
- S Laupheimer
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - L Kurzweil
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - R Proels
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - S B Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology (MPI-CE), Jena, Germany
| | - T D Stark
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - C Dawid
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - R Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Saur IML, Hückelhoven R. Recognition and defence of plant-infecting fungal pathogens. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153324. [PMID: 33249386 DOI: 10.1016/j.jplph.2020.153324] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Attempted infections of plants with fungi result in diverse outcomes ranging from symptom-less resistance to severe disease and even death of infected plants. The deleterious effect on crop yield have led to intense focus on the cellular and molecular mechanisms that explain the difference between resistance and susceptibility. This research has uncovered plant resistance or susceptibility genes that explain either dominant or recessive inheritance of plant resistance with many of them coding for receptors that recognize pathogen invasion. Approaches based on cell biology and phytochemistry have contributed to identifying factors that halt an invading fungal pathogen from further invasion into or between plant cells. Plant chemical defence compounds, antifungal proteins and structural reinforcement of cell walls appear to slow down fungal growth or even prevent fungal penetration in resistant plants. Additionally, the hypersensitive response, in which a few cells undergo a strong local immune reaction, including programmed cell death at the site of infection, stops in particular biotrophic fungi from spreading into surrounding tissue. In this review, we give a general overview of plant recognition and defence of fungal parasites tracing back to the early 20th century with a special focus on Triticeae and on the progress that was made in the last 30 years.
Collapse
Affiliation(s)
- Isabel M L Saur
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Ramann-Straße 2, 85354 Freising, Germany.
| |
Collapse
|
5
|
Kumar N, Galli M, Dempsey D, Imani J, Moebus A, Kogel KH. NPR1 is required for root colonization and the establishment of a mutualistic symbiosis between the beneficial bacterium Rhizobium radiobacter and barley. Environ Microbiol 2020; 23:2102-2115. [PMID: 33314556 DOI: 10.1111/1462-2920.15356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
Non-expressor of pathogenesis-related genes 1 (NPR1) is a key regulator of plant innate immunity and systemic disease resistance. The model for NPR1 function is based on experimental evidence obtained largely from dicots; however, this model does not fit all aspects of Poaceae family, which includes major crops such as wheat, rice and barley. In addition, there is little scientific data on NPR1's role in mutualistic symbioses. We assessed barley (Hordeum vulgare) HvNPR1 requirement during the establishment of mutualistic symbiosis between barley and beneficial Alphaproteobacterium Rhizobium radiobacter F4 (RrF4). Upon RrF4 root-inoculation, barley NPR1-knockdown (KD-hvnpr1) plants lost the typical spatiotemporal colonization pattern and supported less bacterial multiplication. Following RrF4 colonization, expression of salicylic acid marker genes were strongly enhanced in wild-type roots; whereas in comparison, KD-hvnpr1 roots exhibited little to no induction. Both basal and RrF4-induced root-initiated systemic resistance against virulent Blumeria graminis were impaired in leaves of KD-hvnpr1. Besides these immune-related differences, KD-hvnpr1 plants displayed higher root and shoot biomass than WT. However, RrF4-mediated growth promotion was largely compromised in KD-hvnpr1. Our results demonstrate a critical role for HvNPR1 in establishing a mutualistic symbiosis between a beneficial bacterium and a cereal crop.
Collapse
Affiliation(s)
- Neelendra Kumar
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Matteo Galli
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - D'Maris Dempsey
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Anna Moebus
- Biomedical Research Centre Seltersberg, Justus Liebig University, Giessen, 35392, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, 35392, Germany
| |
Collapse
|
6
|
Li H, Wu J, Shang X, Geng M, Gao J, Zhao S, Yu X, Liu D, Kang Z, Wang X, Wang X. WRKY Transcription Factors Shared by BTH-Induced Resistance and NPR1-Mediated Acquired Resistance Improve Broad-Spectrum Disease Resistance in Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:433-443. [PMID: 31821091 DOI: 10.1094/mpmi-09-19-0257-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In Arabidopsis, both pathogen invasion and benzothiadiazole (BTH) treatment activate the nonexpresser of pathogenesis-related genes 1 (NPR1)-mediated systemic acquired resistance, which provides broad-spectrum disease resistance to secondary pathogen infection. However, the BTH-induced resistance in Triticeae crops of wheat and barley seems to be accomplished through an NPR1-independent pathway. In the current investigation, we applied transcriptome analysis on barley transgenic lines overexpressing wheat wNPR1 (wNPR1-OE) and knocking down barley HvNPR1 (HvNPR1-Kd) to reveal the role of NPR1 during the BTH-induced resistance. Most of the previously designated barley chemical-induced (BCI) genes were upregulated in an NPR1-independent manner, whereas the expression levels of several pathogenesis-related (PR) genes were elevated upon BTH treatment only in wNPR1-OE. Two barley WRKY transcription factors, HvWRKY6 and HvWRKY70, were predicted and further validated as key regulators shared by the BTH-induced resistance and the NPR1-mediated acquired resistance. Wheat transgenic lines overexpressing HvWRKY6 and HvWRKY70 showed different degrees of enhanced resistance to Puccinia striiformis f. sp. tritici pathotype CYR32 and Blumeria graminis f. sp. tritici pathotype E20. In conclusion, the transcriptional changes of BTH-induced resistance in barley were initially profiled, and the identified key regulators would be valuable resources for the genetic improvement of broad-spectrum disease resistance in wheat.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Huanpeng Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Jiaojiao Wu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Xiaofeng Shang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | | | - Jing Gao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Xiumei Yu
- College of Life Science, Hebei Agricultural University
| | - Daqun Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Technological Innovation Center for Biological Control of Crop Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding, Hebei 071000, P. R. China
| |
Collapse
|
7
|
Lenk M, Wenig M, Bauer K, Hug F, Knappe C, Lange B, Häußler F, Mengel F, Dey S, Schäffner A, Vlot AC. Pipecolic Acid Is Induced in Barley upon Infection and Triggers Immune Responses Associated with Elevated Nitric Oxide Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1303-1313. [PMID: 31194615 DOI: 10.1094/mpmi-01-19-0013-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity-inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity-inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Miriam Lenk
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Kornelia Bauer
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Florian Hug
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Birgit Lange
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Finni Häußler
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Felicitas Mengel
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Anton Schäffner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
8
|
Wu J, Gao J, Bi W, Zhao J, Yu X, Li Z, Liu D, Liu B, Wang X. Genome-Wide Expression Profiling of Genes Associated with the Lr47-Mediated Wheat Resistance to Leaf Rust ( Puccinia triticina). Int J Mol Sci 2019; 20:E4498. [PMID: 31514396 PMCID: PMC6769777 DOI: 10.3390/ijms20184498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/24/2022] Open
Abstract
Puccinia triticina (Pt), the causal agent of wheat leaf rust, is one of the most destructive fungal pathogens threatening global wheat cultivations. The rational utilization of leaf rust resistance (Lr) genes is still the most efficient method for the control of such diseases. The Lr47 gene introgressed from chromosome 7S of Aegilops speltoides still showed high resistance to the majority of Pt races collected in China. However, the Lr47 gene has not been cloned yet, and the regulatory network of the Lr47-mediated resistance has not been explored. In the present investigation, transcriptome analysis was applied on RNA samples from three different wheat lines ("Yecora Rojo", "UC1037", and "White Yecora") carrying the Lr47 gene three days post-inoculation with the epidemic Pt race THTT. A comparison between Pt-inoculated and water-inoculated "Lr47-Yecora Rojo" lines revealed a total number of 863 upregulated (q-value < 0.05 and log2foldchange > 1) and 418 downregulated (q-value < 0.05 and log2foldchange < -1) genes. Specifically, differentially expressed genes (DEGs) located on chromosomes 7AS, 7BS, and 7DS were identified, ten of which encoded receptor-like kinases (RLKs). The expression patterns of these RLK genes were further determined by a time-scale qRT-PCR assay. Moreover, heatmaps for the expression profiles of pathogenesis-related (PR) genes and several transcription factor gene families were generated. Using a transcriptomic approach, we initially profiled the transcriptional changes associated with the Lr47-mediated resistance. The identified DEGs, particularly those genes encoding RLKs, might serve as valuable genetic resources for the improvement of wheat resistance to Pt.
Collapse
Affiliation(s)
- Jiaojiao Wu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jing Gao
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Weishuai Bi
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jiaojie Zhao
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Zaifeng Li
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Daqun Liu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China.
| | - Xiaodong Wang
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|
9
|
Arabidopsis thaliana Immunity-Related Compounds Modulate Disease Susceptibility in Barley. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Plants are exposed to numerous pathogens and fend off many of these with different phytohormone signalling pathways. Much is known about defence signalling in the dicotyledonous model plant Arabidopsisthaliana, but it is unclear to which extent knowledge from model systems can be transferred to monocotyledonous plants, including cereal crops. Here, we investigated the defence-inducing potential of Arabidopsis resistance-inducing compounds in the cereal crop barley. Salicylic acid (SA), folic acid (Fol), and azelaic acid (AzA), each inducing defence against (hemi-)biotrophic pathogens in Arabidopsis, were applied to barley leaves and the treated and systemic leaves were subsequently inoculated with Xanthomonastranslucens pv. cerealis (Xtc), Blumeria graminis f. sp. hordei (powdery mildew, Bgh), or Pyrenophora teres. Fol and SA reduced Bgh propagation locally and/or systemically, whereas Fol enhanced Xtc growth in barley. AzA reduced Bgh propagation systemically and enhanced Xtc growth locally. Neither SA, Fol, nor AzA influenced lesion sizes caused by the necrotrophic fungus P. teres, suggesting that the tested compounds exclusively affected growth of (hemi-)biotrophic pathogens in barley. In addition to SA, Fol and AzA might thus act as resistance-inducing compounds in barley against Bgh, although adverse effects on the growth of pathogenic bacteria, such as Xtc, are possible.
Collapse
|
10
|
Losvik A, Beste L, Stephens J, Jonsson L. Overexpression of the aphid-induced serine protease inhibitor CI2c gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid. PLoS One 2018; 13:e0193816. [PMID: 29554141 PMCID: PMC5858787 DOI: 10.1371/journal.pone.0193816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/20/2018] [Indexed: 11/18/2022] Open
Abstract
Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (Hordeum vulgare L.). The CI2c gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid (Rhopalosiphum padi L.) in barley genotypes with moderate resistance against this aphid, but not in susceptible lines. We hypothesized that CI2c contributes to the resistance. To test this idea, cDNA encoding CI2c was overexpressed in barley and bioassays were carried out with R. padi. For comparison, tests were carried out with the green peach aphid (Myzus persicae Sulzer), for which barley is a poor host. The performance of R. padi was not different on the CI2c-overexpressing lines in comparison to controls in test monitoring behavior and fecundity. M. persicae preference was affected as shown in the choice test, this species moved away from control plants, but remained on the CI2c-overexpressing lines. R. padi-induced responses related to defense were repressed in the overexpressing lines as compared to in control plants or the moderately resistant genotypes. A putative susceptibility gene, coding for a β-1,3-glucanase was more strongly induced by aphids in one of the CI2c-overexpressing lines. The results indicate that the CI2c inhibitor in overexpressing lines affects aphid-induced responses by suppressing defense. This is of little consequence to the specialist R.padi, but causes lower non-host resistance towards the generalist M. persicae in barley.
Collapse
Affiliation(s)
- Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Lisa Beste
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Jennifer Stephens
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
Gao J, Bi W, Li H, Wu J, Yu X, Liu D, Wang X. WRKY Transcription Factors Associated With NPR1-Mediated Acquired Resistance in Barley Are Potential Resources to Improve Wheat Resistance to Puccinia triticina. FRONTIERS IN PLANT SCIENCE 2018; 9:1486. [PMID: 30386355 PMCID: PMC6199750 DOI: 10.3389/fpls.2018.01486] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/25/2018] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) in Arabidopsis is established beyond the initial pathogenic infection or is directly induced by treatment with salicylic acid or its functional analogs (SA/INA/BTH). NPR1 protein and WRKY transcription factors are considered the master regulators of SAR. Our previous study showed that NPR1 homologs in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) regulated the expression of genes encoding pathogenesis-related (PR) proteins during acquired resistance (AR) triggered by Pseudomonas syringae pv. tomato DC3000. In the present examination, AR induced by P. syringae DC3000 was also found to effectively improve wheat resistance to Puccinia triticina (Pt). However, with more complex genomes, genes associated with this SAR-like response in wheat and barley are largely unknown and no specific WRKYs has been reported to be involved in this biological process. In our subsequent analysis, barley transgenic line overexpressing wheat wNPR1 (wNPR1-OE) showed enhanced resistance to Magnaporthe oryzae isolate Guy11, whereas AR to Guy11 was suppressed in a barley transgenic line with knocked-down barley HvNPR1 (HvNPR1-Kd). We performed RNA-seq to reveal the genes that were differentially expressed among these transgenic lines and the wild-type barley plants during the AR. Several PR and BTH-induced (BCI) genes were designated as downstream genes of NPR1. The expression of few WRKYs was significantly associated with NPR1 expression during the AR events. The transient expression of three WRKY genes, including HvWRKY6, HvWRKY40, and HvWRKY70, in wheat leaves by Agrobacterium-mediated infiltration enhanced the resistance to Pt. In conclusion, a profile of genes associated with NPR1-mediated AR in barley was drafted and WRKYs discovered in the current study showed a substantial potential for improving wheat resistance to Pt.
Collapse
Affiliation(s)
- Jing Gao
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Weishuai Bi
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Huanpeng Li
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Jiaojiao Wu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Daqun Liu
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiaodong Wang, Daqun Liu,
| | - Xiaodong Wang
- College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Hebei Agricultural University, Baoding, China
- *Correspondence: Xiaodong Wang, Daqun Liu,
| |
Collapse
|
12
|
Losvik A, Beste L, Glinwood R, Ivarson E, Stephens J, Zhu LH, Jonsson L. Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity. Int J Mol Sci 2017; 18:ijms18122765. [PMID: 29257097 PMCID: PMC5751364 DOI: 10.3390/ijms18122765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/08/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Aphids are pests on many crops and depend on plant phloem sap as their food source. In an attempt to find factors improving plant resistance against aphids, we studied the effects of overexpression and down-regulation of the lipoxygenase gene LOX2.2 in barley (Hordeum vulgare L.) on the performance of two aphid species. A specialist, bird cherry-oat aphid (Rhopalosiphum padi L.) and a generalist, green peach aphid (Myzus persicae Sulzer) were studied. LOX2.2 overexpressing lines showed up-regulation of some other jasmonic acid (JA)-regulated genes, and antisense lines showed down-regulation of such genes. Overexpression or suppression of LOX2.2 did not affect aphid settling or the life span on the plants, but in short term fecundity tests, overexpressing plants supported lower aphid numbers and antisense plants higher aphid numbers. The amounts and composition of released volatile organic compounds did not differ between control and LOX2.2 overexpressing lines. Up-regulation of genes was similar for both aphid species. The results suggest that LOX2.2 plays a role in the activation of JA-mediated responses and indicates the involvement of LOX2.2 in basic defense responses.
Collapse
Affiliation(s)
- Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Lisa Beste
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
| | - Robert Glinwood
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Jennifer Stephens
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, Sweden; (E.I.); (L.-H.Z.)
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; (A.L.); (L.B.)
- Correspondence: ; Tel.: +46-8-161-211
| |
Collapse
|
13
|
Torres DP, Proels RK, Schempp H, Hückelhoven R. Silencing of RBOHF2 Causes Leaf Age-Dependent Accelerated Senescence, Salicylic Acid Accumulation, and Powdery Mildew Resistance in Barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:906-918. [PMID: 28795634 DOI: 10.1094/mpmi-04-17-0088-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant RBOH (RESPIRATORY BURST OXIDASE HOMOLOGS)-type NADPH oxidases produce superoxide radical anions and have a function in developmental processes and in response to environmental challenges. Barley RBOHF2 has diverse reported functions in interaction with the biotrophic powdery mildew fungus Blumeria graminis f. sp. hordei. Here, we analyzed, in detail, plant leaf level- and age-specific susceptibility of stably RBOHF2-silenced barley plants. This revealed enhanced susceptibility to fungal penetration of young RBOHF2-silenced leaf tissue but strongly reduced susceptibility of older leaves when compared with controls. Loss of susceptibility in old RBOHF2-silenced leaves was associated with spontaneous leaf-tip necrosis and constitutively elevated levels of free and conjugated salicylic acid. Additionally, these leaves more strongly expressed pathogenesis-related genes, both constitutively and during interaction with B. graminis f. sp. hordei. Together, this supports the idea that barley RBOHF2 contributes to basal resistance to powdery mildew infection in young leaf tissue but is required to control leaf cell death, salicylic acid accumulation, and defense gene expression in older leaves, explaining leaf age-specific resistance of RBOHF2-silenced barley plants.
Collapse
Affiliation(s)
- Denise Pereira Torres
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Reinhard K Proels
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Harald Schempp
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München Emil-Ramann-Straße 2, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
14
|
Losvik A, Beste L, Mehrabi S, Jonsson L. The Protease Inhibitor CI2c Gene Induced by Bird Cherry-Oat Aphid in Barley Inhibits Green Peach Aphid Fecundity in Transgenic Arabidopsis. Int J Mol Sci 2017. [PMID: 28632160 PMCID: PMC5486138 DOI: 10.3390/ijms18061317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aphids are phloem feeders that cause large damage globally as pest insects. They induce a variety of responses in the host plant, but not much is known about which responses are promoting or inhibiting aphid performance. Here, we investigated whether one of the responses induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or preference or on parameters of life span and long-term fecundity. However, short-term tests with apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis.
Collapse
Affiliation(s)
| | | | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Lisbeth Jonsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
15
|
Wang X, Yang B, Li K, Kang Z, Cantu D, Dubcovsky J. A Conserved Puccinia striiformis Protein Interacts with Wheat NPR1 and Reduces Induction of Pathogenesis-Related Genes in Response to Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:977-989. [PMID: 27898286 DOI: 10.1094/mpmi-10-16-0207-r] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Arabidopsis, NPR1 is a key transcriptional coregulator of systemic acquired resistance. Upon pathogen challenge, NPR1 translocates from the cytoplasm to the nucleus, in which it interacts with TGA-bZIP transcription factors to activate the expression of several pathogenesis-related (PR) genes. In a screen of a yeast two-hybrid library from wheat leaves infected with Puccinia striiformis f. sp. tritici, we identified a conserved rust protein that interacts with wheat NPR1 and named it PNPi (for Puccinia NPR1 interactor). PNPi interacts with the NPR1/NIM1-like domain of NPR1 via its C-terminal DPBB_1 domain. Using bimolecular fluorescence complementation assays, we detected the interaction between PNPi and wheat NPR1 in the nucleus of Nicotiana benthamiana protoplasts. A yeast three-hybrid assay showed that PNPi interaction with NPR1 competes with the interaction between wheat NPR1 and TGA2.2. In barley transgenic lines overexpressing PNPi, we observed reduced induction of multiple PR genes in the region adjacent to Pseudomonas syringae pv. tomato DC3000 infection. Based on these results, we hypothesize that PNPi has a role in manipulating wheat defense response via its interactions with NPR1.
Collapse
Affiliation(s)
- Xiaodong Wang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
- 3 College of Plant Protection, Biological Control Center for Plant Diseases and Plant Pests of Hebei, Agriculture University of Hebei, Baoding, Hebei 071000, P. R. China
| | - Baoju Yang
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Kun Li
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
| | - Zhensheng Kang
- 2 State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, P. R. China
| | - Dario Cantu
- 4 Department of Viticulture and Enology, University of California, Davis, CA 95616, U.S.A
| | - Jorge Dubcovsky
- 1 Department of Plant Science, University of California, Davis, CA 95616, U.S.A
- 5 Howard Hughes Medical Institute (HHMI), Chevy Chase, MD 20815, U.S.A
| |
Collapse
|
16
|
Medeiros AH, Mingossi FB, Dias RO, Franco FP, Vicentini R, Mello MO, Moura DS, Silva-Filho MC. Sugarcane Serine Peptidase Inhibitors, Serine Peptidases, and Clp Protease System Subunits Associated with Sugarcane Borer (Diatraea saccharalis) Herbivory and Wounding. Int J Mol Sci 2016; 17:E1444. [PMID: 27598134 PMCID: PMC5037723 DOI: 10.3390/ijms17091444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022] Open
Abstract
Sugarcane's (Saccharum spp.) response to Diatraea saccharalis (F.) (Lepidoptera: (Crambidae) herbivory was investigated using a macroarray spotted with 248 sugarcane Expressed Sequence Tags (ESTs) encoding serine peptidase inhibitors, serine peptidases. and Clp protease system subunits. Our results showed that after nine hours of herbivory, 13 sugarcane genes were upregulated and nine were downregulated. Among the upregulated genes, nine were similar to serine peptidase inhibitors and four were similar to Bowman-Birk Inhibitors (BBIs). Phylogenetic analysis revealed that these sequences belong to a phylogenetic group of sugarcane BBIs that are potentially involved in plant defense against insect predation. The remaining four upregulated genes included serine peptidases and one homolog to the Arabidopsis AAA+ chaperone subunit ClpD, which is a member of the Clp protease system. Among the downregulated genes, five were homologous to serine peptidases and four were homologous to Arabidopsis Clp subunits (three homologous to Clp AAA+ chaperones and one to a ClpP-related ClpR subunit). Although the roles of serine peptidase inhibitors in plant defenses against herbivory have been extensively investigated, the roles of plant serine peptidases and the Clp protease system represent a new and underexplored field of study. The up- and downregulated D. saccharalis genes presented in this study may be candidate genes for the further investigation of the sugarcane response to herbivory.
Collapse
Affiliation(s)
- Ane H Medeiros
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, 13600-970 São Paulo, Brazil.
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Fabiana B Mingossi
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Flávia P Franco
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| | - Renato Vicentini
- Systems Biology Laboratory, Center for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, 13083-970 São Paulo, Brazil.
| | - Marcia O Mello
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
- Monsanto do Brasil, Campinas, 13069-380 São Paulo, Brazil.
| | - Daniel S Moura
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13400-918 São Paulo, Brazil.
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, 13418-260 São Paulo, Brazil.
| |
Collapse
|
17
|
Rejeb IB, Pastor V, Mauch-Mani B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2014; 3:458-75. [PMID: 27135514 PMCID: PMC4844285 DOI: 10.3390/plants3040458] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/29/2014] [Accepted: 10/08/2014] [Indexed: 01/19/2023]
Abstract
Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS). In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant's resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.
Collapse
Affiliation(s)
- Ines Ben Rejeb
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| | - Victoria Pastor
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| | - Brigitte Mauch-Mani
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
18
|
Rahman A, Kuldau GA, Uddin W. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. PHYTOPATHOLOGY 2014; 104:614-23. [PMID: 24328494 DOI: 10.1094/phyto-09-13-0268-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Incorporation of plant defense activators is an innovative approach to development of an integrated strategy for the management of turfgrass diseases. The effects of salicylic acid (SA), benzothiadiazole (BTH, chemical analog of SA), jasmonic acid (JA), and ethephon (ET, an ethylene-releasing compound) on development of gray leaf spot in perennial ryegrass (Lolium perenne L.) caused by Magnaporthe oryzae were evaluated. Gray leaf spot disease incidence and severity were significantly decreased when plants were treated prior to inoculation with SA, BTH, and partially by ET but not by JA. Accumulation of endogenous SA and elevated expression of pathogenesis-related (PR)-1, PR-3.1, and PR-5 genes were associated with inoculation of plants by M. oryzae. Treatment of plants with SA enhanced expression levels of PR-3.1 and PR-5 but did not affect the PR-1 level, whereas BTH treatment enhanced relative expression levels of all three PR genes. Microscopic observations of leaves inoculated with M. oryzae revealed higher frequencies of callose deposition at the penetration sites in SA- and BTH-treated plants compared with the control plants (treated with water). These results suggest that early and higher induction of these genes by systemic resistance inducers may provide perennial ryegrass with a substantial advantage to defend against infection by M. oryzae.
Collapse
|
19
|
Rangel-Sánchez G, Castro-Mercado E, García-Pineda E. Avocado roots treated with salicylic acid produce phenol-2,4-bis (1,1-dimethylethyl), a compound with antifungal activity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:189-98. [PMID: 23948674 DOI: 10.1016/j.jplph.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 05/22/2023]
Abstract
We demonstrated the ability of salicylic acid (SA) to induce a compound in avocado roots that strengthens their defense against Phytophthora cinnamomi. The SA content of avocado roots, before and after the application of exogenous SA, was determined by High-Performance Liquid Chromatography (HPLC). After 4h of SA feeding, the endogenous level in the roots increased to 223 μg g(-1) FW, which was 15 times the amount found in control roots. The methanolic extract obtained from SA-treated avocado roots inhibited the radial growth of P. cinnamomi. A thin layer chromatographic bioassay with the methanolic extract and spores of Aspergillus showed a distinct inhibition zone. The compound responsible for the inhibition was identified as phenol-2,4-bis (1,1-dimethylethyl) by gas chromatography and mass spectrometry. At a concentration of 100 μg/mL, the substance reduced germinative tube length in Aspergillus and radial growth of P. cinnamomi. A commercial preparation of phenol-2,4-bis (1,1-dimethylethyl) caused the same effects on mycelium morphology and radial growth as our isolate, confirming the presence of this compound in the root extracts. This is the first report of the induction of this compound in plants by SA, and the results suggest that it plays an important role in the defense response of avocado.
Collapse
Affiliation(s)
- Gerardo Rangel-Sánchez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán CP 58040, Mexico.
| |
Collapse
|
20
|
Tayeh C, Randoux B, Bourdon N, Reignault P. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1620-1629. [PMID: 23880093 DOI: 10.1016/j.jplph.2013.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Heptanoyl salicylic acid (HSA) is a salicylic acid (SA) derivative obtained by esterification of 2-OH benzoic acid with heptanoic acid. In wheat, the protection levels obtained against Blumeria graminis f. sp. tritici (Bgt) increased from 50% with SA to 95% with HSA. Using molecular, biochemical and cytological approaches, we investigated here how wheat lipid metabolism is differentially activated by SA and HSA in both infectious and non-infectious conditions, and how Bgt infectious process is altered by both inducers. First, in the absence of Bgt, continuous lipoxygenase (LOX)-encoding gene expression and corresponding activity were specifically induced by HSA. Moreover, compared to SA, HSA treatment resulted in earlier up-regulations of the phospholipase C2-encoding gene expression and it specifically affected the expression of a lipid transfer protein-encoding gene. In infectious context, both HSA and SA sprayings impaired penetration events and therefore haustorium formation, leading to less frequent fungal colonies. While this alteration only slowed down the evolution of Bgt infectious process in SA-sprayed leaves, it completely impaired the establishment of successful infectious events in HSA-sprayed leaves. In addition, HSA induced continuous increases of a LOX-encoding gene expression and of the corresponding LOX activity when compared to SA-sprayed leaves. Lipid metabolism is therefore overall highly responsive to HSA spraying and could represent effective defence mechanism triggered during the induction of resistance in wheat toward Bgt. The concepts of priming and energy costs of the defences induced by SA and HSA are also discussed.
Collapse
Affiliation(s)
- Christine Tayeh
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), GIS PhyNoPi, Université du Littoral Côte d'Opale, C.S. 80699, F-62228 Calais cedex, France
| | | | | | | |
Collapse
|
21
|
Hamada AM, Jonsson LMV. Thiamine treatments alleviate aphid infestations in barley and pea. PHYTOCHEMISTRY 2013; 94:135-41. [PMID: 23787153 DOI: 10.1016/j.phytochem.2013.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Treatment of plants with thiamine (Vitamin B1) has before been shown to activate plant defence against microorganisms. Here, we have studied the effects of thiamine treatments of plants on aphid reproduction and behaviour. The work was mainly carried out with bird cherry-oat aphid (Rhopalosiphum padi L.) on barley (Hordeum vulgare L.). Aphid population growth and aphid acceptance on plants grown from seeds soaked in a 150μM thiamine solution were reduced to ca. 60% of that on control plants. R. padi life span and the total number of offspring were reduced on barley plants treated with thiamine. Healthy aphids and aphids infected with the R. padi virus were similarly affected. Spraying or addition of thiamine at 150μM to nutrient solutions likewise resulted in reduced aphid population growth to ca. 60%, as did plant exposure to thiamine odour at 4mM. Thiamine treatments resulted in reduced aphid population growth also when tested with grain aphid (Sitobion avenae F.) on barley and pea aphid (Acyrthosiphon pisum H.) on pea (Pisum sativum L.). There was no direct effect of thiamine on aphid reproduction or thiamine odour on aphid behaviour, as evaluated using artificial diets and by olfactometer tests, respectively. Two gene sequences regulated by salicylic acid showed higher transcript abundance and one gene sequence regulated by methyl jasmonate showed lower transcript abundance in thiamine-treated plants but not in control plants after aphid infestation. These results suggest that the aphid antibiosis and antixenosis effects may be related to priming of defence, but more studies are needed to explain the effects against aphids.
Collapse
Affiliation(s)
- Afaf M Hamada
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | | |
Collapse
|
22
|
Wu Y, Yi G, Peng X, Huang B, Liu E, Zhang J. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1039-46. [PMID: 23702248 DOI: 10.1016/j.jplph.2013.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 05/20/2023]
Abstract
Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 μg g⁻¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR.
Collapse
Affiliation(s)
- Yuanli Wu
- Fruit Tree Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Kim DY, Hong MJ, Jang JH, Seo YW. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in Brachypodium distachyon. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0067-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Colebrook EH, Creissen G, McGrann GRD, Dreos R, Lamb C, Boyd LA. Broad-spectrum acquired resistance in barley induced by the Pseudomonas pathosystem shares transcriptional components with Arabidopsis systemic acquired resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:658-667. [PMID: 22250583 DOI: 10.1094/mpmi-09-11-0246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Inducible resistance responses play a central role in the defense of plants against pathogen attack. Acquired resistance (AR) is induced alongside defense toward primary attack, providing broad-spectrum protection against subsequent pathogen challenge. The localization and molecular basis of AR in cereals is poorly understood, in contrast with the well-characterized systemic acquired resistance (SAR) response in Arabidopsis. Here, we use Pseudomonas syringae as a biological inducer of AR in barley, providing a clear frame of reference to the Arabidopsis-P. syringae pathosystem. Inoculation of barley leaf tissue with the nonadapted P. syringae pv. tomato avrRpm1 (PstavrRpm1) induced an active local defense response. Furthermore, inoculation of barley with PstavrRpm1 resulted in the induction of broad-spectrum AR at a distance from the local lesion, "adjacent" AR, effective against compatible isolates of P. syringae and Magnaporthe oryzae. Global transcriptional profiling of this adjacent AR revealed similarities with the transcriptional profile of SAR in Arabidopsis, as well as transcripts previously associated with chemically induced AR in cereals, suggesting that AR in barley and SAR in Arabidopsis may be mediated by analogous pathways.
Collapse
Affiliation(s)
- E H Colebrook
- Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Molitor A, Zajic D, Voll LM, Pons-K Hnemann J, Samans B, Kogel KH, Waller F. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1427-39. [PMID: 21830949 DOI: 10.1094/mpmi-06-11-0177] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ?twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.
Collapse
|
27
|
Cloning and characterization of a calcium binding EF-hand protein gene TaCab1 from wheat and its expression in response to Puccinia striiformis f. sp. tritici and abiotic stresses. Mol Biol Rep 2010; 38:3857-66. [PMID: 21110112 DOI: 10.1007/s11033-010-0501-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
Abstract
Calcium is a ubiquitous and essential secondary messenger in eukaryotic signal transduction pathways. Calcium binding protein, as a component of pathways, plays various roles in response to biotic and abiotic stresses, as well as in developmental processes in plants. In this study, a calcium binding protein gene, designated as TaCab1 (Triticum aestivum calcium binding EF-hand protein 1), was isolated and characterized from wheat leaves (cv. Suwon 11) infected by Puccinia striiformis f. sp. tritici by in silico cloning and reverse transcription PCR (RT-PCR). TaCab1 did not have an intron and was predicted to encode a 216 amino acid protein which possesses an N-terminal region with a signal peptide, a transmembrane domain, an EF-hand motif and a caleosin domain. The results of transient assays with constructs of TaCab1 with green fluorescent protein (GFP) gene indicated that TaCab1 encodes a transmembrane protein. Quantitative real-time PCR (qRT-PCR) analyses revealed that TaCab1 was highly expressed in leaves than roots and stems. Although up-regulated expression profiles of TaCab1 were quite similar in both incompatible and compatible interactions, its transcript accumulation in the compatible interaction was much higher than in the incompatible interaction. The transcription of TaCab1 was also up-regulated at different degrees after treated by phytohormones [abscisic acid, benzyl adenine, ethylene, methyl jasmonate and salicylic acid (SA)] and stress stimuli [wounding, low temperature, polyethylene glycol and high salinity]. These results suggest that TaCab1 is involved in the plant-pathogen recognition, symptom development, and the basal tolerance to biotic and abiotic stresses through the SA signaling pathway.
Collapse
|
28
|
Ninkovic V. Volatile Interaction Between Undamaged Plants: A Short Cut to Coexistence. PLANT COMMUNICATION FROM AN ECOLOGICAL PERSPECTIVE 2010. [DOI: 10.1007/978-3-642-12162-3_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Partridge M, Murphy DJ. Roles of a membrane-bound caleosin and putative peroxygenase in biotic and abiotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:796-806. [PMID: 19467604 DOI: 10.1016/j.plaphy.2009.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/15/2009] [Accepted: 04/27/2009] [Indexed: 05/20/2023]
Abstract
We report here the localisation and properties of a new membrane-bound isoform of caleosin and its putative role as a peroxygenase involved in oxylipin metabolism during biotic and abiotic stress responses in Arabidopsis. Caleosins are a family of lipid-associated proteins that are ubiquitous in plants and true fungi. Previous research has focused on lipid-body associated, seed-specific caleosins that have peroxygenase activity. Here, we demonstrate that a separate membrane-bound constitutively expressed caleosin isoform (Clo-3) is highly upregulated following exposure to abiotic stresses, such as salt and drought, and to biotic stress such as pathogen infection. The Clo-3 protein binds one atom of calcium per molecule, is phosphorylated in response to stress, and has a similar peroxygenase activity to the seed-specific Clo-1 isoform. Clo-3 is present in microsomal and chloroplast envelope fractions and has a type I membrane orientation with about 2 kDa of the C terminal exposed to the cytosol. Analysis of Arabidopsis ABA and related mutant lines implies that Clo-3 is involved in the generation of oxidised fatty acids in stress related signalling pathways involving both ABA and salicylic acid. We propose that Clo-3 is part of an oxylipin pathway induced by multiple stresses and may also generate fatty acid derived anti-fungal compounds for plant defence.
Collapse
Affiliation(s)
- Mark Partridge
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, United Kingdom
| | | |
Collapse
|
30
|
Identification and characterization of barley RNA-directed RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:375-85. [DOI: 10.1016/j.bbagrm.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/21/2009] [Accepted: 03/23/2009] [Indexed: 11/20/2022]
|
31
|
Crampton BG, Hein I, Berger DK. Salicylic acid confers resistance to a biotrophic rust pathogen, Puccinia substriata, in pearl millet (Pennisetum glaucum). MOLECULAR PLANT PATHOLOGY 2009; 10:291-304. [PMID: 19236576 PMCID: PMC6640451 DOI: 10.1111/j.1364-3703.2008.00532.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Studies were undertaken to assess the induction of defence response pathways in pearl millet (Pennisetum glaucum) in response to infection with the leaf rust fungus Puccinia substriata. Pretreatment of pearl millet with salicylic acid (SA) conferred resistance to a virulent isolate of the rust fungus, whereas methyl jasmonate (MeJA) did not significantly reduce infection levels. These results suggest that the SA defence pathway is involved in rust resistance. In order to identify pearl millet genes that are specifically regulated in response to SA and not MeJA, and thus could play a role in resistance to P. substriata, gene expression profiling was performed. Substantial overlap in gene expression responses between the treatments was observed, with MeJA and SA treatments exhibiting 17% co-regulated transcripts. However, 34% of transcripts were differentially expressed in response to SA treatment, but not in response to MeJA treatment. SA-responsive transcripts represented genes involved in SA metabolism, defence response, signal transduction, protection from oxidative stress and photosynthesis. The expression profiles of pearl millet plants after treatment with SA or MeJA were more similar to one another than to the response during a compatible infection with P. substriata. However, some SA-responsive genes were repressed during P. substriata infection, indicating possible manipulation of host responses by the pathogen.
Collapse
|
32
|
Glinwood R, Gradin T, Karpinska B, Ahmed E, Jonsson L, Ninkovic V. Aphid acceptance of barley exposed to volatile phytochemicals differs between plants exposed in daylight and darkness. PLANT SIGNALING & BEHAVIOR 2007; 2:321-6. [PMID: 19516995 PMCID: PMC2634203 DOI: 10.4161/psb.2.5.4494] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 05/25/2007] [Indexed: 05/15/2023]
Abstract
It is well known that volatile cues from damaged plants may induce resistance in neighboring plants. Much less is known about the effects of volatile interaction between undamaged plants. In this study, barley plants, Hordeum vulgare cv. Kara, were exposed to volatiles from undamaged plants of barley cv. Alva or thistle Cirsium vulgare, and to the volatile phytochemicals, methyl salicylate or methyl jasmonate. Exposures were made either during natural daylight or darkness. Acceptance of exposed plants by the aphid Rhopalosiphum padi was assessed, as well as the expression of putative marker genes for the different treatments. Aphid acceptance of plants exposed to either barley or C. vulgare was significantly reduced, and an effect of the volatiles from undamaged plants was confirmed by the induction of pathogenesis-related protein, PR1a in exposed plants. However the effect on aphid acceptance was seen only when plants were exposed during darkness, whereas PR1a was induced only after treatment during daylight. Aphid acceptance of plants exposed to either methyl salicylate or methyl jasmonate was significantly reduced, but only when plants were exposed to the chemicals during daylight. AOS2 (allene oxide synthase) was induced by methyl jasmonate and BCI-4 (barley chemical inducible gene-4) by methyl salicylate in both daylight and darkness. It is concluded that (a) the effects on aphids of exposing barley to volatile phytochemicals was influenced by the presence or absence of light and (b) the response of barley to methyl salicylate/methyl jasmonate and to volatiles from undamaged plants differed at the gene and herbivore level.
Collapse
Affiliation(s)
- Robert Glinwood
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Therese Gradin
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Barbara Karpinska
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Elham Ahmed
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| | - Llisbeth Jonsson
- School of Life Sciences; Södertörn University College; Huddinge, Sweden
| | - Velemir Ninkovic
- Department of Ecology; Swedish University of Agricultural Sciences; Uppsala, Sweden
| |
Collapse
|
33
|
Inukai T, Vales MI, Hori K, Sato K, Hayes PM. RMo1 confers blast resistance in barley and is located within the complex of resistance genes containing Mla, a powdery mildew resistance gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:1034-41. [PMID: 16941907 DOI: 10.1094/mpmi-19-1034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolates of Magnaporthe oryzae (the causal agent of rice blast disease) can infect a range of grass species, including barley. We report that barley Hordeum vulgare cv. Baronesse and an experimental line, BCD47, show a range of resistance reactions to infection with two rice blast isolates. The complete resistance of Baronesse to the isolate Ken 54-20 is controlled by a single dominant gene, designated RMo1. RMo1 mapped to the same linkage map position on chromosome 1H as the powdery mildew resistance locus Mla and an expressed sequence tag (k04320) that corresponds to the barley gene 711N16.16. A resistance quantitative trait locus (QTL), at which Baronesse contributed the resistance allele, to the isolate Ken 53-33 also mapped at the same position as RMo1. Synteny analysis revealed that a corresponding region on rice chromosome 5 includes the bacterial blight resistance gene xa5. These results indicate that a defined region on the short arm of barley chromosome 1H, including RMo1 and Mla, harbors genes conferring qualitative and quantitative resistance to multiple pathogens. The partial resistance of BCD47 to Ken53-33 is determined by alleles at three QTL, two of which coincide with the linkage map positions of the mildew resistance genes mlo and Mlf.
Collapse
Affiliation(s)
- Tsuyoshi Inukai
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
34
|
Ortmann I, Moerschbacher BM. Spent growth medium of Pantoea agglomerans primes wheat suspension cells for augmented accumulation of hydrogen peroxide and enhanced peroxidase activity upon elicitation. PLANTA 2006; 224:963-70. [PMID: 16596409 DOI: 10.1007/s00425-006-0271-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/23/2006] [Indexed: 05/08/2023]
Abstract
Induced disease resistance in plants is based on multiple mechanisms, including cell "priming", i.e. an enhancement of the capacity to mobilize cellular defense responses upon pathogen attack. Potent inducers of priming are, for example, salicylic acid, synthetic compounds such as a benzothiadiazole, and certain rhizosphere bacteria. While priming is well characterized for a number of dicot plants, only few cases of priming are documented in monocots. Here, we report that the spent growth medium of the Gram negative bacterium Pantoea agglomerans is capable of priming wheat cells (Triticum aestivum L. cv Prelude-Sr5) for elicitor-induced defense responses. Pre-incubation of suspension-cultured wheat cells with growth medium of P. agglomerans led to a strong enhancement of an oxidative burst that has been induced by chitin or chitosan and to an increase in extracellular peroxidase activity. Moreover, exopolysaccharides (EPS) were isolated from the spent growth medium and demonstrated to be sufficient for the induction of H2O2 priming. The EPS-induced priming was shown to be time- and concentration-dependent. We conclude that EPS are the or one of several priming-active component(s) in the spent growth medium of P. agglomerans. The present work is the first report of priming in a monocot plant by a specific component of bacterial origin. A comparison with known chemical inducers of resistance revealed that a benzothiadiazole was able to enhance the oxidative burst similar to the spent growth medium or the EPS of P. agglomerans, while salicylic acid was not.
Collapse
Affiliation(s)
- Imke Ortmann
- Department of Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | |
Collapse
|
35
|
Ortmann I, Conrath U, Moerschbacher BM. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett 2006; 580:4491-4. [PMID: 16860795 DOI: 10.1016/j.febslet.2006.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/07/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
Induced disease resistance of plants is often associated with an enhanced capacity to activate cellular defense responses to pathogen attack, named the "primed" state of the plant. Exopolysaccharides of Pantoea agglomerans have recently been reported as the first priming active component of bacterial origin in wheat cells. We now show that Pantoea exopolysaccharides also prime rice cells for better elicitation of a rapid oxidative burst. In contrast, in tobacco and parsley cell cultures Pantoea exopolysaccharides activate the oxidative burst response directly. Our results point to a different recognition and/or mode of action of Pantoea exopolysaccharides in monocot and dicot plants.
Collapse
Affiliation(s)
- Imke Ortmann
- Department of Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 55, 48143 Münster, Germany
| | | | | |
Collapse
|
36
|
Jansen M, Slusarenko AJ, Schaffrath U. Competence of roots for race-specific resistance and the induction of acquired resistance against Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2006; 7:191-5. [PMID: 20507439 DOI: 10.1111/j.1364-3703.2006.00331.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
SUMMARY Generally, Magnaporthe oryzae, the causal agent of rice blast disease, is considered to be a typical leaf-infecting plant pathogenic fungus. However, it was recently reported that M. oryzae shares many characteristics in common with root-infecting pathogens and indeed was able to infect roots. Here, we report on studies testing for the capacity of roots of rice and barley to resist infections with M. oryzae. We established that roots of rice plants were colonized by M. oryzae in a manner which is different from the gene-for-gene specificity seen in leaves for the same genotypes. Furthermore, treatment of rice seedlings with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a chemical that protects leaves effectively against blast by conditioning acquired resistance, was not able to prevent colonization of roots by M. oryzae although a reduction in disease levels was observed. Moreover, BTH was not able to protect barley roots against infection with M. oryzae. Taken together, our results suggest that although roots show intrinsic variation in their ability to resist colonization by M. oryzae, neither gene-for-gene incompatibility nor aquired resistance are as effective at blocking the pathogen as they are in leaves.
Collapse
Affiliation(s)
- Marcus Jansen
- Department of Plant Physiology (Biology III), RWTH Aachen University, D-52056 Aachen, Germany
| | | | | |
Collapse
|
37
|
Eichmann R, Biemelt S, Schäfer P, Scholz U, Jansen C, Felk A, Schäfer W, Langen G, Sonnewald U, Kogel KH, Hückelhoven R. Macroarray expression analysis of barley susceptibility and nonhost resistance to Blumeria graminis. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:657-70. [PMID: 16545999 DOI: 10.1016/j.jplph.2005.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/23/2005] [Indexed: 05/07/2023]
Abstract
Different formae speciales of the grass powdery mildew fungus Blumeria graminis undergo basic-compatible or basic-incompatible (nonhost) interactions with barley. Background resistance in compatible interactions and nonhost resistance require common genetic and mechanistic elements of plant defense. To build resources for differential screening for genes that potentially distinguish a compatible from an incompatible interaction on the level of differential gene expression of the plant, we constructed eight dedicated cDNA libraries, established 13.000 expressed sequence tag (EST) sequences and designed DNA macroarrays. Using macroarrays based on cDNAs derived from epidermal peels of plants pretreated with the chemical resistance activating compound acibenzolar-S-methyl, we compared the expression of barley gene transcripts in the early host interaction with B. graminis f.sp. hordei or the nonhost pathogen B. graminis f.sp. tritici, respectively. We identified 102 spots corresponding to 94 genes on the macroarray that gave significant B. graminis-responsive signals at 12 and/or 24 h after inoculation. In independent expression analyses, we confirmed the macroarray results for 11 selected genes. Although the majority of genes showed a similar expression profile in compatible versus incompatible interactions, about 30 of the 94 genes were expressed on slightly different levels in compatible versus incompatible interactions.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Phytopathology and Applied Zoology, University of Giessen, Heinrich-Buff Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Felle HH, Herrmann A, Hückelhoven R, Kogel KH. Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). PROTOPLASMA 2005; 227:17-24. [PMID: 16389490 DOI: 10.1007/s00709-005-0131-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Accepted: 05/31/2005] [Indexed: 05/06/2023]
Abstract
We used a noninvasive microprobe technique to record in substomatal cavities of barley leaves the apoplastic pH response to different stress situations. When K+ (or Na+) activity at the roots of intact plants was increased from 1 to 50 mM, the leaf apoplastic pH increased by 0.4 to 0.6 units within 8 to 12 min when stomata were open, and within 15 to 20 min when stomata were closed. This reaction was accompanied by a correlative increase in K+ activity. Addition of 1 microM abscisic acid caused an apoplastic alkalinization of 0.5 to 0.8 units, and low temperatures (4 degrees C) increased pH by 0.2 to 0.3 units. Addition of 100 mM sorbitol or pH changes in the range 4.0 to 7.9 had no effect, ruling out that osmotic potential and/or pH is the carried signal. On detached leaves, the same treatments yielded qualitatively similar results, suggesting that the xylem is the most likely signal path. Following the attack of powdery mildew, the apoplastic pH of barley leaves substantially increases. We demonstrate that in susceptible barley, pretreatment (soil drench) with the resistance-inducing chemical benzo- (1,2,3)thiadiazole-7-carbothioic acid S-methyl ester markedly enhances this pH response. This is consistent with previous finding that apoplastic alkalinization is related to the degree of resistance towards this fungus.
Collapse
Affiliation(s)
- H H Felle
- Botanisches Institut I, Justus-Liebig-Universität, Giessen, Federal Republic of Germany.
| | | | | | | |
Collapse
|
39
|
Liu Y, Ahn JE, Datta S, Salzman RA, Moon J, Huyghues-Despointes B, Pittendrigh B, Murdock LL, Koiwa H, Zhu-Salzman K. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. PLANT PHYSIOLOGY 2005; 139:1545-56. [PMID: 16258019 PMCID: PMC1283788 DOI: 10.1104/pp.105.066837] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Indirect evidence previously suggested that Arabidopsis (Arabidopsis thaliana) vegetative storage protein (VSP) could play a role in defense against herbivorous insects. To test this hypothesis, other AtVSP-like sequences in Arabidopsis were identified through a Basic Local Alignment Search Tool search, and their transcriptional profiles were investigated. In response to methyl jasmonate application or phosphate starvation, AtVSP and AtVSP-like genes exhibited differential expression patterns, suggesting distinct roles played by each member. Arabidopsis VSP2 (AtVSP2), a gene induced by wounding, methyl jasmonate, insect feeding, and phosphate deprivation, was selected for bacterial expression and functional characterization. The recombinant protein exhibited a divalent cation-dependent phosphatase activity in the acid pH range. When incorporated into the diets of three coleopteran and dipteran insects that have acidic gut lumen, recombinant AtVSP2 significantly delayed development of the insects and increased their mortality. To further determine the biochemical basis of the anti-insect activity of the protein, the nucleophilic aspartic acid-119 residue at the conserved DXDXT signature motif was substituted by glutamic acid via site-directed mutagenesis. This single-amino acid alteration did not compromise the protein's secondary or tertiary structure, but resulted in complete loss of its acid phosphatase activity as well as its anti-insect activity. Collectively, we conclude that AtVSP2 is an anti-insect protein and that its defense function is correlated with its acid phosphatase activity.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 2005; 102:13386-91. [PMID: 16174735 PMCID: PMC1224632 DOI: 10.1073/pnas.0504423102] [Citation(s) in RCA: 589] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disease resistance strategies are powerful approaches to sustainable agriculture because they reduce chemical input into the environment. Recently, Piriformospora indica, a plant-root-colonizing basidiomycete fungus, has been discovered in the Indian Thar desert and was shown to provide strong growth-promoting activity during its symbiosis with a broad spectrum of plants. Here, we report on the potential of P. indica to induce resistance to fungal diseases and tolerance to salt stress in the monocotyledonous plant barley. The beneficial effect on the defense status is detected in distal leaves, demonstrating a systemic induction of resistance by a root-endophytic fungus. The systemically altered "defense readiness" is associated with an elevated antioxidative capacity due to an activation of the glutathione-ascorbate cycle and results in an overall increase in grain yield. Because P. indica can be easily propagated in the absence of a host plant, we conclude that the fungus could be exploited to increase disease resistance and yield in crop plants.
Collapse
Affiliation(s)
- Frank Waller
- Institute of Phytopathology and Applied Zoology, University of Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Disease resistance strategies reduce chemical input into the environment and are therefore powerful approaches to sustainable agriculture. Induced resistance (IR) has emerged as a potential alternative, or a complementary strategy, for crop protection. IR signifies the control of pathogens and pests by prior activation of plant defence pathways. A molecular understanding of IR in cereals, including the most important global crops wheat and rice, has been largely missing. Evidence indicating that central elements of IR pathways are conserved among Di- and Monocotyledoneae has only recently been presented, although their regulation and interaction with other plant pathways may be quite divergent. We present here a synopsis of current molecular knowledge of cereal IR mechanisms.
Collapse
Affiliation(s)
- Karl-Heinz Kogel
- Interdisciplinary Research Centre for Environmental Sciences, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany.
| | | |
Collapse
|
42
|
Wiese J, Kranz T, Schubert S. Induction of pathogen resistance in barley by abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2004; 6:529-36. [PMID: 15375723 DOI: 10.1055/s-2004-821176] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Enhanced resistance of barley (Hordeum vulgare L. cv. Ingrid) against barley powdery mildew (Blumeria graminis f. sp. hordei race A6) was induced by abiotic stress in a concentration-dependent manner. The papilla-mediated resistance was not only induced by osmotic stress, but also by proton stress. Resistance was directly correlated with increasing concentrations of various salts in the nutrient solution. Resistance induced by proton stress also depended on the stress intensity. Resistance induction occurred even at low stress intensities. Any specific ion toxicity affecting the fungal growth directly, and therefore leading to enhanced pathogen resistance, can be excluded because of the independence of resistance induction of the ion used and of the time course of sodium accumulation in the leaves. BCI-4, a marker for benzo[1,2,3]thiadiazolecarbothioic acid S-methyl ester (BTH)-induced resistance was not induced by these abiotic stresses. However, resistance was induced in the same concentration-dependent manner by the application of the stress hormone ABA to the root medium. During the relief of water stress, resistance did not decrease constantly. On the contrary, after a phase of decreasing resistance for 24 h the pathogen resistance increased again for 48 h before decreasing finally to control levels.
Collapse
Affiliation(s)
- J Wiese
- Institute of Plant Nutrition, Interdisciplinary Research Center (IFZ), Justus Liebig University, Heinrich-Buff-Ring 26 - 32, 35392 Giessen, Germany.
| | | | | |
Collapse
|
43
|
Hückelhoven R, Dechert C, Kogel KH. Overexpression of barley BAX inhibitor 1 induces breakdown of mlo-mediated penetration resistance to Blumeria graminis. Proc Natl Acad Sci U S A 2003; 100:5555-60. [PMID: 12704231 PMCID: PMC154383 DOI: 10.1073/pnas.0931464100] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 03/13/2003] [Indexed: 12/18/2022] Open
Abstract
Cell death regulation is linked to pathogen defense in plants and animals. Execution of apoptosis as one type of programmed cell death in animals is irreversibly triggered by cytochrome c release from mitochondria via pores formed by BAX proteins. This type of programmed cell death can be prevented by expression of BAX inhibitor 1 (BI-1), a membrane protein that protects cells from the effects of BAX by an unknown mechanism. In barley, a homologue of the mammalian BI-1 is expressed in response to inoculation with the barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We found differential expression of BI-1 in response to Bgh in susceptible and resistant plants. Chemical induction of resistance to Bgh by soil drench treatment with 2,6-dichloroisonicotinic acid led to down-regulation of the expression level of BI-1. Importantly, single-cell transient overexpression of BI-1 in epidermal leaf tissue of susceptible barley cultivar Ingrid led to enhanced accessibility, resulting in a higher penetration efficiency of Bgh on BI-1-transformed cells. In Bgh-resistant mlo5 genotypes, which do not express the negative regulator of defense and cell death MLO, overexpression of BI-1 almost completely reconstituted susceptibility to fungal penetration. We suggest that BI-1 is a regulator of cellular defense in barley sufficient to substitute for MLO function in accessibility to fungal parasites.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Interdisciplinary Research Centre for Environmental Sciences, Institute of Phytopathology and Applied Zoology, Justus-Liebig-University Giessen, Heinrich-Buff Ring 26-32, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
44
|
Jarosch B, Jansen M, Schaffrath U. Acquired resistance functions in mlo barley, which is hypersusceptible to Magnaporthe grisea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:107-14. [PMID: 12575744 DOI: 10.1094/mpmi.2003.16.2.107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Barley plants carrying a mutation in the Mlo (barley [Hordeum vulgare L.] cultivar Ingrid) locus conferring a durable resistance against powdery mildew are hypersusceptible to the rice blast fungus Magnaporthe grisea. It has been speculated that a functional Mlo gene is required for the expression of basic pathogen resistance and that the loss of Mlo function mediating powdery mildew resistance is an exception for this particular disease. Here, we report that the onset of acquired resistance (AR) after chemical as well as biological treatments is sufficient to overcome the hypersusceptible phenotype of backcross line BCIngridmlo5 (mlo) barley plants against M. grisea. Moreover, even barley plants bearing a functional Mlo gene and thus showing a moderate infection phenotype against rice blast exhibit a further enhanced resistance after induction of AR. Cytological investigations reveal that acquired resistance in mlo genotypes is manifested by the restoration of the ability to form an effective papilla at sites of attempted penetration, similarly to wild-type Mlo plants. In addition, the rate of effective papillae formation in Mlo plants was further enhanced after the onset of AR. These results demonstrate that treatments leading to the AR state in barley function independently of the Mlo/mlo phenotype and suggest that the Mlo protein is not a component of the AR signaling network. Moreover, it seems that only concomitant action of Mlo together with AR permits high level resistance in barley against blast. Higher steady state levels of PR1 and barley chemically induced mRNA correlate with higher disease severity rather than with the degree of resistance observed in this particular interaction.
Collapse
Affiliation(s)
- Birgit Jarosch
- Institute for Biology III (Plant Physiology), RWTH Aachen, D-52056 Aachen, Germany
| | | | | |
Collapse
|
45
|
Abstract
As the world population continues to increase, food supplies must also grow to meet nutritional requirements. One means of ensuring the stability and plentitude of the food supply is to mitigate crop loss caused by plant pathogens. Strategies for combating disease include traditional technologies such as plant breeding and chemical applications; current technologies such as generating transgenic plants that express components of known defense signaling pathways; and the adaptation of newer technologies such as RNA silencing of pathogen and plant transcripts. Breeding has been used to pyramid resistance (R) genes into many different plants including rice. Chemical strategies include application of salicylic acid (SA) analogs to stimulate systemic acquired resistance (SAR) responses. Genetic screens in Arabidopsis have identified genes controlling SAR and these genes have been manipulated and used to engineer crop plants. The diseases caused by plant viruses are being thwarted through the initiation of endogenous RNA silencing mechanisms. Many of these strategies show great promise, some limitations, and exciting opportunities to develop many new tools for combating plant pests.
Collapse
Affiliation(s)
- Matthew A Campbell
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
46
|
Wei F, Wing RA, Wise RP. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. THE PLANT CELL 2002; 14:1903-17. [PMID: 12172030 PMCID: PMC151473 DOI: 10.1105/tpc.002238] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2002] [Accepted: 04/30/2002] [Indexed: 05/18/2023]
Abstract
Genes that confer defense against pathogens often are clustered in the genome and evolve via diverse mechanisms. To evaluate the organization and content of a major defense gene complex in cereals, we determined the complete sequence of a 261-kb BAC contig from barley cv Morex that spans the Mla (powdery mildew) resistance locus. Among the 32 predicted genes on this contig, 15 are associated with plant defense responses; 6 of these are associated with defense responses to powdery mildew disease but function in different signaling pathways. The Mla region is organized as three gene-rich islands separated by two nested complexes of transposable elements and a 45-kb gene-poor region. A heterochromatic-like region is positioned directly proximal to Mla and is composed of a gene-poor core with 17 families of diverse tandem repeats that overlap a hypermethylated, but transcriptionally active, gene-dense island. Paleontology analysis of long terminal repeat retrotransposons indicates that the present Mla region evolved over a period of >7 million years through a variety of duplication, inversion, and transposon-insertion events. Sequence-based recombination estimates indicate that R genes positioned adjacent to nested long terminal repeat retrotransposons, such as Mla, do not favor recombination as a means of diversification. We present a model for the evolution of the Mla region that encompasses several emerging features of large cereal genomes.
Collapse
Affiliation(s)
- Fusheng Wei
- Interdepartmental Genetics Program and Department of Plant Pathology, Iowa State University, Ames, IA 50011-1020, USA
| | | | | |
Collapse
|
47
|
Jakobek JL, Lindgren PB. Expression of a bean acid phosphatase cDNA is correlated with disease resistance. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:387-389. [PMID: 11807144 DOI: 10.1093/jexbot/53.367.387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA clone, designated Hra28 (for hypersensitive reaction associated), was identified corresponding to an RNA transcript that accumulates in bean during the hypersensitive reaction. The Hra28 cDNA is 1084 nucleotides in length and is predicted to encode an acid phosphatase of 264 amino acids. Northern analysis demonstrated that the Hra28 transcript accumulated differentially in response to bacteria which induce a hypersensitive response (HR), a bacterium which causes disease, and a Hrp(-) mutant which does not elicit an HR or cause disease. In contrast, the Hra28 transcript did not accumulate in response to wounding. Thus, the Hra28 gene is induced by multiple stimuli and appears to be regulated in a complex manner.
Collapse
Affiliation(s)
- J L Jakobek
- Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695-7616, USA
| | | |
Collapse
|
48
|
Sauerborn J, Buschmann H, Ghiasi KG, Kogel KH. Benzothiadiazole Activates Resistance in Sunflower (Helianthus annuus) to the Root-Parasitic Weed Orobanche cuman. PHYTOPATHOLOGY 2002; 92:59-64. [PMID: 18944140 DOI: 10.1094/phyto.2002.92.1.59] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The study was conducted to evaluate the potential of induced resistance to infestation of sunflower (Helianthus annuus L.) by the parasitic weed Orobanche cumana Wallr. Treatment of sunflower seeds with 40 ppm of benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) for 36 h completely prevented infection in root chambers. In pot studies using 2.86 x 10(-4) g of Orobanche seeds per gram of soil as inoculum, the total number of O. cumana shoots was reduced by 84 and 95% in the 60-ppm BTH treatment in the first and second trial, respectively. Evaluation of the disease incidences revealed that attachment of O. cumana at the sunflower root and the stage of early penetration was reduced in the BTH-treated plants. Chemical analysis of root extracts revealed synthesis of the phytoalexin scopoletin and of hydrogen peroxide in the BTH-treated sunflower roots, but no increase in lignification. Western blot analysis demonstrated accumulation of the pathogenesis-related protein chitinase in roots and stems of induced resistant plants. These results show that the phenomenon of induced resistance is not restricted to viral, bacterial, and fungal disease and demonstrate the great potential of this protection strategy as an effective component of future plant production systems.
Collapse
|