1
|
Eller-Borges R, Rodrigues EG, Teodoro ACS, Moraes MS, Arruda DC, Paschoalin T, Curcio MF, da Costa PE, Do Nascimento IR, Calixto LA, Stern A, Monteiro HP, Batista WL. Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide. Nitric Oxide 2023; 132:15-26. [PMID: 36736618 DOI: 10.1016/j.niox.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Spatial confinement and temporal regulation of signaling by nitric oxide (NO) and reactive oxygen species (ROS) occurs in cancer cells. Signaling mediated by NO and ROS was investigated in two sub clones of the murine melanoma B16F10-Nex2 cell line, Nex10C and Nex8H treated or not with bradykinin (BK). The sub clone Nex10C, similar to primary site cells, has a low capacity for colonizing the lungs, whereas the sub clone Nex8H, similar to metastatic cells, corresponds to a highly invasive melanoma. BK-treated Nex10C cells exhibited a transient increase in NO and an inhibition in basal O2- levels. Inhibition of endogenous NO production by l-NAME resulted in detectable levels of O2-. l-NAME promoted Rac1 activation and enhanced Rac1-PI3K association. l-NAME in the absence of BK resulted in Nex10C cell migration and invasion, suggesting that NO is a negative regulator of O2- mediated cell migration and cell invasion. BK-treated Nex8H cells sustained endogenous NO production through the activation of NOS3. NO activated Rac1 and promoted Rac1-PI3K association. NO stimulated cell migration and cell invasion through a signaling axis involving Ras, Rac1 and PI3K. In conclusion, a role for O2- and NO as positive regulators of Rac1-PI3K signaling associated with cell migration and cell invasion is proposed respectively for Nex10C and Nex8H murine melanoma cells.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Caroline S Teodoro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia (NIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes, São Paulo, Brazil
| | - Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine/Infectious Diseases, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor R Do Nascimento
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Leandro A Calixto
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Arnold Stern
- New York University Grossman School of Medicine, New York, NY, USA
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy (CTCMOL), Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
2
|
Carvalho LAC, Queijo RG, Baccaro ALB, Siena ÁDD, Silva WA, Rodrigues T, Maria-Engler SS. Redox-Related Proteins in Melanoma Progression. Antioxidants (Basel) 2022; 11:438. [PMID: 35326089 PMCID: PMC8944639 DOI: 10.3390/antiox11030438] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Despite the available therapies, the minimum residual disease is still refractory. Reactive oxygen and nitrogen species (ROS and RNS) play a dual role in melanoma, where redox imbalance is involved from initiation to metastasis and resistance. Redox proteins modulate the disease by controlling ROS/RNS levels in immune response, proliferation, invasion, and relapse. Chemotherapeutics such as BRAF and MEK inhibitors promote oxidative stress, but high ROS/RNS amounts with a robust antioxidant system allow cells to be adaptive and cooperate to non-toxic levels. These proteins could act as biomarkers and possible targets. By understanding the complex mechanisms involved in adaptation and searching for new targets to make cells more susceptible to treatment, the disease might be overcome. Therefore, exploring the role of redox-sensitive proteins and the modulation of redox homeostasis may provide clues to new therapies. This study analyzes information obtained from a public cohort of melanoma patients about the expression of redox-generating and detoxifying proteins in melanoma during the disease stages, genetic alterations, and overall patient survival status. According to our analysis, 66% of the isoforms presented differential expression on melanoma progression: NOS2, SOD1, NOX4, PRX3, PXDN and GPX1 are increased during melanoma progression, while CAT, GPX3, TXNIP, and PRX2 are decreased. Besides, the stage of the disease could influence the result as well. The levels of PRX1, PRX5 and PRX6 can be increased or decreased depending on the stage. We showed that all analyzed isoforms presented some genetic alteration on the gene, most of them (78%) for increased mRNA expression. Interestingly, 34% of all melanoma patients showed genetic alterations on TRX1, most for decreased mRNA expression. Additionally, 15% of the isoforms showed a significant reduction in overall patient survival status for an altered group (PRX3, PRX5, TR2, and GR) and the unaltered group (NOX4). Although no such specific antioxidant therapy is approved for melanoma yet, inhibitors or mimetics of these redox-sensitive proteins have achieved very promising results. We foresee that forthcoming investigations on the modulation of these proteins will bring significant advances for cancer therapy.
Collapse
Affiliation(s)
- Larissa A. C. Carvalho
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Rodrigo G. Queijo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| | - Alexandre L. B. Baccaro
- Centro de Pós-Graduação e Pesquisa Oswaldo Cruz, Faculdade Oswaldo Cruz, Rua Brigadeiro Galvão, 535, Sao Paulo 01151-000, SP, Brazil;
| | - Ádamo D. D. Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Wilson A. Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirao Preto 14049-900, SP, Brazil; (Á.D.D.S.); (W.A.S.J.)
| | - Tiago Rodrigues
- Center for Natural and Human Sciences, Federal University of ABC, Avenida dos Estados, 5001, Santo Andre 09210-580, SP, Brazil;
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, São Paulo 05508-00, SP, Brazil; (L.A.C.C.); (R.G.Q.)
| |
Collapse
|
3
|
Tong S, Cinelli MA, El-Sayed NS, Huang H, Patel A, Silverman RB, Yang S. Inhibition of interferon-gamma-stimulated melanoma progression by targeting neuronal nitric oxide synthase (nNOS). Sci Rep 2022; 12:1701. [PMID: 35105915 PMCID: PMC8807785 DOI: 10.1038/s41598-022-05394-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) is shown to stimulate melanoma development and progression. However, the underlying mechanism has not been completely defined. Our study aimed to determine the role of neuronal nitric oxide synthase (nNOS)-mediated signaling in IFN-γ-stimulated melanoma progression and the anti-melanoma effects of novel nNOS inhibitors. Our study shows that IFN-γ markedly induced the expression levels of nNOS in melanoma cells associated with increased intracellular nitric oxide (NO) levels. Co-treatment with novel nNOS inhibitors effectively alleviated IFN-γ-activated STAT1/3. Further, reverse phase protein array (RPPA) analysis demonstrated that IFN-γ induced the expression of HIF1α, c-Myc, and programmed death-ligand 1 (PD-L1), in contrast to IFN-α. Blocking the nNOS-mediated signaling pathway using nNOS-selective inhibitors was shown to effectively diminish IFN-γ-induced PD-L1 expression in melanoma cells. Using a human melanoma xenograft mouse model, the in vivo studies revealed that IFN-γ increased tumor growth compared to control, which was inhibited by the co-administration of nNOS inhibitor MAC-3-190. Another nNOS inhibitor, HH044, was shown to effectively inhibit in vivo tumor growth and was associated with reduced PD-L1 expression levels in melanoma xenografts. Our study demonstrates the important role of nNOS-mediated NO signaling in IFN-γ-stimulated melanoma progression. Targeting nNOS using highly selective small molecular inhibitors is a unique and effective strategy to improve melanoma treatment.
Collapse
Affiliation(s)
- Shirley Tong
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Maris A Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Naglaa Salem El-Sayed
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - He Huang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Patel
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Richard B Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.,Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, #297-Y, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
4
|
de Melo FHM, Gonçalves DA, de Sousa RX, Icimoto MY, Fernandes DDC, Laurindo FRM, Jasiulionis MG. Metastatic Melanoma Progression Is Associated with Endothelial Nitric Oxide Synthase Uncoupling Induced by Loss of eNOS:BH4 Stoichiometry. Int J Mol Sci 2021; 22:9556. [PMID: 34502464 PMCID: PMC8430733 DOI: 10.3390/ijms22179556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer due to its high capability of developing metastasis and acquiring chemoresistance. Altered redox homeostasis induced by increased reactive oxygen species is associated with melanomagenesis through modulation of redox signaling pathways. Dysfunctional endothelial nitric oxide synthase (eNOS) produces superoxide anion (O2-•) and contributes to the establishment of a pro-oxidant environment in melanoma. Although decreased tetrahydrobiopterin (BH4) bioavailability is associated with eNOS uncoupling in endothelial and human melanoma cells, in the present work we show that eNOS uncoupling in metastatic melanoma cells expressing the genes from de novo biopterin synthesis pathway Gch1, Pts, and Spr, and high BH4 concentration and BH4:BH2 ratio. Western blot analysis showed increased expression of Nos3, altering the stoichiometry balance between eNOS and BH4, contributing to NOS uncoupling. Both treatment with L-sepiapterin and eNOS downregulation induced increased nitric oxide (NO) and decreased O2• levels, triggering NOS coupling and reducing cell growth and resistance to anoikis and dacarbazine chemotherapy. Moreover, restoration of eNOS activity impaired tumor growth in vivo. Finally, NOS3 expression was found to be increased in human metastatic melanoma samples compared with the primary site. eNOS dysfunction may be an important mechanism supporting metastatic melanoma growth and hence a potential target for therapy.
Collapse
Affiliation(s)
- Fabiana Henriques Machado de Melo
- Pharmacology Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-060, Brazil
| | - Diego Assis Gonçalves
- Micro-Imuno-Parasitology Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil;
- Parasitology Department, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Ricardo Xisto de Sousa
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01221-020, Brazil;
| | - Marcelo Yudi Icimoto
- Biophysics Department, Universidade Federal de São Paulo, São Paulo 05508-090, Brazil;
| | - Denise de Castro Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05508-060, Brazil; (D.d.C.F.); (F.R.M.L.)
| | - Francisco R. M. Laurindo
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo 05508-060, Brazil; (D.d.C.F.); (F.R.M.L.)
| | | |
Collapse
|
5
|
Obrador E, Liu-Smith F, Dellinger RW, Salvador R, Meyskens FL, Estrela JM. Oxidative stress and antioxidants in the pathophysiology of malignant melanoma. Biol Chem 2019; 400:589-612. [PMID: 30352021 DOI: 10.1515/hsz-2018-0327] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
The high number of somatic mutations in the melanoma genome associated with cumulative ultra violet (UV) exposure has rendered it one of the most difficult of cancers to treat. With new treatment approaches based on targeted and immune therapies, drug resistance has appeared as a consistent problem. Redox biology, including reactive oxygen and nitrogen species (ROS and RNS), plays a central role in all aspects of melanoma pathophysiology, from initiation to progression and to metastatic cells. The involvement of melanin production and UV radiation in ROS/RNS generation has rendered the melanocytic lineage a unique system for studying redox biology. Overall, an elevated oxidative status has been associated with melanoma, thus much effort has been expended to prevent or treat melanoma using antioxidants which are expected to counteract oxidative stress. The consequence of this redox-rebalance seems to be two-fold: on the one hand, cells may behave less aggressively or even undergo apoptosis; on the other hand, cells may survive better after being disseminated into the circulating system or after drug treatment, thus resulting in metastasis promotion or further drug resistance. In this review we summarize the current understanding of redox signaling in melanoma at cellular and systemic levels and discuss the experimental and potential clinic use of antioxidants and new epigenetic redox modifiers.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Feng Liu-Smith
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA
| | | | - Rosario Salvador
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| | - Frank L Meyskens
- Department of Epdemiology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Medicine, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA 92697, USA.,Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - José M Estrela
- Department of Phisiology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
6
|
Xu P, Ye S, Li K, Huang M, Wang Q, Zeng S, Chen X, Gao W, Chen J, Zhang Q, Zhong Z, Lin Y, Rong Z, Xu Y, Hao B, Peng A, Ouyang M, Liu Q. NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:483. [PMID: 31805977 PMCID: PMC6896289 DOI: 10.1186/s13046-019-1448-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Background The dysfunction of type I interferon (IFN) signaling is an important mechanism of immune escape and metastasis in tumors. Increased NOS1 expression has been detected in melanoma, which correlated with dysfunctional IFN signaling and poor response to immunotherapy, but the specific mechanism has not been determined. In this study, we investigated the regulation of NOS1 on the interferon response and clarified the relevant molecular mechanisms. Methods After stable transfection of A375 cells with NOS1 expression plasmids, the transcription and expression of IFNα-stimulated genes (ISGs) were assessed using pISRE luciferase reporter gene analysis, RT-PCR, and western blotting, respectively. The effect of NOS1 on lung metastasis was assessed in melanoma mouse models. A biotin-switch assay was performed to detect the S-nitrosylation of HDAC2 by NOS1. ChIP-qPCR was conducted to measure the binding of HDAC2, H4K16ac, H4K5ac, H3ac, and RNA polymerase II in the promoters of ISGs after IFNα stimulation. This effect was further evaluated by altering the expression level of HDAC2 or by transfecting the HDAC2-C262A/C274A site mutant plasmids into cells. The coimmunoprecipitation assay was performed to detect the interaction of HDAC2 with STAT1 and STAT2. Loss-of-function and gain-of-function approaches were used to examine the effect of HDAC2-C262A/C274A on lung metastasis. Tumor infiltrating lymphocytes were analyzed by flow cytometry. Results HDAC2 is recruited to the promoter of ISGs and deacetylates H4K16 for the optimal expression of ISGs in response to IFNα treatment. Overexpression of NOS1 in melanoma cells decreases IFNα-responsiveness and induces the S-nitrosylation of HDAC2-C262/C274. This modification decreases the binding of HDAC2 with STAT1, thereby reducing the recruitment of HDAC2 to the ISG promoter and the deacetylation of H4K16. Moreover, expression of a mutant form of HDAC2, which cannot be nitrosylated, reverses the inhibition of ISG expression by NOS1 in vitro and decreases NOS1-induced lung metastasis and inhibition of tumor infiltrating lymphocytes in a melanoma mouse model. Conclusions This study provides evidence that NOS1 induces dysfunctional IFN signaling to promote lung metastasis in melanoma, highlighting NOS1-induced S-nitrosylation of HDAC2 in the regulation of IFN signaling via histone modification.
Collapse
Affiliation(s)
- Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Ying Lin
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Anghui Peng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manzhao Ouyang
- Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou key laboratory of tumor immunology research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Center for medical transformation, Shunde Hospital, Southern Medical University, Foshan, 528308, China.
| |
Collapse
|
7
|
Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective. Nitric Oxide 2019; 89:1-13. [DOI: 10.1016/j.niox.2019.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
|
8
|
Yarlagadda K, Hassani J, Foote IP, Markowitz J. The role of nitric oxide in melanoma. Biochim Biophys Acta Rev Cancer 2017; 1868:500-509. [PMID: 28963068 DOI: 10.1016/j.bbcan.2017.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule that mediates its effects in melanoma through free radical formation and enzymatic processes. Investigations have demonstrated multiple roles for NO in melanoma pathology via immune surveillance, apoptosis, angiogenesis, melanogenesis, and on the melanoma cell itself. In general, elevated levels of NO prognosticate a poor outcome for melanoma patients. However, there are processes where the relative concentration of NO in different environments may also serve to limit melanoma proliferation. This review serves to outline the roles of NO in melanoma development and proliferation. As demonstrated by multiple in vivo murine models and observations from human tissue, NO may promote melanoma formation and proliferation through its interaction via inhibitory immune cells, inhibition of apoptosis, stimulation of pro-tumorigenic cytokines, activation of tumor associated macrophages, alteration of angiogenic processes, and stimulation of melanoma formation itself.
Collapse
Affiliation(s)
- Keerthi Yarlagadda
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - John Hassani
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Isaac P Foote
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center Tampa, FL 33612, United States.
| |
Collapse
|
9
|
Liu-Smith F, Dellinger R, Meyskens FL. Updates of reactive oxygen species in melanoma etiology and progression. Arch Biochem Biophys 2014; 563:51-5. [PMID: 24780245 DOI: 10.1016/j.abb.2014.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) play crucial roles in all aspects of melanoma development, however, the source of ROS is not well defined. In this review we summarize recent advancement in this rapidly developing field. The cellular ROS pool in melanocytes can be derived from mitochondria, melanosomes, NADPH oxidase (NOX) family enzymes, and uncoupling of nitric oxide synthase (NOS). Current evidence suggests that Nox1, Nox4 and Nox5 are expressed in melanocytic lineage. While there is no difference in Nox1 expression levels in primary and metastatic melanoma tissues, Nox4 expression is significantly higher in a subset of metastatic melanoma tumors as compared to the primary tumors; suggesting distinct and specific signals and effects for NOX family enzymes in melanoma. Targeting these NOX enzymes using specific NOX inhibitors may be effective for a subset of certain tumors. ROS also play important roles in BRAF inhibitor induced drug resistance; hence identification and blockade of the source of this ROS may be an effective way to enhance efficacy and overcome resistance. Furthermore, ROS from different sources may interact with each other and interact with reactive nitrogen species (RNS) and drive the melanomagenesis process at all stages of disease. Further understanding ROS and RNS in melanoma etiology and progression is necessary for developing new prevention and therapeutic approaches.
Collapse
Affiliation(s)
- Feng Liu-Smith
- Department of Epidemiology, University of California School of Medicine, Irvine, CA 92697, United States; Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States.
| | - Ryan Dellinger
- Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States
| | - Frank L Meyskens
- Department of Epidemiology, University of California School of Medicine, Irvine, CA 92697, United States; Department of Medicine, University of California School of Medicine, Irvine, CA 92697, United States; Department of Biological Chemistry, University of California School of Medicine, Irvine, CA 92697, United States; Department of Public Health, University of California School of Medicine, Irvine, CA 92697, United States; Chao Family Comprehensive Cancer Center, University of California School of Medicine, Irvine, CA 92697, United States
| |
Collapse
|
10
|
Yang Z, Misner B, Ji H, Poulos TL, Silverman RB, Meyskens FL, Yang S. Targeting nitric oxide signaling with nNOS inhibitors as a novel strategy for the therapy and prevention of human melanoma. Antioxid Redox Signal 2013; 19. [PMID: 23199242 PMCID: PMC3704054 DOI: 10.1089/ars.2012.4563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Our previous studies have shown that nitric oxide (NO) plays an important role in increasing the invasion and proliferation of human melanoma cells, suggesting that targeting NO signaling may facilitate therapy and prevention. Neuronal nitric oxide synthase (nNOS) is present in melanocytes, a cell type that originates from the neural crest. The aims of this study were to determine the role of nNOS in melanoma progression and the potential antitumor effects of novel synthesized nNOS inhibitors. RESULTS In vitro studies demonstrated abundant expression of nNOS in melanoma compared to melanocytes, which was inducible by ultraviolet radiation and was associated with increased NO generation. nNOS was also detected in melanoma biopsies that increased with disease stage. Knockdown of nNOS in melanoma cells diminished L-arginine-induced NO production; the metastatic capacity was also reduced as well as the levels of MMP-1, Bcl-2, JunD, and APE/Ref-1. Similar inhibition of NO and invasion potential was observed utilizing novel, highly selective nNOS inhibitors. In three-dimensional human skin reconstructs, the nNOS inhibitor cpd8 effectively reversed the melanoma overgrowth stimulated by NO stress. INNOVATION Our work lays the foundation for development of clinical "drug-like" nNOS inhibitors as a new and promising strategy for the chemoprevention of early melanoma progression and the inhibition of secondary melanoma in high-risk individuals. CONCLUSION Based on our observations, we propose that nNOS in melanoma results in constitutive overproduction of NO, which stimulates proliferation and increases invasion potential, leading to subsequent development of metastases.
Collapse
Affiliation(s)
- Zhen Yang
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chin MP, Deen WM. Prediction of nitric oxide concentrations in melanomas. Nitric Oxide 2010; 23:319-26. [PMID: 20854923 DOI: 10.1016/j.niox.2010.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/16/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
The presence of iNOS and nitrotyrosine in cutaneous melanomas has been correlated with poor survival rates of patients, suggesting that NO plays a role in the tumor pathophysiology. However, the concentrations of NO that melanoma cells are exposed to in vivo have been unknown. To provide cell kinetic data for use in predicting those concentrations, synthesis and consumption of NO was examined in A375 melanoma cells. Nitric oxide synthesis was undetectable. The rate of intracellular NO consumption was determined by continuous monitoring of NO concentrations following injection of NO solutions in a closed chamber. After correcting for autoxidation and consumption from media-generated O(2)(-), the rate constant obtained for cellular consumption was 7.1±1.1 s(-1). This information was combined with previous data on macrophage NO kinetics to develop a mathematical model to predict NO levels in cutaneous melanomas. Synthesis of NO by macrophages in the stroma was found to give a maximum concentration at the tumor periphery of 0.2 μM. Because of the high rates of cellular consumption, the elevation in NO concentration is predicted to be very localized, approximately 90% of the concentration decay occurring within 30 μm of the tumor edge. High NO concentrations at the periphery of a melanoma may contribute to metastasis by stimulating cell proliferation, inhibiting apoptosis, or acting as a lymphangiogenic factor.
Collapse
Affiliation(s)
- Melanie P Chin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Palmieri G, Capone M, Ascierto ML, Gentilcore G, Stroncek DF, Casula M, Sini MC, Palla M, Mozzillo N, Ascierto PA. Main roads to melanoma. J Transl Med 2009; 7:86. [PMID: 19828018 PMCID: PMC2770476 DOI: 10.1186/1479-5876-7-86] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/14/2009] [Indexed: 12/12/2022] Open
Abstract
The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Sassari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Vargas MA, Cruz BP, Maciel FE, Geihs MA, Cousin JCB, Trindade GS, Baisch ALM, Allodi S, Nery LEM. Participation of nitric oxide in the color change induced by UV radiation in the crab Chasmagnathus granulatus. Pigment Cell Melanoma Res 2008; 21:184-91. [DOI: 10.1111/j.1755-148x.2007.00439.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Li C, Hu Z, Liu Z, Wang LE, Gershenwald JE, Lee JE, Prieto VG, Duvic M, Grimm EA, Wei Q. Polymorphisms of the neuronal and inducible nitric oxide synthase genes and the risk of cutaneous melanoma. Cancer 2007; 109:1570-8. [PMID: 17328085 DOI: 10.1002/cncr.22582] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a multifunctional molecule that is produced by both neuronal NO synthase (nNOS) and inducible NO synthase (iNOS), and the expression of nNOS and iNOS is up-regulated in various cancer cells, including cutaneous melanoma (CM). The authors hypothesized that selected functional single-nucleotide polymorphisms (SNPs) in the nNOS and iNOS genes are associated with the risk of CM. METHODS In a hospital-based case-control study of 602 non-Hispanic white patients with CM and 603 matched, cancer-free controls, the authors genotyped the nNOS -84 guanine-to-adenine (G-->A), nNOS 276 cytosine-to-thymine (C-->T), iNOS Ex16+14C-->T, and iNOS 974G-->T SNPs and assessed their associations with the risk of CM in multivariate logistic regression models. RESULTS A significantly increased risk of CM was associated with the nNOS -84G-->A (adjusted odds ratio [OR], 1.49; 95% confidence interval [95% CI], 1.05-2.13) and -84AG+AA (OR, 1.48; 95% CI, 1.06-2.06) genotypes compared with the nNOS -84GG genotype, but not with other nNOS or iNOS SNPs. In a combined analysis, an increased risk of CM was associated with the nNOS -84AA+AG/276CT+TT genotype (OR, 1.70; 95% CI, 1.05-2.76) and the nNOS -84AA+AG/276CC genotype (OR, 1.70; 95% CI, 1.08-2.68) compared with the nNOS -84GG/276CT+TT genotypes. No altered risk of CM was associated with iNOS genotypes. In addition, there was statistical evidence of interaction of nNOS SNPs with having moles (P = .002) and sunburns (P = .017). CONCLUSIONS Genetic variants of nNOS, but not iNOS, may be biomarkers for susceptibility to CM, and the risk of CM associated with sunburns and moles may be modulated by nNOS variant genotypes.
Collapse
Affiliation(s)
- Chunying Li
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim SH, Chung JY, Bae YA, Cai GB, Na BK, Kim NJ, Kwack HS, Kim TS, Kong Y. Functional identification of a protein inhibitor of neuronal nitric oxide synthase of Taenia solium metacestode. Mol Biochem Parasitol 2006; 151:41-51. [PMID: 17098301 DOI: 10.1016/j.molbiopara.2006.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 11/22/2022]
Abstract
The protein inhibitor of neuronal nitric oxide synthase (PIN) performs critical functions in several biological processes including inhibition of neuronal nitric oxide synthase (nNOS) activity, intracellular trafficking of proteins and cellular maturation. In this study, we isolated a gene that putatively encoded a PIN homologue in the Taenia solium metacestode (TsM), a causative agent for neurocysticercosis (NC). A full-length cDNA of 452-bp in length, designated TsMPIN, was found to encode an open reading frame (ORF) of 103 amino acids with a predicted molecular weight of 11.3kDa. This single copy gene possessed an intervening short intron (74bp-long) within its ORF region. The deduced amino acid sequence revealed a substantial degree of sequence identity with the PINs and the dynein light-chains isolated from other organisms (63-81%). TsMPIN ectopically expressed in neuroblastoma N1E115 cells effectively inhibited dimerization of nNOS upon stimulation. The recombinant TsMPIN also negatively regulated the dimerization of recombinant nNOS, which was attenuated significantly by the TsMPIN-specific antibody. TsMPIN was primarily localized in the lining cells of the trabecules and the muscles surrounding the scolex, and was sparsely within the cytosol of the bladder wall. We also identified TsM nNOS-immunoreactive protein by both NADPH-diaphorase histochemical staining, and immunohistochemical localization and immunoprecipitation with antibodies specific to nNOS N-terminus. These two functionally related proteins showed a co-localized expression pattern. Our results strongly suggest that the production of NO in the TsM might be tightly regulated through the nNOS-TsMPIN feedback system to maintain physiological homeostasis in the parasite.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Molecular Parasitology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tao J, Tu YT, Li JW, Feng AP, Huang CZ, Wu Y, Shen GX. Endogenous production of nitric oxide contributes to proliferation effect of vascular endothelial growth factor-induced malignant melanoma cell. Clin Exp Dermatol 2006; 31:94-9. [PMID: 16309495 DOI: 10.1111/j.1365-2230.2005.01922.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objectives of this study were to observe the effect of overexpression of vascular endothelial growth factor (VEGF) on the proliferation of the malignant melanoma (MM) cell line A375, and to study the role of nitric oxide (NO) in this process and the mechanism of VEGF induced-A375 cell proliferation. The VEGF(165) cDNA was transfected into A375 cells by electroporation. VEGF mRNA and protein in A375 cells were detected by RT-PCR and ELISA. The proliferation of A375 cells was assessed by cell counting and MTT assay. Protein expression of iNOS, eNOS and nNOS was detected by Western blotting. NO production in A375 cell supernatant was measured by the nitrate reductase method. VEGF mRNA in A375 cells was significantly increased 72 h and 96 h after transfection of VEGF(165) cDNA, as were VEGF protein, NO and iNOS levels. However, protein expression of eNOS and nNOS was not detected in either transfected or untransfected cells. Proliferation of A375 cells transfected with VEGF(165) cDNA was enhanced. The nitric oxide synthase inhibitor l-NAME could dose-dependently inhibit the proliferation of A375 cells evoked by VEGF. These results indicate that VEGF enhances the expression of iNOS in A375 cells and results in an increase in NO formation, which may be important in the process of VEGF-induced proliferation of A375 cells.
Collapse
Affiliation(s)
- J Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Cals-Grierson MM, Ormerod AD. Nitric oxide function in the skin. Nitric Oxide 2004; 10:179-93. [PMID: 15275864 DOI: 10.1016/j.niox.2004.04.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 04/19/2004] [Indexed: 01/12/2023]
Abstract
Endogenously produced nitric oxide (NO) has a remarkably diverse range of biological functions, including a role in neurotransmission, smooth muscle relaxation, and the response to immunogens. Over the last 10 years, it has become clear that this extraordinary molecular messenger also plays a vital role in the skin, orchestrating normal regulatory processes and underlying some of the pathophysiological ones. We thought it pertinent to review the current literature concerning the possible function of NO in normal skin, its clinical and pathological significance, and the potential for therapeutic advances. The keratinocytes, which make up the bulk of the epidermis, constitutively express the neuronal isoform of NO synthase (NOS1), whereas the fibroblasts in the dermis and other cell types in the skin express the endothelial isoform (NOS3). Under certain conditions, virtually all skin cells appear to be capable of expressing the inducible NOS isoform (NOS2). The expression of NOS2 is also strongly implicated in psoriasis and other inflammatory skin conditions. Constitutive, low level NO production in the skin seems to play a role in the maintenance of barrier function and in determining blood flow rate in the microvasculature. Higher levels of NOS activity, stimulated by ultraviolet (UV) light or skin wounding, initiate other more complex reactions that require the orchestration of various cell types in a variety of spatially and temporally coordinated sets of responses. The NO liberated following UV irradiation plays a significant role in initiating melanogenesis, erythema, and immunosuppression. New evidence suggests that it may also be involved in protecting the keratinocytes against UV-induced apoptosis. The enhanced NOS activity in skin wounding (reviewed recently in this journal [Nitric oxide 7 (2002) 1]) appears to be important in guiding the infiltrating white blood cells and initiating the inflammation. In response to both insults, UV irradiation and skin wounding, the activation of constitutive NOS proceeds and overlaps with the expression of NOS2. Thus, at a macro-level, at least three different rates of NO production can occur in the skin, which seem to play an important part in organizing the skin's unique adaptability and function.
Collapse
|
18
|
Lim YJ, Chang SE, Choi JH, Sung KJ, Bahk JH, Do SH, Lee DS. Expression of inducible nitric oxide synthase in skin lesions of acute herpes zoster. J Dermatol Sci 2002; 29:201-5. [PMID: 12234710 DOI: 10.1016/s0923-1811(02)00035-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histopathologically, the skin lesions of acute herpes zoster (AHZ) are characterized by epidermal necrotic vesicles with inflammation. Nitric oxide (NO) is generated from L-arginine by nitric oxide synthase (NOS), and immune inflammation involves the activation of NOS in both effector cells and target cells. NO can cause apoptosis and necrosis of target cells such as keratinocytes. We proposed that a large burst of NO in AHZ may cause the epidermal necrosis. Skin biopsies were taken from 13 patients with AHZ. The expression of inducible-type NOS (iNOS) was examined by immunoperoxidase staining and reverse transcription-polymerase chain reaction (RT-PCR). In the skin specimen of AHZ, moderate-to-strong staining for iNOS was observed in inflammatory cells and necrotic keratinocytes, while weak staining was observed in non-necrotic peripheral keratinocytes. RT-PCR using skin specimen of AHZ corroborated the immunoperoxidase findings, yielding bright bands for iNOS. Normal control skin showed minimal or negative expression both by immunoperoxidase stains and RT-PCR. Increased expression of iNOS is consistent with the hypothesis that high level of NO induced by iNOS may be associated with the epidermal necrosis with inflammation seen in the skin lesions of AHZ.
Collapse
Affiliation(s)
- Young-Jin Lim
- Department of Anesthesiology and Clinical Research Institute, Seoul National University Hospital, 28 Yongon-dong, Chongno-gu, 110-744 Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Brennan PA, Umar T, Bowden J, Hobkirk A, Spedding AV, Conroy B, Zaki G, Macpherson DW. Nitric oxide synthase expression is downregulated in basal cell carcinoma of the head and neck. Br J Oral Maxillofac Surg 2000; 38:633-636. [PMID: 11092783 DOI: 10.1054/bjom.2000.0538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The small molecule nitric oxide (NO) has many actions, most of which are poorly understood. Recently, NO and related compounds have been implicated in skin damage caused by ultraviolet light although their exact role is not clear. We undertook an immuno histochemical study to assess the expression of type II NO synthase (NOS2) and type III (NOS3) in basal cell carcinomas (BCCs) of the head and neck. In all 48 cases studied, NOS2 was found in the basal cell layer of the skin at the tumour margin but it w as significantly reduced in the tumour epithelial cells (P=0.001). NOS3 was localized to the endothelium of the blood vessels in both skin and tumour in all cases, and it was not seen in the tumour epithelial cells. The results suggest that expression of NOS is down-regulated in basal cell carcinomas.
Collapse
Affiliation(s)
- P A Brennan
- BUPA Research Fellow, Maxillofacial Unit, St Richard's Hospital, Chichester, West Sussex, UK
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ahmed B, Van Den Oord JJ. Expression of the inducible isoform of nitric oxide synthase in pigment cell lesions of the skin. Br J Dermatol 2000; 142:432-40. [PMID: 10735946 DOI: 10.1046/j.1365-2133.2000.03352.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a small molecule produced during the conversion of L-arginine to L-citrulline by NO synthase (NOS). Several isoforms of NOS exist, of which the Ca2+-independent, inducible NOS (iNOS or NOS2) is most prominently expressed by macrophages. iNOS activity and increased levels of iNOS have been found in various tumours and tumour cell lines but not in normal tissues; however, the precise role of NO in tumour progression has yet to be elucidated. We studied the expression of iNOS in paraffin sections of 41 benign naevi and 52 primary malignant melanomas (MM) of the skin, as well as in 13 metastatic MM. In addition, nitrotyrosine, indicative of NO production and formation of peroxynitrite, was studied in frozen sections of 13 naevi and 30 MM. Virtually all naevi expressed iNOS, but very few expressed nitrotyrosine, indicating either that iNOS in naevi is functionally inactive, or that naevus cells lack reactive oxygen radicals and thus do not form peroxynitrite. Normal melanocytes in adjacent uninvolved skin were unreactive for both markers. In MM, iNOS was most frequently expressed in the 'pure' and 'invasive' radial growth phase (RGP), whereas expression in the vertical growth phase (VGP) and metastatic phase occurred only in 76% of cases; moreover, in these latest phases of tumour progression, iNOS staining was weak and focal. We conclude that iNOS is expressed de novo in most benign pigment cell lesions. In MM (iNOS-generated) NO appears to play an important part in the early steps of invasion (i.e. the 'invasive' RGP), where it may stimulate neo-angiogenesis and may be a prerequisite for further tumour progression; this view is also supported by the finding of iNOS in the associated blood vessels in the papillary dermis. Finally, our data suggest that (iNOS-generated) NO plays a less significant part in the VGP and in metastatic melanoma.
Collapse
Affiliation(s)
- B Ahmed
- Department of Pathology, Laboratory of Histo- and Cytochemistry, University Hospital St Rafael, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | |
Collapse
|