1
|
Hallan SS, Ferrara F, Cortesi R, Sguizzato M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025; 30:641. [PMID: 39942745 PMCID: PMC11820390 DOI: 10.3390/molecules30030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Naturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site. Additionally, this review covers the possibility of combining the effects of a polymer and a lipid within one system, which could increase the skin permeability threshold. Moreover, the lack of suitable physical characterization techniques and the challenges associated with scaling up the progression of these nano-carriers limit their utility in biomedical applications. In this context, consistent progressive approaches for addressing these shortcomings are introduced, and their prospects are discussed in detail.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| |
Collapse
|
2
|
Dixena B, Madhariya R, Panday A, Ram A, Jain AK. Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications. Curr Drug Deliv 2025; 22:160-180. [PMID: 38178667 DOI: 10.2174/0115672018272012231213100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/10/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods such as injections and oral administration. These advantages include preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short half-life drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic drug. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for noninvasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications. OBJECTIVE The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. METHODS Data we searched from PubMed, Google Scholar, and ScienceDirect. RESULTS In this review, we have explored the various methods of preparation of transfersomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization. CONCLUSION In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.
Collapse
Affiliation(s)
- Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Rashmi Madhariya
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Alpana Ram
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| | - Akhlesh K Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, (C.G.) 495009, India
| |
Collapse
|
3
|
Alomari N, Alhussaini W. Update on the advances and challenges in bioequivalence testing methods for complex topical generic products. Front Pharmacol 2024; 15:1330712. [PMID: 38389924 PMCID: PMC10881717 DOI: 10.3389/fphar.2024.1330712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Most of the government regulatory agencies, including the United States Food and Drug Administration and the European Medicine Agency, demand that the generic complex topical products prove pharmaceutical and bioequivalence. The evaluation of bioequivalence for complex topical dermatological formulations is a challenging task that requires careful consideration of several factors. Although comparative clinical studies are still considered the gold standard approach for establishing bioequivalence in most formulations, these studies can be costly and insensitive to detect formulation differences. Therefore, significant efforts have been made to develop and validate alternative approaches that demonstrate bioequivalence and expedite the availability of high-quality generic topical dermatological products. This article reviews the current methods for determining the bioequivalence of topical formulations in humans, with particular emphasis on recent advances in these methodologies. Most of the alternative methods are sensitive and reproducible, with the capability to ease the financial burden of comparative clinical studies within a short delivery time. The limitations associated with each technique are reviewed in detail.
Collapse
Affiliation(s)
- Nedaa Alomari
- Department of Pharmaceutical Analysis, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Waleed Alhussaini
- Department of Pharmaceutical Analysis, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Ministry of the National Guard-Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Cheng T, Tai Z, Shen M, Li Y, Yu J, Wang J, Zhu Q, Chen Z. Advance and Challenges in the Treatment of Skin Diseases with the Transdermal Drug Delivery System. Pharmaceutics 2023; 15:2165. [PMID: 37631379 PMCID: PMC10458513 DOI: 10.3390/pharmaceutics15082165] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Skin diseases are among the most prevalent non-fatal conditions worldwide. The transdermal drug delivery system (TDDS) has emerged as a promising approach for treating skin diseases, owing to its numerous advantages such as high bioavailability, low systemic toxicity, and improved patient compliance. However, the effectiveness of the TDDS is hindered by several factors, including the barrier properties of the stratum corneum, the nature of the drug and carrier, and delivery conditions. In this paper, we provide an overview of the development of the TDDS from first-generation to fourth-generation systems, highlighting the characteristics of each carrier in terms of mechanism composition, penetration method, mechanism of action, and recent preclinical studies. We further investigated the significant challenges encountered in the development of the TDDS and the crucial significance of clinical trials.
Collapse
Affiliation(s)
- Tingting Cheng
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Min Shen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Ying Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Junxia Yu
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Jiandong Wang
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| | - Zhongjian Chen
- School of Pharmacy, Bengbu Medical College, 2600 Donghai Road, Bengbu 233030, China; (T.C.); (J.Y.); (J.W.)
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Z.T.); (M.S.); (Y.L.)
| |
Collapse
|
5
|
Promising prospects of lipid-based topical nanocarriers for the treatment of psoriasis. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Khan MI, Yaqoob S, Madni A, Akhtar MF, Sohail MF, Saleem A, Tahir N, Khan KUR, Qureshi OS. Development and In Vitro/ Ex Vivo Evaluation of Lecithin-Based Deformable Transfersomes and Transfersome-Based Gels for Combined Dermal Delivery of Meloxicam and Dexamethasone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8170318. [PMID: 36483631 PMCID: PMC9726271 DOI: 10.1155/2022/8170318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Transfersomes (TFS) are the promising carriers for transdermal delivery of various low and high molecular weight drugs, owing to their self-regulating and self-optimizing nature. Herein, we report synthesis and characterization of TFS loaded with meloxicam (MLX), an NSAID, and dexamethasone (DEX), a steroid, for simultaneous transdermal delivery. The different formulations of TFS containing varying amounts of lecithin, Span 80, and Tween 80 (TFS-1 to TFS-6) were successfully prepared by thin-film hydration method. The size of ranged between 248 and 273 nm, zeta potential values covering from -62.6 to -69.5 mV, polydispersity index (PDI) values in between 0.329 and 0.526, and entrapment efficiency of MLX and DEX ranged between 63-96% and 48-81%, respectively. Release experiments at pH 7.4 demonstrated higher cumulative drug release attained with Tween 80 compared to Span 80-based TFS. The scanning electron microscopy (SEM) of selected formulations -1 and TFS-3 revealed spherical shape of vesicles. Furthermore, three optimized transfersomal formulations (based on entrapment efficiency, TFS-1, TFS-3, and TFS-5) were incorporated into carbopol-940 gels coded as TF-G1, TF-G3, and TF-G5. These transfersomal gels were subjected to pH, spreadability, viscosity, homogeneity, skin irritation, in vitro drug release, and ex vivo skin permeation studies, and the results were compared with plain (nontransfersomal) gel having MLX and DEX. TFS released 71.72% to 81.87% MLX in 12 h; whereas, DEX release was quantified as 74.72% to 83.72% in same time. Nevertheless, TF-based gels showed slower drug release; 51.54% to 59.60% for MLX and 48.98% to 61.23% for DEX. The TF-G systems showed 85.87% permeation of MLX (TF-G1), 68.15% (TF-G3), and 68.94% (TF-G5); whereas, 78.59%, 70.54%, and 75.97% of DEX was permeated by TF-G1, TF-G3, and TF-G5, respectively. Kinetic modeling of release and permeation data indicated to follow Korsmeyer-Peppas model showing diffusion diffusion-based drug moment. Conversely, plain gel influx was found mere 26.18% and 22.94% for MLX and DEX, respectively. These results suggest that TF-G loaded with MLX and DEX can be proposed as an alternate drug carriers for improved transdermal flux that will certainly increase therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Samiya Yaqoob
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | |
Collapse
|
7
|
Qadir A, Ullah SNMN, Jahan S, Ali A, Khan N. Drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. J Cosmet Dermatol 2022; 21:5386-5404. [PMID: 35699364 DOI: 10.1111/jocd.15158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vitiligo is a depigmenting illness that causes white areas on the skin. Vitiligo's pathogenetic genesis is based on the melanocyte's autoimmune destruction, in which oxidative stress causes melanocyte molecular, organelle, and exposure of antigen, as well as melanocyte cell death, and so plays a role in vitiligo progression. Natural compounds have recently shown a wide range of therapeutic bioactivities against a number of skin disorders. AIM The aim of this work is drug delivery of natural products through nano-carriers for effective vitiligo therapy: A compendia review. METHODS & MATERIALS An online literature analysis was guided for vitiligo therapy, nanotechnology, phytochemical composition, and, types of vitiligo, types of nanomedicine. Appropriate information were taken from different electronic scientific databases such as Web of Science, Science Direct, Elsevier, Google Scholar, Springer, PubMed, and scripts. RESULTS Nano-carriers-based natural compounds provide a great relationship for the enhancement in the efficacy and safety of pharmacotherapeutic agents for the treatment of vitiligo. DISCUSSION In this study focuses on natural compounds' effects and processes on vitiligo models. Although topical therapy plays an important role in vitiligo treatment, its utility and patient compliance are hampered by adverse effects or inadequate efficacy. Novel drug delivery techniques can help improve topical medication delivery by improving epidermal localization, reducing side effects, and increasing effectiveness. CONCLUSION This paper covers the significant potential of herbal-derived active compounds as anti-vitiligo drugs, as well as new drug delivery as a viable carrier and future possibilities to investigate.
Collapse
Affiliation(s)
- Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,Department of Research and Developments, Herbalfarm Health Care Private Limited, New Delhi, India
| | | | - Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nausheen Khan
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Graff P, Hönzke S, Joshi AA, Yealland G, Fleige E, Unbehauen M, Schäfer-Korting M, Hocke A, Haag R, Hedtrich S. Preclinical Testing of Dendritic Core-Multishell Nanoparticles in Inflammatory Skin Equivalents. Mol Pharm 2022; 19:1795-1802. [PMID: 35266720 DOI: 10.1021/acs.molpharmaceut.1c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.
Collapse
Affiliation(s)
- Patrick Graff
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany
| | - Stefan Hönzke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Guy Yealland
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Oyarzún P, Gallardo-Toledo E, Morales J, Arriagada F. Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine (Lond) 2021; 16:2465-2489. [PMID: 34706575 DOI: 10.2217/nnm-2021-0335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is a promising approach to treat different skin disorders. However, it remains a challenge mainly due to the nature and rigidity of the nanosystems, which limit deep skin penetration, and the unsuccessful demonstration of clinical benefits; greater penetration by itself, does not ensure pharmacological success. In this context, transfersomes have appeared as promising nanosystems; deformability, their unique characteristic, allows them to pass through the epidermal microenvironment, improving the skin drug delivery. This review focuses on the comparison of transfersomes with other nanosystems (e.g., liposomes), discusses recent therapeutic applications for the topical treatment of different skin disorders and highlights the need for further studies to demonstrate significant clinical benefits of transfersomes compared with conventional therapies.
Collapse
Affiliation(s)
- Pablo Oyarzún
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Eduardo Gallardo-Toledo
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, 8380494, Chile
| | - Francisco Arriagada
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5090000, Chile
| |
Collapse
|
10
|
|
11
|
Mohan V, Wairkar S. Current regulatory scenario and alternative surrogate methods to establish bioequivalence of topical generic products. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020; 12:E855. [PMID: 32916782 PMCID: PMC7559928 DOI: 10.3390/pharmaceutics12090855] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transdermal delivery systems have gained much interest in recent years owing to their advantages compared to conventional oral and parenteral delivery systems. They are noninvasive and self-administered delivery systems that can improve patient compliance and provide a controlled release of the therapeutic agents. The greatest challenge of transdermal delivery systems is the barrier function of the skin's outermost layer. Molecules with molecular weights greater than 500 Da and ionized compounds generally do not pass through the skin. Therefore, only a limited number of drugs are capable of being administered by this route. Encapsulating the drugs in transfersomes are one of the potential approaches to overcome this problem. They have a bilayered structure that facilitates the encapsulation of lipophilic and hydrophilic, as well as amphiphilic, drug with higher permeation efficiencies compared to conventional liposomes. Transfersomes are elastic in nature, which can deform and squeeze themselves as an intact vesicle through narrow pores that are significantly smaller than its size. This review aims to describe the concept of transfersomes, the mechanism of action, different methods of preparation and characterization and factors affecting the properties of transfersomes, along with their recent applications in the transdermal administration of drugs.
Collapse
Affiliation(s)
| | | | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.A.T.O.); (V.T.)
| |
Collapse
|
13
|
Gupta R, Kumar A. Transfersomes: The Ultra-Deformable Carrier System for Non-Invasive Delivery of Drug. Curr Drug Deliv 2020; 18:408-420. [PMID: 32753015 DOI: 10.2174/1567201817666200804105416] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 04/18/2020] [Indexed: 11/22/2022]
Abstract
Vesicular systems have many advantages like prolonging the existence of the drug in the systemic circulation, minimizing the undesirable side-effects and helping the active moieties to reach their target sites using the carriers. However, the main drawback related to transdermal delivery is to cross stratum corneum, which can be overcome by the utilization of novel carrier systems e.g., transfersomes, which are ultra-deformable carrier systems composed of phospholipid (phosphatidylcholine) and edge activators (surfactants). Edge activators are responsible for the flexibility of the bilayer membranes of transfersomes. Different edge activators used in transfersomes include tween, span, bile salts (sodium cholate and sodium deoxycholate) and dipotassium glycyrrhizinate. These activators decrease the interfacial tension, thereby, increasing the deformability of the carrier system. Transfersomes can encapsulate both hydrophilic and hydrophobic drugs into a vesicular structure, which consists of one or more concentric bilayers. Due to the elastic nature of transfersomes, they can easily cross the natural physiological barriers i.e., skin and deliver the drug to its active site. The main benefit of using transfersomes as a carrier is the delivery of macromolecules through the skin by non-invasive route thereby increasing the patient's compliance. The transfersomal formulations can be used in the treatment of ocular diseases, alopecia, vulvovaginal candidiasis, osteoporosis, atopic dermatitis, tumor, leishmaniasis. It is also used in the delivery of growth hormones, anaesthesia, insulin, proteins, and herbal drugs. This review also focuses on the patents and clinical studies for various transfersomal products.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| | - Amrish Kumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Uttar Pradesh, 201310, India
| |
Collapse
|
14
|
Phospholipid Vesicles for Dermal/Transdermal and Nasal Administration of Active Molecules: The Effect of Surfactants and Alcohols on the Fluidity of Their Lipid Bilayers and Penetration Enhancement Properties. Molecules 2020; 25:molecules25132959. [PMID: 32605117 PMCID: PMC7412180 DOI: 10.3390/molecules25132959] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
This is a comprehensive review on the use of phospholipid nanovesicles for dermal/transdermal and nasal drug administration. Phospholipid-based vesicular carriers have been widely investigated for enhanced drug delivery via dermal/transdermal routes. Classic phospholipid vesicles, liposomes, do not penetrate the deep layers of the skin, but remain confined to the upper stratum corneum. The literature describes several approaches with the aim of altering the properties of these vesicles to improve their penetration properties. Transfersomes and ethosomes are the most investigated penetration-enhancing phospholipid nanovesicles, obtained by the incorporation of surfactant edge activators and high concentrations of ethanol, respectively. These two types of vesicles differ in terms of their structure, characteristics, mechanism of action and mode of application on the skin. Edge activators contribute to the deformability and elasticity of transfersomes, enabling them to penetrate through pores much smaller than their own size. The ethanol high concentration in ethosomes generates a soft vesicle by fluidizing the phospholipid bilayers, allowing the vesicle to penetrate deeper into the skin. Glycerosomes and transethosomes, phospholipid vesicles containing glycerol or a mixture of ethanol and edge activators, respectively, are also covered. This review discusses the effects of edge activators, ethanol and glycerol on the phospholipid vesicle, emphasizing the differences between a soft and an elastic nanovesicle, and presents their different preparation methods. To date, these differences have not been comparatively discussed. The review presents a large number of active molecules incorporated in these carriers and investigated in vitro, in vivo or in clinical human tests.
Collapse
|
15
|
Saleem S, Iqubal MK, Garg S, Ali J, Baboota S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: an enticing approach to offset psoriasis. Expert Opin Drug Deliv 2020; 17:817-838. [PMID: 32315216 DOI: 10.1080/17425247.2020.1758665] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Psoriasis is identified as an inflammatory, chronic, auto-immune disease requiring long-term treatment, imposing an unnecessary burden on the patient. A significant impediment for the treatment of dermatological disorders via transdermal route is the inability of drug molecules to cross the stratum corneum (SC), as the larger size of drug molecules inhibits them to pervade into the skin, thus hampering their absorption. Some drugs exhibit systemic side-effects, which curbs patient compliance, resulting in treatment discontinuation. AREAS COVERED This review aims to describe the detailed study such as demographic status, molecular factors of psoriasis, treatment with emerging combination therapy and role of nanotechnology tools in the treatment of psoriasis. EXPERT OPINION To overcome problems related to the conventional drug delivery system, several nanotechnology-based formulations have been devised to enhance bioavailability, drug permeation and accumulation in the skin. Nano-formulations provide better permeation, targeted delivery and enhanced efficacy, thus gaining enormous popularity for cutaneous disorders. This pervasive review provides an overview of the pathophysiology of the disease, its molecular targets and the available herbal, synthetic and combination treatment modalities. The review also systematizes recent works utilizing nano-carriers to improve the treatment denouement of psoriasis.
Collapse
Affiliation(s)
- Sadaf Saleem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia (UniSA) , Adelaide, SA, Australia
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research , Jamia Hamdard, New Delhi, India
| |
Collapse
|
16
|
Piumitali B, Neeraj U, Jyotivardhan J. Transfersomes — A Nanoscience in Transdermal Drug Delivery and Its Clinical Advancements. INTERNATIONAL JOURNAL OF NANOSCIENCE 2020. [DOI: 10.1142/s0219581x19500339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The convenient nanotransdermal delivery system is always likely to have some ideal and unique characteristics, predominantly for safety, desired actions, clinical efficacy, enriched with a therapeutic index with minimal adverse occurrence. One of the most challenging tasks for the formulators is to transfer the medicament, especially macromolecules, through the skin. Some of the ways to achieve this is the use of a painful needle or some other methods which also have economical constraints. A new technology has been developed, that is ultradeformable liposomes, also called as transfersomes. These are an elastic type of lipid vesicle aggregates capable of delivering wide range of active moieties including various biomolecules. It can be manufactured by evaporation, vortexing, reverse-phase evaporation, ethanol injection or freeze-thaw methods, where phospholipids and edge activators are the major ingredients that contribute the main role in their unique mechanism of permeation through less permeable stratum corneum. This review mainly focuses on the clinical trial studies and patents accessible on transfersomal products worldwide, highlights the recent work on transfersomes with various therapeutic agents. An effort to explain the deeper penetration of transfersomes across the epidermis layer by its pharmacokinetics and dynamic properties has been taken.
Collapse
Affiliation(s)
- Bera Piumitali
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Upmanyu Neeraj
- School of Pharmacy and Research, People’s University, Bhanpur, Bhopal, Madhya Pradesh 462037, India
| | - Jaiswal Jyotivardhan
- Alkem Research Center, MIDC Industrial Estate, Taloja, Navi Mumbai, Maharashtra 410208, India
| |
Collapse
|
17
|
pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J Control Release 2019; 295:214-222. [DOI: 10.1016/j.jconrel.2018.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 12/27/2018] [Indexed: 12/18/2022]
|
18
|
Sala M, Elaissari A, Fessi H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J Control Release 2016; 239:182-202. [PMID: 27381248 DOI: 10.1016/j.jconrel.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/26/2022]
Abstract
Psoriasis is a chronic inflammatory disease affecting mainly the skin but which can be complicated by psoriatic arthritis (PsA).This autoimmune skin disorder concerns 2-5% of the world population. To date, the physiopathology of psoriasis is not still completely elucidated but many researches are ongoing which have led for example to the discovery of the Th17/Th22 pathway. The conventional therapeutic approaches (local or systemic route) appeal to various classes of drugs with complex mechanisms of action and non-negligible side effects. Although there is no therapy capable to cure psoriasis, the current goal is to relieve symptoms as longer as possible with a good benefit/risk ratio. That is one of the principal limits of conventional antipsoriatic drugs. New formulations based on nanoencapsulation are a promising opportunity to answer to this limit by offering an optimization of the conventional antipsoriatic drug use (higher activity, lower side effects and frequency of application, etc.). Herein, we tried to put in perspective the mechanistic insights (histological and immunological views) proposed into scientific literature these last years in order to have a better comprehension of psoriasis physiopathology resulting in skin lesions and PsA. The therapeutic armamentarium and the different strategies in the management of psoriasis are discussed in greater details. To finish, the field of encapsulation in nanoparticles is broached in order to put forward recent advances in innovative skin drug delivery systems (ISDDSs) of antipsoriatic active agents for a better efficacy, safety and compliance.
Collapse
Affiliation(s)
- M Sala
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France; Pharmacie centrale, Hospices Civils de Lyon, 57, Rue Francisque Darcieux, 69563 Saint Genis Laval, France
| | - A Elaissari
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France
| | - H Fessi
- University Claude Bernard Lyon 1, Laboratoire d'Automatique et de Génie des Procédés, CNRS, UMR 5007, LAGEP-CPE-308G, 43 bd. du 11 Nov.1918, F-69622 Villeurbanne, France.
| |
Collapse
|
19
|
Skin penetration and dermal tolerability of acrylic nanocapsules: Influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm 2016; 507:12-20. [PMID: 27130364 DOI: 10.1016/j.ijpharm.2016.03.046] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/23/2022]
Abstract
For an improved understanding of the relevant particle features for cutaneous use, we studied the effect of the surface charge of acrylic nanocapsules (around 150nm) and the effect of a chitosan gel vehicle on the particle penetration into normal and stripped human skin ex vivo as well as local tolerability (cytotoxicity and irritancy). Rhodamin-tagged nanocapsules penetrated and remained in the stratum corneum. Penetration of cationic nanocapsules exceeded the penetration of anionic nanocapsules. When applied on stripped skin, however, the fluorescence was also recorded in the viable epidermis and dermis. Cationic surface charge and embedding the particles into chitosan gel favored access to deeper skin. Keratinocytes took up the nanocapsules rapidly. Cytotoxicity (viability<80%), following exposure for ≥24h, appears to be due to the surfactant polysorbate 80, used for nanocapsuleś stabilization. Uptake by fibroblasts was low and no cytotoxicity was observed. No irritant reactions were detected in the HET-CAM test. In conclusion, the surface charge and chitosan vehicle, as well as the skin barrier integrity, influence the skin penetration of acrylic nanocapsules. Particle localization in the intact stratum corneum of normal skin and good tolerability make the nanocapsules candidates for topical use on the skin, provided that the polymer wall allows the release of the active encapsulated substance.
Collapse
|
20
|
Romero EL, Morilla MJ. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedicine 2013; 8:3171-86. [PMID: 23986634 PMCID: PMC3754763 DOI: 10.2147/ijn.s33048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vesicles that are specifically designed to overcome the stratum corneum barrier in intact skin provide an efficient transdermal (systemic or local) drug delivery system. They can be classified into two main groups according to the mechanisms underlying their skin interaction. The first group comprises those possessing highly deformable bilayers, achieved by incorporating edge activators to the bilayers or by mixing with certain hydrophilic solutes. The vesicles of this group act as drug carriers that penetrate across hydrophilic pathways of the intact skin. The second group comprises those possessing highly fluid bilayers, owing to the presence of permeation enhancers. The vesicles of this group can act as carriers of drugs that permeate the skin after the barrier of the stratum corneum is altered because of synergistic action with the permeation enhancers contained in the vesicle structure. We have included a detailed overview of the different mechanisms of skin interaction and discussed the most promising preclinical applications of the last five years of Transfersomes® (IDEA AG, Munich, Germany), ethosomes, and invasomes as carriers of antitumoral and anti-inflammatory drugs applied by the topical route.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Department of Science and Technology, National University of Quilmes, Bernal, Buenos Aires, Argentina.
| | | |
Collapse
|
21
|
Sigurgeirsson B, Ghannoum M. Therapeutic potential of TDT 067 (terbinafine in Transfersome®): a carrier-based dosage form of terbinafine for onychomycosis. Expert Opin Investig Drugs 2012; 21:1549-62. [DOI: 10.1517/13543784.2012.711315] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Abstract
The skin-blanching assay is used for the determination and bioequivalence of dermatologic glucocorticoids (GCs). The exact mechanism of the production of blanching is not fully understood, but it is considered that local vasoconstriction of the skin microvasculature and the consequent blood-flow reduction cause this phenomenon. Several factors influence skin blanching, including drug concentration, duration of application, nature of vehicle, occlusion, posture and location. The intensity of vasoconstriction can be measured in several ways: visual or quantitative methods, such as reflectance spectroscopy, thermography, laser Doppler velocimetry and chromametry. In literature, contradicting results in the correlation of the skin-blanching assay with different tests to determine GC sensitivity have been reported, limiting its clinical usefulness.
Collapse
Affiliation(s)
- P Smit
- Department of Dermatology and Venereology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
23
|
|
24
|
Abstract
Topical drug application is less prone to severe systemic side-effects than systemic application. Starting with the liposomes, various types of nanosized and microsized drug carriers have been developed to increase the notoriously low penetration of active agents into the skin, which limits not only the topical therapy of skin disease but also transdermal therapy. Today, liposome- and microsponge-based preparations are approved for dermatomycosis, acne and actinic keratosis. Under investigation are drug carriers such as lipid nanoparticles, polymeric particles, dendrimers, and dendritic-core multi-shell nanotransporters. According to the rapidly increasing research in this field, both in academia and industry, a breakthrough appears likely, once stability problems (nanoparticles) and safety concerns (dendrimers) are overcome. Technical approaches and results of in vitro, ex vivo and in vivo testing are described, taking into account pharmacokinetic, efficacy and safety aspects.
Collapse
Affiliation(s)
- Hans Christian Korting
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwig-Maximilians-Universität, Frauenlobstrasse 9-11, 80337 München, Germany.
| | | |
Collapse
|
25
|
Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2362-73. [PMID: 19733150 DOI: 10.1016/j.bbamem.2009.08.015] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 08/14/2009] [Accepted: 08/26/2009] [Indexed: 01/29/2023]
Abstract
Transdermal drug delivery is an attractive alternative to conventional techniques for administration of systemic therapeutics. One challenge in designing transdermal drug delivery systems is to overcome the natural transport barrier of the skin. Chemicals offer tremendous potential in overcoming the skin barrier to enhance transport of drug molecules. Individual chemicals are however limited in their efficacy in disrupting the skin barrier at low concentrations and usually cause skin irritation at high concentrations. Multicomponent mixtures of chemicals, however, have been shown to provide high skin permeabilization potency as compared to individual chemicals without necessarily causing irritation. Here we review systems employing synergistic mixtures of chemicals that offer superior skin permeation enhancement. These synergistic systems include solvent mixtures, microemulsions, eutectic mixtures, complex self-assembled vesicles and inclusion complexes. Methods for design and discovery of such synergistic systems are also discussed.
Collapse
Affiliation(s)
- Pankaj Karande
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | |
Collapse
|
26
|
Nanoparticles for skin penetration enhancement – A comparison of a dendritic core-multishell-nanotransporter and solid lipid nanoparticles. Eur J Pharm Biopharm 2009; 71:243-50. [DOI: 10.1016/j.ejpb.2008.08.019] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/30/2008] [Accepted: 08/07/2008] [Indexed: 11/18/2022]
|
27
|
Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J Control Release 2008; 133:214-20. [PMID: 18973779 DOI: 10.1016/j.jconrel.2008.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 11/24/2022]
Abstract
The aim of this work was to develop a system that can deliver siRNA into cells present in the human epidermis. More specifically, we wanted to block the expression of a specific Myosin Va exon F containing isoform that is physiologically involved in melanosome transport in human melanocytes. Therefore, we prepared and investigated the capacity of ultradeformable cationic liposomes (UCLs) to deliver siRNA in hard-to-transfect human primary melanocytes. UCLs were formulated from different w:w ratios (6:1, 8:1 and 10:1) of the cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and the edge activator sodium cholate. Subsequently, UCL/siRNA complexes were prepared and their particle size, surface charge, deformability, cytotoxicity, transfection efficiency and long-term stability were tested. The best results were obtained with UCLs composed of a DOTAP/NaChol ratio of 6:1 (w:w) which are promising for future in vivo experiments.
Collapse
|
28
|
Functional characterisation of novel analgesic product based on self-regulating drug carriers. Int J Pharm 2008; 360:18-28. [DOI: 10.1016/j.ijpharm.2008.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/02/2008] [Accepted: 04/05/2008] [Indexed: 11/27/2022]
|
29
|
Braem C, Blaschke T, Panek-Minkin G, Herrmann W, Schlupp P, Paepenmüller T, Müller-Goyman C, Mehnert W, Bittl R, Schäfer-Korting M, Kramer KD. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J Control Release 2007; 119:128-35. [PMID: 17382423 DOI: 10.1016/j.jconrel.2007.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 11/22/2022]
Abstract
According to recent investigations of nanoparticular carrier systems the mode of drug-particle interaction appears to influence drug penetration into the skin. For a more detailed insight into the molecular structure of drug loaded particles the two independent analytical methods, namely the parelectric spectroscopy (PS) and the electron spin resonance (ESR) have been applied to 4,5,5,-trimethyl-1-yloxy-3-imidazoline-2-spiro-3'-(5'()-cholestane) as a model drug. Spectra have been analyzed in dependence on the concentration of the spin label. Changes in the concentration-dependent dipole mobility and dipole density given by PS and the concentration-dependent rotational correlation time (ESR) which are a measure of the vicinity of carrier and/or the surfactant and guest molecule were studied with cholestane-labeled solid lipid nanoparticles (SLN), nanoparticular lipid carriers (NLC) and nanoemulsions (NE). The spin probes were attached to the SLN surface which consists of two distinct sub-compartments: the rim and the flat surface of the disk-like shapes. The shape could be observed by freeze-fraction electron microscopy. Spin probes, however, were incorporated into the carrier matrix in the cases of NLC and NE. Results of PS are verified by ESR which allows a more detailed insight. Taking the results together a detailed new model of 'drug'-particle interaction could be established.
Collapse
Affiliation(s)
- C Braem
- Freie Universität Berlin, Fachbereich Pharmazie, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Montanari J, Perez AP, Di Salvo F, Diz V, Barnadas R, Dicelio L, Doctorovich F, Morilla MJ, Romero EL. Photodynamic ultradeformable liposomes: Design and characterization. Int J Pharm 2007; 330:183-94. [PMID: 17157460 DOI: 10.1016/j.ijpharm.2006.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 11/02/2006] [Accepted: 11/03/2006] [Indexed: 11/27/2022]
Abstract
Hydrophobic ([tetrakis(2,4-dimetil-3-pentyloxi)-phthalocyaninate]zinc(II)) (ZnPc) and hydrophilic ([tetrakis(N,N,N-trimethylammoniumetoxi)-phthalocyaninate]zinc(II) tetraiodide) (ZnPcMet) phthalocyanines were synthesized and loaded in ultradeformable liposomes (UDL) of soybean phosphatidylcholine and sodium cholate (6:1, w/w, ratio), resulting 100 nm mean size vesicles of negative Zeta potential, with encapsulation efficiencies of 85 and 53%, enthalpy of phase transition of 5.33 and 158 J/mmol for ZnPc and ZnPcMet, respectively, indicating their deep and moderate partition into UD matrices. Matrix elasticity of UDL-phthalocyanines resulted 28-fold greater than that of non-UDL, leaking only 25% of its inner aqueous content after passage through a nanoporous barrier versus 100% leakage for non-UDL. UDL-ZnPc made ZnPc soluble in aqueous buffer while kept the monomeric state, rendering singlet oxygen quantum yield (Phi(Delta)) similar to that obtained in ethanol (0.61), whereas UDL-ZnPcMet had a four-fold higher Phi(Delta) than that of free ZnPcMet (0.21). Free phthalocyanines were non-toxic at 1 and 10 microM, both in dark or upon irradiation at 15 J/cm2 on Vero and J-774 cells (MTT assay). Only liposomal ZnPc at 10 microM was toxic for J-774 cells under both conditions. Additionally, endo-lysosomal confinement of the HPTS dye was kept after irradiation at 15 J/cm2 in the presence of UDL-phtalocyanines. This could lead to improve effects of singlet oxygen against intra-vesicular pathogen targets inside the endo-lysosomal system.
Collapse
Affiliation(s)
- J Montanari
- Laboratorio de Diseño de Estrategias de Targeting de Drogas (LDTD), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Saenz Peña 180, Bernal B1876BXD, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 2006; 332:1-16. [PMID: 17222523 DOI: 10.1016/j.ijpharm.2006.12.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/03/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
Since liposomes were first shown to be of potential value for topical therapy by Mezei and Gulasekharam in 1980, studies continued towards further investigation and development of lipid vesicles as carriers for skin delivery of drugs. Despite this long history of intensive research, lipid vesicles are still considered as a controversial class of dermal and transdermal carriers. Accordingly, this article provides an overview of the development of lipid vesicles for skin delivery of drugs, with special emphasis on recent advances in this field, including the development of deformable liposomes and ethosomes.
Collapse
Affiliation(s)
- Mustafa M A Elsayed
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, El-Khartoum Square, El-Azarita, Alexandria 21521, Egypt.
| | | | | | | |
Collapse
|
32
|
Abstract
Glucocorticoids (GCs) are highly effective for the topical treatment of inflammatory skin diseases. Their long-term use, however, is often accompanied by severe and partially irreversible adverse effects, with atrophy being the most prominent limitation. Progress in the understanding of GC-mediated molecular action as well as some advances in technologies to determine the atrophogenic potential of compounds has been made recently. It is likely that the detailed mechanisms of GC-induced skin atrophy will be discovered and in vitro models for the reliable prediction of atrophy will be established in the foreseeable future. This knowledge will not only facilitate safety profiling of established drugs but will also foster further drug discovery by improving compound characterization processes. New insights into GC modes of action will guide optimization strategies aiming at novel GC receptor ligands with improved effect/side effect profile.
Collapse
Affiliation(s)
- Stefanie Schoepe
- Corporate Research Business Area Inflammation, Schering AG, Berlin, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
This review focuses on the therapeutic utility of liposomes in the treatment of inflammatory disorders, and aims to offer the reader an overview of the in vivo results obtained with liposomally encapsulated anti-inflammatory and immune suppressive drugs. The past 30 years has clearly indicated the added value of liposomes in the search for solutions for the delivery problems encountered. However, only a few liposomal anti-inflammatory therapeutics have entered the clinic. Reasons for the hurdles existing in the translation of promising preclinical findings to clinical studies are discussed.
Collapse
Affiliation(s)
- Josbert M Metselaar
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | |
Collapse
|
34
|
Newsam JM, King-Smith D, Jain A, Karande P, Feygin I, Burbaum J, Gowrishankar TR, Sergeeva M, Mitragotri S. Screening soft materials for their effect on skin barrier function by high throughput experimentation. ACTA ACUST UNITED AC 2005. [DOI: 10.1039/b416210b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1663:61-73. [PMID: 15157608 DOI: 10.1016/j.bbamem.2004.01.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 01/20/2004] [Accepted: 01/21/2004] [Indexed: 11/26/2022]
Abstract
We characterised biological properties of novel formulations of two low-potency glucocorticosteroids, dexamethasone and hydrocortisone, which have an equivalent dose ratio of 1:50 in vasoconstriction tests. The rate of such carrier-mediated, mainly non-diffusive glucocorticosteroids transport with very deformable lipid vesicles (Transfersomes) through the skin, and the corresponding cutaneous drug biodistribution data, were complemented with the drug bio-efficacy studies. The minimum effective drug dose that reduces arachidonic acid-induced murine ear oedema by 50% was used as one bioactivity indicator. The minimum drug amount ensuring such an effect in mouse skin decreases appreciably when a corticosteroid is applied epicutaneously with very deformable vesicles rather than a lotion or a crème. Specifically, the minimum effective dose for hydrocortisone in very deformable carriers is 2-3 microg cm(-2) whereas for the crème- or lotion-like preparations at least 10 microg cm(-2) is required. Such three- to fivefold relative increase of hydrocortisone potency is accompanied by at least 13%, and more often >20%, absolute drug potency enhancement. The delivery of hydrocortisone with very deformable carriers moreover prolongs the suppression of the drug-induced oedema nearly 2-fold (to approximately 24 h per application). The effective dose of dexamethasone delivered with very deformable vesicles into murine skin is reduced >10 times compared with the crème- or lotion-based products. Specifically, less than 0.1 microg cm(-2) dexamethasone in very deformable vesicles suppresses the arachidonic acid-induced murine ear oedema >50%, on the average. Dexamethasone use on the skin in such vesicles extends the duration of drug action fourfold, compared with a commercial crème, i.e. to >48 h per application. Epicutaneous use of glucocorticosteroids in very deformable vesicles also diminishes such drug's abrasion sensitivity and may increase the general robustness of drug effect. Lower frequency of skin treatment, which ensures adequate biological response, is a result of this. Topical corticosteroid delivery with very deformable vesicles, Transfersomes, thus improves the therapeutic risk-benefit ratio, arguably due to better targeting into and longer drug presence in the skin.
Collapse
Affiliation(s)
- Gregor Cevc
- Medizinische Biophysik, Technische Universität München, Ismaningerstr. 22, D-81675 München, Deutschland, E.U., Germany.
| | | |
Collapse
|
36
|
Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 2004; 56:675-711. [PMID: 15019752 DOI: 10.1016/j.addr.2003.10.028] [Citation(s) in RCA: 389] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/13/2003] [Indexed: 11/17/2022]
Abstract
Colloids from an aqueous suspension can cross the skin barrier only through hydrophilic pathways. Various colloids have a different ability to do this by penetrating narrow pores of fixed size in the skin, or the relevant nano-pores in barriers modelling the skin. Such ability is governed by colloid adaptability, which must be high enough to allow penetrant deformation to the size of a pore in such barrier: for a 100 nm colloid trespassing the skin this means at least 5-fold deformation/elongation. (Lipid) Bilayer vesicles are normally more adaptable than the comparably large (lipid coated) fluid droplets. One of the reasons for this, and an essential condition for achieving a high bilayer adaptability and pore penetration, is a high bilayer membrane elasticity. The other reason is the relaxation of changing colloid's volume-to-surface constraint during pore penetration; it stands to reason that such relaxation requires a concurrent, but only transient and local, bilayer permeabilisation. Both these phenomena are reflected in bilayer composition sensitivity, which implies non-linear pressure dependency of the apparent barrier penetrability, for example. Amphipats that acceptably weaken a membrane (surfactants, (co)solvents, such as certain alcohols, etc.) consequently facilitate controlled, local bilayer destabilisation and increase lipid bilayer flexibility. When used in the right quantity, such additives thus lower the energetic expense for elastic bilayer deformation, associated with pore penetration. Another prerequisite for aggregate transport through the skin is the colloid-induced opening of the originally very narrow ( approximately 0.4 nm) gaps between cells in the barrier to pores with diameter above 30 nm. Colloids incapable of enforcing such widening-and simultaneously of self-adapting to the size of 20-30 nm without destruction-are confined to the skin surface. All relatively compact colloids seem to fall in this latter category. This includes mixed lipid micelles, solid (nano)particles, nano-droplets, biphasic vesicles, etc. Such colloids, therefore, merely enter the skin through the rare wide gaps between groups of skin cells near the organ surface. Transdermal drug delivery systems based on corresponding drug formulations, therefore, rely on simple drug diffusion through the skin; the colloid then, at best, can modulate drug transport through the barrier. In contrast, the adaptability-and stability-optimised mixed lipid vesicles (Transfersomes, a trademark of IDEA AG) can trespass much narrower pathways between most cells in the skin; such highly adaptable colloids thus mediate drug transport through the skin. Sufficiently stable ultra-adaptable carriers, therefore, can ensure targeted drug delivery deep below the application site. This has already been shown in numerous preclinical tests and several phase I and phase II clinical studies. Drug delivery by means of highly adaptable drug carriers, moreover, allows highly efficient and well-tolerated drug targeting into the skin proper. Sustained drug release through the skin into systemic blood circulation is another field of ultradeformable drug carrier application.
Collapse
Affiliation(s)
- Gregor Cevc
- IDEA AG, Frankfurter Ring 193a, 80807 Munich, Germany.
| |
Collapse
|
37
|
Cevc G, Blume G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:156-64. [PMID: 12896808 DOI: 10.1016/s0005-2736(03)00172-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel formulations of the halogenated corticosteroid, triamcinolone-acetonide, based on ultradeformable mixed lipid vesicles, Transfersomes, are described. Their performance was tested in vivo using radioactive label measurements, to study the drug biodistribution, and murine ear edema, to determine the drug bioactivity. Sparse use of drug-loaded Transfersomes on the skin ensures an almost exclusive delivery of triamcinolone-acetonide into the organ, thus arguably increasing the treatment safety. Delivery of triamcinolone-acetonide in the skin with ultradeformable vesicles prolongs the anti-inflammatory drug action several times compared to drug usage in a conventional crème or an ointment, the robustness of biological response for the former being at least identical to the latter. The required dose of Transfersome-based triamcinolone-acetonide is also greatly reduced. The drug dose of 0.2 microg cm(-2) suppresses 75% of arachidonic acid-induced murine ear edema for at least 48 h. In contrast, a conventional formulation of triamcinolone-acetonide requires a 10-fold higher drug dosage to achieve a similar effect. In either case, increasing the applied corticosteroid amount delays the onset of anti-edema action.
Collapse
Affiliation(s)
- Gregor Cevc
- Medizinische Biophysik, Klinikum r. d. I., Technische Universität München, Ismaningerstr. 22 D-81675, Munich, Germany.
| | | |
Collapse
|