1
|
Yapici FI, Seidel E, Dahlhaus A, Weber J, Schmidt C, de Britto Chaves Filho A, Yang M, Nenchova M, Güngör E, Stroh J, Kotouza I, Beck J, Abdallah AT, Lackmann JW, Bebber CM, Androulidaki A, Kreuzaler P, Schulze A, Frezza C, von Karstedt S. An atlas of ferroptosis-induced secretomes. Cell Death Differ 2025:10.1038/s41418-025-01517-4. [PMID: 40281125 DOI: 10.1038/s41418-025-01517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cells undergoing regulated necrosis systemically communicate with the immune system via the release of protein and non-protein secretomes. Ferroptosis is a recently described iron-dependent type of regulated necrosis driven by massive lipid peroxidation. While membrane rupture occurs during ferroptosis, a comprehensive appraisal of ferroptotic secretomes and their potential biological activity has been lacking. Here, we apply a multi-omics approach to provide an atlas of ferroptosis-induced secretomes and reveal a novel function in macrophage priming. Proteins with assigned DAMP and innate immune system function, such as MIF, heat shock proteins (HSPs), and chaperones, were released from ferroptotic cells. Non-protein secretomes with assigned inflammatory function contained oxylipins as well as TCA- and methionine-cycle metabolites. Interestingly, incubation of bone marrow-derived macrophages (BMDMs) with ferroptotic supernatants induced transcriptional reprogramming consistent with priming. Indeed, exposure to ferroptotic supernatants enhanced LPS-induced cytokine production. These results define a catalog of ferroptosis-induced secretomes and identify a biological activity in macrophage priming with important implications for the fine-tuning of inflammatory processes.
Collapse
Affiliation(s)
- F Isil Yapici
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Eric Seidel
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Alina Dahlhaus
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Josephine Weber
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Christina Schmidt
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Adriano de Britto Chaves Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ming Yang
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Maria Nenchova
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Emre Güngör
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Jenny Stroh
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ioanna Kotouza
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Julia Beck
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ali T Abdallah
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Christina M Bebber
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ariadne Androulidaki
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Peter Kreuzaler
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, Institute for Metabolomics in Ageing, University of Cologne, Cologne, Germany
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute for Genetics, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Predtechenskaya M, Arbizzani CJ, Shomento SR, Borgogna TR, Voyich JM. Lung surfactant reduces Staphylococcus aureus cytotoxicity and protects host immune cells from membrane damage. Microbiol Spectr 2025:e0138624. [PMID: 40237467 DOI: 10.1128/spectrum.01386-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/20/2025] [Indexed: 04/18/2025] Open
Abstract
In this study, we identify that lung surfactant significantly reduces the cytotoxicity of Staphylococcus aureus (S. aureus) membrane-damaging toxins. Data demonstrate that natural surfactants from mice and rats and commercially available surfactant, Infasurf, protect human primary cells (neutrophils and peripheral blood mononuclear cells) from cytolytic activity caused by S. aureus supernatants. Supernatants from S. aureus grown in surfactant showed a significant reduction in plasma membrane damage against primary human cells as compared to supernatants grown without surfactant. This reduction was not due to a direct bactericidal effect of the surfactants on S. aureus growth. Rat and mouse surfactants downregulated the gene expression of saeR, the response regulator of the S. aureus two-component system SaeR/S that is responsible for the production of virulence factors which are important during lung infection and cause membrane damage in host cells. Rat and lung surfactants also reduced transcript abundance of SaeR/S-regulated genes lukF-PV, hla, and hlgA. Interestingly, the commercially available surfactant Infasurf did not recapitulate the effect of natural surfactants and did not decrease gene transcription of the virulence genes tested. These data suggest that components of natural surfactants protect lungs from S. aureus by suppressing S. aureus virulence factors and have implications for the role of surfactants in host defense against S. aureus.IMPORTANCEThis study explored the influence of lung surfactants on membrane-damaging Staphylococcus aureus (S. aureus) toxins. We demonstrate that natural and commercially available lung surfactants minimize the cytolytic capacity of S. aureus supernatants against primary human cells. Data indicate that cytolytic reduction by mouse and rat surfactants was partially due to surfactants reducing transcript abundance of virulence factors. This work identifies a novel role for surfactants and suggests their importance in modulating the severity of S. aureus lung infections.
Collapse
Affiliation(s)
- Maria Predtechenskaya
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Corbin J Arbizzani
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Sofia R Shomento
- University of Washington, School of Medicine, Seattle, Washington, USA
| | - Timothy R Borgogna
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Jovanka M Voyich
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
3
|
Meindl C, Absenger-Novak M, Jeitler R, Roblegg E, Fröhlich E. Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:682. [PMID: 36839050 PMCID: PMC9962067 DOI: 10.3390/nano13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air-liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/-THP-1 and EpiAlveolar™ +/-THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance.
Collapse
Affiliation(s)
- Claudia Meindl
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Ramona Jeitler
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| |
Collapse
|
4
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, Pieters C, Korach-Rechtman H, Saadya A, Kaneti G, Nudelman I, Farkash S, Flikshtain OD, Mekies LN, Koren L, Gal Y, Dor E, Shainsky J, Shklover J, Adir Y, Schroeder A. Lung targeted liposomes for treating ARDS. J Control Release 2022; 346:421-433. [PMID: 35358610 PMCID: PMC8958843 DOI: 10.1016/j.jconrel.2022.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Acute Respiratory Distress Syndrome (ARDS), associated with Covid-19 infections, is characterized by diffuse lung damage, inflammation and alveolar collapse that impairs gas exchange, leading to hypoxemia and patient’ mortality rates above 40%. Here, we describe the development and assessment of 100-nm liposomes that are tailored for pulmonary delivery for treating ARDS, as a model for lung diseases. The liposomal lipid composition (primarily DPPC) was optimized to mimic the lung surfactant composition, and the drug loading process of both methylprednisolone (MPS), a steroid, and N-acetyl cysteine (NAC), a mucolytic agent, reached an encapsulation efficiency of 98% and 92%, respectively. In vitro, treating lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages with the liposomes decreased TNFα and nitric oxide (NO) secretion, while NAC increased the penetration of nanoparticles through the mucus. In vivo, we used LPS-induced lung inflammation model to assess the accumulation and therapeutic efficacy of the liposomes in C57BL/6 mice, either by intravenous (IV), endotracheal (ET) or IV plus ET nanoparticles administrations. Using both administration methods, liposomes exhibited an increased accumulation profile in the inflamed lungs over 48 h. Interestingly, while IV-administrated liposomes distributed widely throughout the lung, ET liposomes were present in lungs parenchyma but were not detected at some distal regions of the lungs, possibly due to imperfect airflow regimes. Twenty hours after the different treatments, lungs were assessed for markers of inflammation. We found that the nanoparticle treatment had a superior therapeutic effect compared to free drugs in treating ARDS, reducing inflammation and TNFα, IL-6 and IL-1β cytokine secretion in bronchoalveolar lavage (BAL), and that the combined treatment, delivering nanoparticles IV and ET simultaneously, had the best outcome of all treatments. Interestingly, also the DPPC lipid component alone played a therapeutic role in reducing inflammatory markers in the lungs. Collectively, we show that therapeutic nanoparticles accumulate in inflamed lungs holding potential for treating lung disorders. Significance In this study we compare intravenous versus intratracheal delivery of nanoparticles for treating lung disorders, specifically, acute respiratory distress syndrome (ARDS). By co-loading two medications into lipid nanoparticles, we were able to reduce both inflammation and mucus secretion in the inflamed lungs. Both modes of delivery resulted in high nanoparticle accumulation in the lungs, intravenously administered nanoparticles reached lung endothelial while endotracheal delivery reached lung epithelial. Combining both delivery approaches simultaneously provided the best ARDS treatment outcome.
Collapse
Affiliation(s)
- Sivan Arber Raviv
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Mohammed Alyan
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel; The Interdisciplinary Program for Biotechnology, Technion, Haifa, 3200003, Israel
| | - Egor Egorov
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Agam Zano
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Moshit Yaskin Harush
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Calvin Pieters
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Hila Korach-Rechtman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Adi Saadya
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Galoz Kaneti
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Igor Nudelman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shai Farkash
- Department of Pathology, Emek Medical Center, Afula, Israel
| | - Ofri Doppelt Flikshtain
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lucy N Mekies
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Lilach Koren
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yoav Gal
- Office Of Assistant Minister of Defense for CBRN Defense, Ministry of Defense, Tel-Aviv, Israel
| | - Ella Dor
- Office Of Assistant Minister of Defense for CBRN Defense, Ministry of Defense, Tel-Aviv, Israel
| | - Janna Shainsky
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Jeny Shklover
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Yochai Adir
- Pulmonary Division, Lady Davis, Carmel Medical Center, Faculty of Medicine, The Technion Institute of Technology, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
6
|
Voicescu M, Craciunescu O, Angelescu DG, Tatia R, Moldovan L. Spectroscopic, molecular dynamics simulation and biological studies of Flavin MonoNucleotide and Flavin Adenine Dinucleotide in biomimetic systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118997. [PMID: 33032115 DOI: 10.1016/j.saa.2020.118997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The present study describes a comprehensive investigation of the spectroscopic characteristics, stability and in vitro antioxidant and cytotoxic properties of the Flavin MonoNucleotide (FMN) and Flavin Adenine Dinucleotide (FAD) in Dextran70 (Dx70) and Dx70/phospatidylcholine (PC) biomimetic systems by means of the UV-Vis absorption, fluorescence spectroscopy, chemiluminescence and Neutral Red assay. The affinity of FMN, FAD and the precursor riboflavin (RF) to an unsaturated phospholipid bilayer model as well as the location of the probes within the lipid bilayer were assessed from united-atom molecular dynamics simulations carried out on an unsaturated phospholipid bilayer model system, and the theoretical and experimental characterization of the two probes within biomembranes was complemented with the light microscopy survey of the cell morphology of L929 fibroblast cells cultivated in the presence of various dosage of FAD/FMN. In lipid bilayers, FMN/FAD resulted in a noticeable improvement of the antioxidant activity (the scavenging of reactive oxygen species up to 40%) and a significant effect on cellular viability in the L929 fibroblast cells. The results are important in the oxidative stress process concerning the redox reactions of flavins in humans as well as in further studies on different systems belonging to the category of flavoenzymes/flavoproteins, required for cellular respiration.
Collapse
Affiliation(s)
- Mariana Voicescu
- Romanian Academy, Institute of Physical Chemistry "Ilie Murgulescu", Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Oana Craciunescu
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Daniel G Angelescu
- Romanian Academy, Institute of Physical Chemistry "Ilie Murgulescu", Splaiul Independentei 202, 060021 Bucharest, Romania
| | - Rodica Tatia
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Lucia Moldovan
- Department of Cellular and Molecular Biology, National Institute of R&D for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| |
Collapse
|
7
|
Palusińska-Szysz M, Szuster-Ciesielska A, Janczarek M, Wdowiak-Wróbel S, Schiller J, Reszczyńska E, Gruszecki WI, Fuchs B. Genetic diversity of Legionella pcs and pmtA genes and the effect of utilization of choline by Legionella spp. on induction of proinflammatory cytokines. Pathog Dis 2020; 77:5645234. [PMID: 31778176 DOI: 10.1093/femspd/ftz065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Legionella species synthesize phosphatidylcholine (PC) in two independent pathways: the three-step methylation of phosphatidylethanolamine PMT pathway and the one-step PCS pathway, in which the Pcs enzyme catalyzes the reaction between choline and CDP-diacylglycerol to form PC. Legionella pcs genes encode highly hydrophobic proteins with phosphatidylcholine synthase activity, which contain up to eight transmembrane helices with N- and C-termini located inside the bacterial cell. The comparative analysis of nucleotide sequences of pcs showed that these genes share high sequence identity among members of the Legionellaceae family. Legionella pmtA genes involved in the PMT pathway encoded small cytosolic proteins with putative phosphatidylethanolamine N-methyltransferase activity. The pmtA genes identified in Legionella species had lower sequence identity to each other than the pcs genes. The phylogenetic tree constructed based on the pcs and pmtA gene sequences showed phylogenetic relatedness between Legionella spp. and other bacteria. The utilization of extracellular choline by the four Legionella species leads to changes not only in the lipid components but also in proteins, and the interactions between these components lead to changes in cell surface properties, which result in a decline in induction of proinflammatory cytokines (TNF-α and IL-6).
Collapse
Affiliation(s)
- Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Hartelstr. 16/18, D-04107, Leipzig, Germany
| | - Emilia Reszczyńska
- Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Dummerstorf, Germany
| | - Wiesław I Gruszecki
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Lublin, Poland
| | - Beate Fuchs
- Department of Biophysics, Faculty of Mathematics, Physics and Computer Science, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 1, 20-031 Lublin, Lublin, Poland
| |
Collapse
|
8
|
Kang WY, Thompson PT, El-Amouri SS, Fan TWM, Lane AN, Higashi RM. Improved segmented-scan spectral stitching for stable isotope resolved metabolomics (SIRM) by ultra-high-resolution Fourier transform mass spectrometry. Anal Chim Acta 2019; 1080:104-115. [PMID: 31409459 DOI: 10.1016/j.aca.2019.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/25/2022]
Abstract
We have implemented a linear ion trap (LIT)-based SIM-stitching method for ultra-high-resolution Fourier transform mass spectrometry (FTMS) that increases the S/N over a wide m/z range compared to non-segmented wide full-scan (WFS) spectra. Here we described an improved segmented spectral scan stitching method that was based on quadrupole mass filter (QMF)-SIM, which overcame previous limitations of ion signal loss in LIT. This allowed for accurate representation of isotopologue distributions, both at natural abundance and in stable isotope-resolved metabolomics (SIRM)-based experiments. We also introduced a new spectral binning method that provided more precise and resolution-independent bins for irreversibly noise-suppressed FTMS spectra. We demonstrated a substantial improvement in S/N and sensitivity (typically > 10-fold) for 13C labeled lipid extracts of human macrophages grown as three-dimensional (3D) cell culture, with detection of an increased number of 13C isotopologue ions. The method also enabled analysis of extracts from very limited biological samples.
Collapse
Affiliation(s)
- Woo-Young Kang
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Patrick T Thompson
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Salim S El-Amouri
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Teresa W M Fan
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry (CESB), Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, United States.
| |
Collapse
|
9
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Roy K, Mandloi S, Chakrabarti S, Roy S. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy. PLoS Negl Trop Dis 2016; 10:e0004710. [PMID: 27214205 PMCID: PMC4877013 DOI: 10.1371/journal.pntd.0004710] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/23/2016] [Indexed: 12/20/2022] Open
Abstract
Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of the peptide. Furthermore, liposomal delivery of cholesterol in I-MΦ restored its normal antigen presenting function. This observation brings strength to our previous observation on host directed therapeutic application of liposomal cholesterol in experimental visceral leishmaniasis. The disease visceral leishmaniasis is caused by the protozoan parasite Leishmania donovani (LD). One of the hallmarks of the disease is immune suppression. The parasites replicate within the macrophages and dendritic cells, and such cells are known as antigen presenting cells (APCs). APCs present peptide to T-helper cells in association with the transplantation antigen-II (MHC-II). The infected macrophages show decrease in membrane cholesterol leading to increase in membrane fluidity. The membrane cholesterol is important for maintaining conformation of membrane proteins. Here we show that conformation of MHC-II protein is altered in parasitized macrophages, which results faster dissociation of peptide from peptide-MHC-II complex as compared to normal counterpart. The conformational change in MHC-II protein is also supported by molecular dynamic simulation studies, as there is considerable structural fluctuation of MHC-II peptide binding domain in presence and absence of cholesterol. This observation indicated that cholesterol is important for maintaining conformation of MHC-II protein and stability of the peptide-MHC complex. Thus, Leishmania parasites by modulating membrane cholesterol influence above processes leading to defective T-cell stimulation in leishmaniasis. The above defects displayed by infected macrophages could be corrected by liposomal delivery of cholesterol indicating a possible therapeutic role of liposomal cholesterol in infection.
Collapse
Affiliation(s)
- Koushik Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sapan Mandloi
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SC); (SR)
| | - Syamal Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SC); (SR)
| |
Collapse
|
11
|
Glaser K, Fehrholz M, Curstedt T, Kunzmann S, Speer CP. Effects of the New Generation Synthetic Reconstituted Surfactant CHF5633 on Pro- and Anti-Inflammatory Cytokine Expression in Native and LPS-Stimulated Adult CD14+ Monocytes. PLoS One 2016; 11:e0146898. [PMID: 26790130 PMCID: PMC4720484 DOI: 10.1371/journal.pone.0146898] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/24/2015] [Indexed: 02/01/2023] Open
Abstract
Background Surfactant replacement therapy is the standard of care for the prevention and treatment of neonatal respiratory distress syndrome. New generation synthetic surfactants represent a promising alternative to animal-derived surfactants. CHF5633, a new generation reconstituted synthetic surfactant containing SP-B and SP-C analogs and two synthetic phospholipids has demonstrated biophysical effectiveness in vitro and in vivo. While several surfactant preparations have previously been ascribed immunomodulatory capacities, in vitro data on immunomodulation by CHF5633 are limited, so far. Our study aimed to investigate pro- and anti-inflammatory effects of CHF5633 on native and LPS-stimulated human adult monocytes. Methods Highly purified adult CD14+ cells, either native or simultaneously stimulated with LPS, were exposed to CHF5633, its components, or poractant alfa (Curosurf®). Subsequent expression of TNF-α, IL-1β, IL-8 and IL-10 mRNA was quantified by real-time quantitative PCR, corresponding intracellular cytokine synthesis was analyzed by flow cytometry. Potential effects on TLR2 and TLR4 mRNA and protein expression were monitored by qPCR and flow cytometry. Results Neither CHF5633 nor any of its components induced inflammation or apoptosis in native adult CD14+ monocytes. Moreover, LPS-induced pro-inflammatory responses were not aggravated by simultaneous exposure of monocytes to CHF5633 or its components. In LPS-stimulated monocytes, exposure to CHF5633 led to a significant decrease in TNF-α mRNA (0.57 ± 0.23-fold, p = 0.043 at 4h; 0.56 ± 0.27-fold, p = 0.042 at 14h). Reduction of LPS-induced IL-1β mRNA expression was not significant (0.73 ± 0.16, p = 0.17 at 4h). LPS-induced IL-8 and IL-10 mRNA and protein expression were unaffected by CHF5633. For all cytokines, the observed CHF5633 effects paralleled a Curosurf®-induced modulation of cytokine response. TLR2 and TLR4 mRNA and protein expression were not affected by CHF5633 and Curosurf®, neither in native nor in LPS-stimulated adult monocytes. Conclusion The new generation reconstituted synthetic surfactant CHF5633 was tested for potential immunomodulation on native and LPS-activated adult human monocytes. Our data confirm that CHF5633 does not exert unintended pro-inflammatory effects in both settings. On the contrary, CHF5633 significantly suppressed TNF-α mRNA expression in LPS-stimulated adult monocytes, indicating potential anti-inflammatory effects.
Collapse
Affiliation(s)
- Kirsten Glaser
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Markus Fehrholz
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Tore Curstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| | - Steffen Kunzmann
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| | - Christian P. Speer
- University Children´s Hospital, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Effect of natural porcine surfactant in Staphylococcus aureus induced pro-inflammatory cytokines and reactive oxygen species generation in monocytes and neutrophils from human blood. Int Immunopharmacol 2014; 21:369-74. [DOI: 10.1016/j.intimp.2014.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
13
|
Moliva JI, Rajaram MVS, Sidiki S, Sasindran SJ, Guirado E, Pan XJ, Wang SH, Ross P, Lafuse WP, Schlesinger LS, Turner J, Torrelles JB. Molecular composition of the alveolar lining fluid in the aging lung. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9633. [PMID: 24584696 PMCID: PMC4082594 DOI: 10.1007/s11357-014-9633-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/14/2014] [Indexed: 06/01/2023]
Abstract
As we age, there is an increased risk for the development of pulmonary diseases, including infections, but few studies have considered changes in lung surfactant and components of the innate immune system as contributing factors to the increased susceptibility of the elderly to succumb to infections. We and others have demonstrated that human alveolar lining fluid (ALF) components, such as surfactant protein (SP)-A, SP-D, complement protein C3, and alveolar hydrolases, play a significant innate immune role in controlling microbial infections. However, there is a lack of information regarding the effect of increasing age on the level and function of ALF components in the lung. Here we addressed this gap in knowledge by determining the levels of ALF components in the aging lung that are important in controlling infection. Our findings demonstrate that pro-inflammatory cytokines, surfactant proteins and lipids, and complement components are significantly altered in the aged lung in both mice and humans. Further, we show that the aging lung is a relatively oxidized environment. Our study provides new information on how the pulmonary environment in old age can potentially modify mucosal immune responses, thereby impacting pulmonary infections and other pulmonary diseases in the elderly population.
Collapse
Affiliation(s)
- Juan I. Moliva
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
| | - Murugesan V. S. Rajaram
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Sabeen Sidiki
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
| | - Smitha J. Sasindran
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
| | - Evelyn Guirado
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
| | - Xueliang Jeff Pan
- />Center for Biostatistics, The Ohio State University, Columbus, OH USA
| | - Shu-Hua Wang
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Division of Infectious Diseases, Department of Internal Medicine, The Ohio State University, Columbus, OH USA
| | - Patrick Ross
- />Division of Thoracic Surgery, Department of Surgery, The Ohio State University, Columbus, OH USA
| | - William P. Lafuse
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Larry S. Schlesinger
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Joanne Turner
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| | - Jordi B. Torrelles
- />Center for Microbial Interface Biology, The Ohio State University, Columbus, OH USA
- />Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH USA
| |
Collapse
|
14
|
Legionella dumoffii utilizes exogenous choline for phosphatidylcholine synthesis. Int J Mol Sci 2014; 15:8256-79. [PMID: 24821544 PMCID: PMC4057730 DOI: 10.3390/ijms15058256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 12/05/2022] Open
Abstract
Phosphatidycholine (PC) is the major membrane-forming phospholipid in eukaryotes but it has been found in only a limited number of prokaryotes. Bacteria synthesize PC via the phospholipid N-methylation pathway (Pmt) or via the phosphatidylcholine synthase pathway (Pcs) or both. Here, we demonstrated that Legionella dumoffii has the ability to utilize exogenous choline for phosphatidylcholine (PC) synthesis when bacteria grow in the presence of choline. The Pcs seems to be a primary pathway for synthesis of this phospholipid in L. dumoffii. Structurally different PC species were distributed in the outer and inner membranes. As shown by the LC/ESI-MS analyses, PC15:0/15:0, PC16:0/15:0, and PC17:0/17:1 were identified in the outer membrane and PC14:0/16:0, PC16:0/17:1, and PC20:0/15:0 in the inner membrane. L. dumoffii pcsA gene encoding phosphatidylcholine synthase revealed the highest sequence identity to pcsA of L. bozemanae (82%) and L. longbeachae (81%) and lower identity to pcsA of L. drancourtii (78%) and L. pneumophila (71%). The level of TNF-α in THP1-differentiated cells induced by live and temperature-killed L. dumoffii cultured on a medium supplemented with choline was assessed. Live L. dumoffii bacteria cultured on the choline-supplemented medium induced TNF-α three-fold less efficiently than cells grown on the non-supplemented medium. There is an evident effect of PC modification, which impairs the macrophage inflammatory response.
Collapse
|
15
|
Bersani I, Kunzmann S, Speer CP. Immunomodulatory properties of surfactant preparations. Expert Rev Anti Infect Ther 2013; 11:99-110. [PMID: 23428105 DOI: 10.1586/eri.12.156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Surfactant replacement significantly decreased acute pulmonary morbidity and mortality among preterm neonates with respiratory distress syndrome. Besides improving lung function and oxygenation, surfactant is also a key modulator of pulmonary innate and acquired immunity regulating lung inflammatory processes. In this review, we describe the immunomodulatory features of surfactant preparations. Various surfactant preparations decrease the proinflammatory cytokine and chemokine release, the oxidative burst activity, and the nitric oxide production in lung inflammatory cells such as alveolar neutrophils, monocytes and macrophages; they also affect lymphocyte proliferative response and immunoglobulin production, as well as natural killer and lymphokine-activated killer cell activity. In addition, surfactant preparations are involved in airway remodeling, as they decrease lung fibroblast proliferation capacity and the release of mediators involved in remodeling. Moreover, they increase cell transepithelial resistance and VEGF synthesis in lung epithelial cells. A number of different signaling pathways and molecules are involved in these processes. Because the inhibition of local immune response may decrease lung injury, surfactant therapeutic efficacy may be related not only to its biophysical characteristics but, at least in part, to its anti-inflammatory features and its effects on remodeling processes. However, further studies are required to identify which surfactant preparation ensures the highest anti-inflammatory activity, thereby potentially decreasing the inflammatory process underlying respiratory distress syndrome. In perspective, detailed characterization of these anti-inflammatory effects could help to improve the next generation of surfactant preparations.
Collapse
Affiliation(s)
- Iliana Bersani
- University Children's Hospital, University of Würzburg, Germany
| | | | | |
Collapse
|
16
|
|
17
|
Dietary Phosphatidylcholine Supplementation Attenuates Inflammatory Mucosal Damage in a Rat Model of Experimental Colitis. Shock 2012; 38:177-85. [DOI: 10.1097/shk.0b013e31825d1ed0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Hansen C, Hansen EW, Hansen HR, Gammelgaard B, Stürup S. Reduction of Sb(V) in a human macrophage cell line measured by HPLC-ICP-MS. Biol Trace Elem Res 2011; 144:234-43. [PMID: 21618006 DOI: 10.1007/s12011-011-9079-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 05/10/2011] [Indexed: 11/28/2022]
Abstract
Drugs based on pentavalent antimony are first-line treatment of the parasite disease leishmaniasis. It is generally believed that Sb(V) acts as a prodrug, which is activated by reduction to Sb(III); however, the site of reduction is not known. It has been hypothesised that the reduction takes place in the parasites' host cells, the macrophages. In this study, the human macrophage cell line Mono Mac 6 was exposed to Sb(V) in form of the drug sodium stibogluconate (Pentostam™). Cell extracts were analysed for Sb species by high-performance liquid chromatography with inductively coupled plasma-mass spectrometry detection. We found that Sb(V) is actually reduced to Sb(III) in the macrophages; up to 23% of the intracellular Sb was found as Sb(III). Transfer of the cells to Sb-free medium rapidly decreased their Sb(V) and Sb(III) content. Induction of the cell's production of reactive oxygen species did not have any marked effect on the intracellular amounts of Sb(III).
Collapse
Affiliation(s)
- Claus Hansen
- Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK, 2100, Copenhagen Ø, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Fadel O, El Kirat K, Morandat S. The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:2973-80. [PMID: 21864504 DOI: 10.1016/j.bbamem.2011.08.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/26/2011] [Accepted: 08/04/2011] [Indexed: 01/12/2023]
Abstract
Exogenous molecules from dietary sources such as polyphenols are very efficient in preventing the alteration of lipid membranes by oxidative stress. Among the polyphenols, we have chosen to study rosmarinic acid (RA). We investigated the efficiency of RA in preventing lipid peroxidation and in interacting with lipids. We used liposomes of 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) to show that RA was an efficient antioxidant. By HPLC, we determined that the maximum amount of RA associated with the lipids was ~1 mol%. Moreover, by using Langmuir monolayers, we evidenced that cholesterol decreases the penetration of RA. The investigation of transferred lipid/RA monolayers by atomic force microscopy revealed that 1 mol% of RA in the membrane was not sufficient to alter the membrane structure at the nanoscale. By fluorescence, we observed no significant modification of membrane permeability and fluidity caused by the interaction with RA. We also deduced that RA molecules were mainly located among the polar headgroups of the lipids. Finally, we prepared DLPC/RA vesicles to evidence for the first time that up to 1 mol% of RA inserts spontaneously in the membrane, which is high enough to fully prevent lipid peroxidation without any noticeable alteration of the membrane structure due to RA insertion.
Collapse
Affiliation(s)
- Ophélie Fadel
- Université de Technologie de Compiègne-CNRS, UMR 6022 Génie Enzymatique et Cellulaire, BP 20529, 60205 Compiègne Cedex, France
| | | | | |
Collapse
|
20
|
Kandasamy P, Zarini S, Chan ED, Leslie CC, Murphy RC, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits Mycoplasma pneumoniae-stimulated eicosanoid production from human and mouse macrophages. J Biol Chem 2011; 286:7841-7853. [PMID: 21205826 DOI: 10.1074/jbc.m110.170241] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma pneumoniae is a human pathogen causing respiratory infections that are also associated with serious exacerbations of chronic lung diseases. Membranes and lipoproteins from M. pneumoniae induced a 4-fold increase in arachidonic acid (AA) release from RAW264.7 and a 2-fold increase in AA release from primary human alveolar macrophages. The bacterial lipoprotein mimic and TLR2/1 agonist Pam3Cys and the TLR2/6 agonist MALP-2 produced effects similar to those elicited by M. pneumoniae in macrophages by inducing the phosphorylation of p38(MAPK) and p44/42(ERK1/2) MAP kinases and cyclooxygenase-2 (COX-2) expression. M. pneumoniae induced the generation of prostaglandins PGD(2) and PGE(2) from RAW264.7 cells and thromboxane B(2) (TXB(2)) from human alveolar macrophages. Anti-TLR2 antibody completely abolished M. pneumoniae-induced AA release and TNFα secretion from RAW264.7 cells and human alveolar macrophages. Disruption of the phosphorylation of p44/42(ERK1/2) or inactivation of cytosolic phospholipase A(2)α (cPLA(2)α) completely inhibited M. pneumoniae-induced AA release from macrophages. The minor pulmonary surfactant phospholipid, palmitoyl-oleoyl-phosphatidylglycerol (POPG), antagonized the proinflammatory actions of M. pneumoniae, Pam3Cys, and MALP-2 by reducing the production of AA metabolites from macrophages. The effect of POPG was specific, insofar as saturated PG, and saturated and unsaturated phosphatidylcholines did not have significant effect on M. pneumoniae-induced AA release. Collectively, these data demonstrate that M. pneumoniae stimulates the production of eicosanoids from macrophages through TLR2, and POPG suppresses this pathogen-induced response.
Collapse
Affiliation(s)
| | - Simona Zarini
- the Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80011
| | | | - Christina C Leslie
- the Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80011; Pediatrics, National Jewish Health, Denver, Colorado, 80206 and
| | - Robert C Murphy
- the Department of Pharmacology, University of Colorado Denver School of Medicine, Aurora, Colorado 80011
| | | |
Collapse
|
21
|
Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 2010; 51:334-44. [PMID: 19648651 PMCID: PMC2803235 DOI: 10.1194/jlr.m000513] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/01/2009] [Indexed: 01/24/2023] Open
Abstract
In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta, Curosurf, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta, Curosurf, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids.
Collapse
Affiliation(s)
- Wondwossen Abate
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| | | | - Joan Parton
- Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | - Kenneth P. Jones
- School of Applied Sciences, University of Wales Institute Cardiff, Cardiff, UK
| | - Simon K. Jackson
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| |
Collapse
|
22
|
Hartmann P, Szabó A, Erős G, Gurabi D, Horváth G, Németh I, Ghyczy M, Boros M. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol 2009; 622:58-64. [DOI: 10.1016/j.ejphar.2009.09.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/27/2009] [Accepted: 09/08/2009] [Indexed: 12/11/2022]
|
23
|
Erős G, Ibrahim S, Siebert N, Boros M, Vollmar B. Oral phosphatidylcholine pretreatment alleviates the signs of experimental rheumatoid arthritis. Arthritis Res Ther 2009; 11:R43. [PMID: 19296835 PMCID: PMC2688190 DOI: 10.1186/ar2651] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/16/2009] [Accepted: 03/18/2009] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Phosphatidylcholine and phosphatidylcholine-derived metabolites exhibit anti-inflammatory properties in various stress conditions. We hypothesized that dietary phosphatidylcholine may potentially function as an anti-inflammatory substance and may decrease inflammatory activation in a chronic murine model of rheumatoid arthritis (collagen-induced arthritis). METHODS The experiments were performed on male DBA1/J mice. In groups 1 to 3 (n = 10 each), collagen-induced arthritis was induced by administration of bovine collagen II. In group 2 the animals were fed ad libitum with phosphatidylcholine-enriched diet as a pretreatment, while the animals of group 3 received this nourishment as a therapy, after the onset of the disease. The severity of the disease and inflammation-linked hyperalgesia were evaluated with semiquantitative scoring systems, while the venular leukocyte-endothelial cell interactions and functional capillary density were assessed by means of in vivo fluorescence microscopy of the synovial tissue. Additionally, the mRNA expressions of cannabinoid receptors 1 and 2, TNFalpha and endothelial and inducible nitric oxide synthase were determined, and classical histological analysis was performed. RESULTS Phosphatidylcholine pretreatment reduced the collagen-induced arthritis-induced hypersensitivity, and decreased the number of leukocyte-endothelial cell interactions and the extent of functional capillary density as compared with those of group 1. It also ameliorated the tissue damage and decreased inducible nitric oxide synthase expression. The expressions of the cannabinoid receptors and TNFalpha were not influenced by the phosphatidylcholine intake. Phosphatidylcholine-enriched food administrated as therapy failed to evoke the aforementioned changes, apart from the reduction of the inducible nitric oxide synthase expression. CONCLUSIONS Phosphatidylcholine-enriched food as pretreatment, but not as therapy, appears to exert beneficial effects on the morphological, functional and microcirculatory characteristics of chronic arthritis. We propose that oral phosphatidylcholine may be a preventive approach in ameliorating experimental rheumatoid arthritis-induced joint damage.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/prevention & control
- Blood Circulation
- Male
- Mice
- Microscopy, Fluorescence
- Nitric Oxide Synthase Type II/biosynthesis
- Nitric Oxide Synthase Type III/biosynthesis
- Phosphatidylcholines/administration & dosage
- Receptor, Cannabinoid, CB1/biosynthesis
- Receptor, Cannabinoid, CB2/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Synovial Membrane/blood supply
- Synovial Membrane/pathology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Gabor Erős
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
- Institute of Surgical Research, University of Szeged, Pécsi u. 6, Szeged H-6720, Hungary
| | - Saleh Ibrahim
- Immunogenetics Group, University of Rostock, Schillingallee 70, Rostock D-18057, Germany
| | - Nikolai Siebert
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
| | - Mihály Boros
- Institute of Surgical Research, University of Szeged, Pécsi u. 6, Szeged H-6720, Hungary
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Schillingallee 69a, Rostock D-18057, Germany
| |
Collapse
|
24
|
Morris RHK, Tonks AJ, Jones KP, Ahluwalia MK, Thomas AW, Tonks A, Jackson SK. DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB. Biochem Biophys Res Commun 2008; 370:174-8. [PMID: 18355441 DOI: 10.1016/j.bbrc.2008.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 01/08/2023]
Abstract
The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE(2) (P<0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-kappaB activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also show that changing the fatty acid groups of PC (e.g. using l-alpha-phosphatidylcholine beta-arachidonoyl-gamma-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2.
Collapse
Affiliation(s)
- R H K Morris
- Cardiff School of Health Sciences, University of Wales Institute Cardiff, Western Avenue, Llandaff, Cardiff, Wales CF5 2YB, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Blanco O, Pérez-Gil J. Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 2007; 568:1-15. [PMID: 17543939 DOI: 10.1016/j.ejphar.2007.04.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 12/01/2022]
Abstract
The pharmaceutical application of exogenous natural pulmonary surfactant preparations has shown its efficiency in the therapeutical treatment of infants with Respiratory Distress Syndrome. At the same time, the use of these preparations in patients with Acute Respiratory Distress Syndrome, although not still an effective therapy, shows promising results. The analysis of composition, structure and surface activity of some of the different natural surfactant preparations available today for clinical use reveals important differences, a fact that opens horizons in the optimization of new effective formulations in the treatment of the Acute Respiratory Distress Syndrome. The purpose of this review is to carry out an updating of the current models interpreting the role of the main components of pulmonary surfactant as a reference to evaluate the biochemical composition of the preparations of exogenous natural pulmonary surfactant currently in use and their apparent pharmacological effect.
Collapse
Affiliation(s)
- Odalys Blanco
- Chemical-Pharmacology-Toxicology Group, Direction of Health and Animal Production, National Center of Agropecuary Sanity, Havana, Cuba
| | | |
Collapse
|
26
|
Tonks A, Parton J, Tonks AJ, Morris RHK, Finall A, Jones KP, Jackson SK. Surfactant phospholipid DPPC downregulates monocyte respiratory burst via modulation of PKC. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1070-80. [PMID: 15681395 DOI: 10.1152/ajplung.00386.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant phospholipids have been shown previously to regulate inflammatory functions of human monocytes. This study was undertaken to delineate the mechanisms by which pulmonary surfactant modulates the respiratory burst in a human monocytic cell line, MonoMac-6 (MM6). Preincubation of MM6 cells with the surfactant preparations Survanta, Curosurf, or Exosurf Neonatal inhibited the oxidative response to either lipopolysaccharide (LPS) and zymosan or phorbol 12-myristate 13-acetate (PMA) by up to 50% ( P < 0.01). Preincubation of MM6 cells and human peripheral blood monocytes with dipalmitoyl phosphatidylcholine (DPPC), the major phospholipid component of surfactant, inhibited the oxidative response to zymosan. DPPC did not directly affect the activity of the NADPH oxidase in a MM6 reconstituted cell system, suggesting that DPPC does not affect the assembly of the individual components of this enzyme into a functional unit. The effects of DPPC were evaluated on both LPS/zymosan and PMA activation of protein kinase C (PKC), a ubiquitous intracellular kinase, in MM6 cells. We found that DPPC significantly inhibited the activity of PKC in stimulated cells by 70% ( P < 0.01). Western blotting experiments demonstrated that DPPC was able to attenuate the activation of the PKCδ isoform but not PKCα. These results suggest that DPPC, the major component of pulmonary surfactant, plays a role in modulating leukocyte inflammatory responses in the lung via downregulation of PKC, a mechanism that may involve the PKCδ isoform.
Collapse
Affiliation(s)
- Alex Tonks
- Dept. of Haematology, School of Medicine, Wales College of Medicine, Cardiff Univ., Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Harada S, Yusa K, Monde K, Akaike T, Maeda Y. Influence of membrane fluidity on human immunodeficiency virus type 1 entry. Biochem Biophys Res Commun 2005; 329:480-6. [PMID: 15737612 DOI: 10.1016/j.bbrc.2005.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Indexed: 11/25/2022]
Abstract
For penetration of human immunodeficiency virus type 1 (HIV-1), formation of fusion-pores might be required for accumulating critical numbers of fusion-activated gp41, followed by multiple-site binding of gp120 with receptors, with the help of fluidization of the plasma membrane and viral envelope. Correlation between HIV-1 infectivity and fluidity was observed by treatment of fluidity-modulators, indicating that infectivity was dependent on fluidity. A 5% decrease in fluidity suppressed the HIV-1 infectivity by 56%. Contrarily, a 5% increase in fluidity augmented the infectivity by 2.4-fold. An increased temperature of 40 degrees C or treatment of 0.2% xylocaine after viral adsorption at room temperature enhanced the infectivity by 2.6- and 1.5-fold, respectively. These were inhibited by anti-CXCR4 peptide, implying that multiple-site binding was accelerated at 40 degrees C or by xylocaine. Thus, fluidity of both the plasma membrane and viral envelope was required to form the fusion-pore and to complete the entry of HIV-1.
Collapse
Affiliation(s)
- Shinji Harada
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | | | | | | | |
Collapse
|
28
|
Bonnans C, Chanez P, Chavis C. Lipoxins in asthma: potential therapeutic mediators on bronchial inflammation? Allergy 2004; 59:1027-41. [PMID: 15355460 DOI: 10.1111/j.1398-9995.2004.00617.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Arachidonic acid metabolism represents an important source of mediators with ambivalent actions. Among these, lipoxins (LXs) are the first agents identified and recognized as anti-inflammatory endogenous lipid mediators, which are involved in the resolution of inflammation and are present in the airways of asthmatic patients. Lipoxins result mainly from the interaction between 5 and 15-lipoxygenases (LO) and their levels are modulated by the degree of bronchial inflammation as well as by the long-term glucocorticoid treatments. In the airways, LX synthesis is higher in mild asthmatics than in severe asthmatics, whereas in vitro chemokine release inhibition by LXs is more effective in cells from severe asthmatics than from mild asthmatics. LipoxinA(4) effects on interleukin (IL)-8 released by blood mononuclear cells and on calcium influx in epithelial cells are mediated by the specific receptor ALX. Lipoxin generation by lung epithelial cells depends mainly on 15-LO activity. Mild asthmatics present higher 15-LOb expression at the epithelium level than severe patients, whereas the LX deficit in severe asthma is associated with an up-regulation of the 15-LOa expressions. Therefore, bronchial epithelial cells become a target for therapeutic intervention and LXs represent a potential therapeutic solution for bronchial inflammation resolution in asthma.
Collapse
Affiliation(s)
- C Bonnans
- Inserm U454-IFR 3, Clinique des Maladies Respiratoires, CHU de Montpellier, France
| | | | | |
Collapse
|
29
|
Crowther JE, Kutala VK, Kuppusamy P, Ferguson JS, Beharka AA, Zweier JL, McCormack FX, Schlesinger LS. Pulmonary surfactant protein a inhibits macrophage reactive oxygen intermediate production in response to stimuli by reducing NADPH oxidase activity. THE JOURNAL OF IMMUNOLOGY 2004; 172:6866-74. [PMID: 15153505 DOI: 10.4049/jimmunol.172.11.6866] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alveolar macrophages are important host defense cells in the human lung that continuously phagocytose environmental and infectious particles that invade the alveolar space. Alveolar macrophages are prototypical alternatively activated macrophages, with up-regulated innate immune receptor expression, down-regulated costimulatory molecule expression, and limited production of reactive oxygen intermediates (ROI) in response to stimuli. Surfactant protein A (SP-A) is an abundant protein in pulmonary surfactant that has been shown to alter several macrophage (Mphi) immune functions. Data regarding SP-A effects on ROI production are contradictory, and lacking with regard to human Mphi. In this study, we examined the effects of SP-A on the oxidative response of human Mphi to particulate and soluble stimuli using fluorescent and biochemical assays, as well as electron paramagnetic resonance spectroscopy. SP-A significantly reduced Mphi superoxide production in response to the phorbol ester PMA and to serum-opsonized zymosan (OpZy), independent of any effect by SP-A on zymosan phagocytosis. SP-A was not found to scavenge superoxide. We measured Mphi oxygen consumption in response to stimuli using a new oxygen-sensitive electron paramagnetic resonance probe to determine the effects of SP-A on NADPH oxidase activity. SP-A significantly decreased Mphi oxygen consumption in response to PMA and OpZy. Additionally, SP-A reduced the association of NADPH oxidase component p47(phox) with OpZy phagosomes as determined by confocal microscopy, suggesting that SP-A inhibits NADPH oxidase activity by altering oxidase assembly on phagosomal membranes. These data support an anti-inflammatory role for SP-A in pulmonary homeostasis by inhibiting Mphi production of ROI through a reduction in NADPH oxidase activity.
Collapse
Affiliation(s)
- Joy E Crowther
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52240, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tonks AJ, Tonks A, Morris RHK, Jones KP, Jackson SK. Regulation of platelet-activating factor synthesis in human monocytes by dipalmitoyl phosphatidylcholine. J Leukoc Biol 2003; 74:95-101. [PMID: 12832447 DOI: 10.1189/jlb.1202601] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Platelet-activating factor (PAF) has a major role in inflammatory responses within the lung. This study investigates the effect of pulmonary surfactant on the synthesis of PAF in human monocytic cells. The pulmonary surfactant preparation Curosurf significantly inhibited lipopolysaccharide (LPS)-stimulated PAF biosynthesis (P<0.01) in a human monocytic cell line, Mono mac-6 (MM6), as determined by (3)H PAF scintillation-proximity assay. The inhibitory properties of surfactant were determined to be associated, at least in part, with the 1,2-dipalmitoyl phosphatidylcholine (DPPC) component of surfactant. DPPC alone also inhibited LPS-stimulated PAF biosynthesis in human peripheral blood monocytes. DPPC treatment did not affect LPS-stimulated phospholipase A(2) activity in MM6 cell lysates. However, DPPC significantly inhibited LPS-stimulated coenzyme A (CoA)-independent transacylase and acetyl CoA:lyso-PAF acetyltransferase activity. DPPC treatment of MM6 cells decreased plasma membrane fluidity as demonstrated by electron paramagnetic resonance spectroscopy coupled with spin labeling. Taken together, these findings indicate that pulmonary surfactant, particularly the DPPC component, can inhibit LPS-stimulated PAF production via perturbation of the cell membrane, which inhibits the activity of specific membrane-associated enzymes involved in PAF biosynthesis.
Collapse
Affiliation(s)
- Amanda J Tonks
- Department of Haematology, University of Wales College of Medicine, Cardiff, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Vachier I, Chanez P, Bonnans C, Godard P, Bousquet J, Chavis C. Endogenous anti-inflammatory mediators from arachidonate in human neutrophils. Biochem Biophys Res Commun 2002; 290:219-24. [PMID: 11779156 DOI: 10.1006/bbrc.2001.6155] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eicosanoids have been historically involved in the pathogenesis of various inflammatory diseases. Lipoxins (LXs) and epi-LXs show physiological effects relevant to inflammation regulation. In this study, we focused on LX precursors based on the hypothesis that their entrance and metabolism into the cell may facilitate their targeting at the inflammation site. Because compound chirality is of considerable importance in the efficacy of therapeutic agents, our aim was to study the anti-inflammatory effects of various epimers of LXA(4) precursors compared to LXA(4). Blood polymorphonuclear cells (PMNs) were incubated with 15(S)- or 15(R)-hydroxyeicosatetraenoic acid (HETE), 14(R)-,15(S)-, or 14(S),15(S)-diHETE, and LXA(4) and then stimulated with the calcium ionophore A23187. We found that 15(R)-HETE rather than 15(S)-HETE was preferentially metabolized and that 15-epi-LXs were produced in larger amounts than LXs. In contrast, when PMNs were incubated with the diastereoisomers of 14,15(S)-diHETE, 14-epi-LXB(4) was produced in lower amounts than LXB(4). Enantiomers of 15-HETE and diastereoisomers of 14,15-diHETE and LXA(4) were able to significantly decrease LTB(4) release by PMNs. These results suggest a potential resolution of the inflammatory process through endogenous anti-inflammatory mediators released by the way of trans-cellular metabolism.
Collapse
Affiliation(s)
- I Vachier
- Inserm U 454, IFR-3, CHU de Montpellier, Hôpital Arnaud de Villenueve, 371 Av du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|