1
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Kubo Y, Izumida M, Yashima Y, Yoshii-Kamiyama H, Tanaka Y, Yasui K, Hayashi H, Matsuyama T. Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1. Oncotarget 2018; 7:71255-71273. [PMID: 27655726 PMCID: PMC5342076 DOI: 10.18632/oncotarget.12104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
The mechanism by which type II interferon (IFN) inhibits virus replications remains to be identified. Murine leukemia virus (MLV) replication was significantly restricted by γ-IFN, but not human immunodeficiency virus type 1 (HIV-1) replication. Because MLV enters host cells via endosomes, we speculated that certain cellular factors among γ-IFN-induced, endosome-localized proteins inhibit MLV replication. We found that γ-IFN-inducible lysosomal thiolreductase (GILT) significantly restricts HIV-1 replication as well as MLV replication by its thiolreductase activity. GILT silencing enhanced replication-defective HIV-1 vector infection and virion production in γ-IFN-treated cells, although γ-IFN did not inhibit HIV-1 replication. This result showed that GILT is required for the anti-viral activity of γ-IFN. Interestingly, GILT protein level was increased by γ-IFN in uninfected cells and env-deleted HIV-1-infected cells, but not in full-length HIV-1-infected cells. γ-IFN-induced transcription from the γ-IFN-activation sequence was attenuated by the HIV-1 Env protein. These results suggested that the γ-IFN cannot restrict HIV-1 replication due to the inhibition of γ-IFN signaling by HIV-1 Env. Finally, we found that 4,4′-dithiodipyridine (4-PDS), which inhibits S-S bond formation at acidic pH, significantly suppresses HIV-1 vector infection and virion production, like GILT. In conclusion, this study showed that GILT functions as a host restriction factor against the retroviruses, and a GILT mimic, 4-PDS, is the leading compound for the development of novel concept of anti-viral agents.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Mai Izumida
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuka Yashima
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Yoshii-Kamiyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Department of AIDS Research, Institute of Tropical Medicine, G-COE, Nagasaki University, Nagasaki, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kiyoshi Yasui
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Medical Sciences, Nagasaki University, Nagasaki, Japan.,Present address: Department of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Poor functional immune recovery in aged HIV-1-infected patients following successfully treatment with antiretroviral therapy. Hum Immunol 2015; 76:701-10. [PMID: 26429325 DOI: 10.1016/j.humimm.2015.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/21/2015] [Accepted: 09/27/2015] [Indexed: 01/09/2023]
Abstract
Aging is now a well-recognized characteristic of the HIV-infected population and both AIDS and aging are characterized by a deficiency of the T-cell compartment. The objective of the present study was to evaluate the impact of antiretroviral (ARV) therapy in recovering functional response of T cells to both HIV-1-specific ENV peptides (ENV) and tetanus toxoid (TT), in young and aged AIDS patients who responded to ARV therapy by controlling virus replication and elevating CD4(+) T cell counts. Here, we observed that proliferative response of T-cells to either HIV-1-specific Env peptides or tetanus toxoid (TT) was significantly lower in older antiretroviral (ARV)-treated patients. With regard to cytokine profile, lower levels of IFN-γ, IL-17 and IL-21, associated with elevated IL-10 release, were produced by Env- or TT-stimulated T-cells from older patients. The IL-10 neutralization by anti-IL-10 mAb did not elevate IFN-γ and IL-21 release in older patients. Finally, even after a booster dose of TT, reduced anti-TT IgG titers were quantified in older AIDS patients and it was related to both lower IL-21 and IFN-γ production and reduced frequency of central memory T-cells. Our results reveal that ARV therapy, despite the adequate recovery of CD4(+) T cell counts and suppression of viremia, was less efficient in recovering adequate immune response in older AIDS patients.
Collapse
|
4
|
HIV Infection Deregulates the Balance Between Regulatory T Cells and IL-2–Producing CD4 T Cells by Decreasing the Expression of the IL-2 Receptor in Treg. J Acquir Immune Defic Syndr 2014; 65:278-82. [DOI: 10.1097/qai.0000000000000092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Identifying chemicals with potential therapy of HIV based on protein-protein and protein-chemical interaction network. PLoS One 2013; 8:e65207. [PMID: 23762317 PMCID: PMC3675210 DOI: 10.1371/journal.pone.0065207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/23/2013] [Indexed: 12/27/2022] Open
Abstract
Acquired immune deficiency syndrome (AIDS) is a severe infectious disease that causes a large number of deaths every year. Traditional anti-AIDS drugs directly targeting the HIV-1 encoded enzymes including reverse transcriptase (RT), protease (PR) and integrase (IN) usually suffer from drug resistance after a period of treatment and serious side effects. In recent years, the emergence of numerous useful information of protein-protein interactions (PPI) in the HIV life cycle and related inhibitors makes PPI a new way for antiviral drug intervention. In this study, we identified 26 core human proteins involved in PPI between HIV-1 and host, that have great potential for HIV therapy. In addition, 280 chemicals that interact with three HIV drugs targeting human proteins can also interact with these 26 core proteins. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying novel anti-HIV drugs.
Collapse
|
6
|
Landires I, Núñez-Samudio V, Thèze J. Short communication: nuclear JAK3 and its involvement in CD4 activation in HIV-infected patients. AIDS Res Hum Retroviruses 2013; 29:784-7. [PMID: 23298197 DOI: 10.1089/aid.2012.0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The subcellular localization of JAK3 was examined by quantitative image analysis. For the first time, JAK3 was found to be located in the nuclei of primary CD4 lymphocytes. A comparable quantity of JAK3 was recovered in CD4 lymphocytes from healthy donors and HIV-infected patients. By contrast, far more phosphorylated JAK3 (pJAK3) was found in the nuclei of CD4 lymphocytes from HIV-infected patients than from healthy donors. The correlation detected between the quantity of pJAK3 in the nuclei of CD4 lymphocytes and the increase in HLA-DR at their surface suggests that pJAK3 may play a role in the deleterious immune activation characterizing HIV-infected patients.
Collapse
Affiliation(s)
- Ivan Landires
- Unité d'Immunogénétique Cellulaire, Département Infection et Epidémiologie et Département d'Immunologie, Institut Pasteur, Paris, France
| | - Virginia Núñez-Samudio
- Unidad de Microbiología y Salud Pública, Instituto de Ciencias Médicas, Las Tablas, Panamá
| | - Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Département Infection et Epidémiologie et Département d'Immunologie, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Characteristics of plasmacytoid dendritic cell and CD4+ T cell in HIV elite controllers. Clin Dev Immunol 2012; 2012:869505. [PMID: 23243424 PMCID: PMC3517220 DOI: 10.1155/2012/869505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/17/2022]
Abstract
Despite variability, the majority of HIV-1-infected individuals progress to AIDS characterized by high viral load and massive CD4+ T-cell depletion. However, there is a subset of HIV-1-positive individuals that does not progress and spontaneously maintains an undetectable viral load. This infrequent patient population is defined as HIV-1 controllers (HIV controllers), and represents less than 1% of HIV-1-infected patients. HIV-1-specific CD4+ T cells and the pool of central memory CD4+ T cells are also preserved despite immune activation due to HIV-1 infection. The majority of HIV controllers are also defined by the absence of massive CD4+ T-cell depletion, even after 10 years of infection. However, the mechanisms involved in protection against HIV-1 disease progression have not been elucidated yet. Controllers represent a heterogeneous population; we describe in this paper some common characteristics concerning innate immune response and CD4+ T cells of HIV controllers.
Collapse
|
8
|
Thèze J, Chakrabarti LA, Vingert B, Porichis F, Kaufmann DE. HIV controllers: a multifactorial phenotype of spontaneous viral suppression. Clin Immunol 2011; 141:15-30. [PMID: 21865089 DOI: 10.1016/j.clim.2011.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/23/2011] [Accepted: 07/26/2011] [Indexed: 02/02/2023]
Abstract
A small minority of HIV-infected individuals, known as HIV controllers, is able to exert long-term control over HIV replication in the absence of treatment. Increasing evidence suggests that the adaptive immune system plays a critical role in this control but also that a combination of several host and/or viral factors, rather than a single cause, leads to this rare phenotype. Here, we review recent advances in the study of these remarkable individuals. We summarize the epidemiology and clinical characteristics of HIV controllers, and subsequently describe contributing roles of host genetic factors, innate and adaptive immune responses, and viral factors to this phenotype. We emphasize distinctive characteristics of HIV-specific CD4 T cell responses and of CD4 T cell subpopulations that are frequently found in HIV controllers. We discuss major controversies in the field and the relevance of the study of HIV controllers for the development of novel therapeutic strategies and vaccines.
Collapse
Affiliation(s)
- Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, 75015, Paris, France.
| | | | | | | | | |
Collapse
|
9
|
Rosignoli G, Lim CH, Bower M, Gotch F, Imami N. Programmed death (PD)-1 molecule and its ligand PD-L1 distribution among memory CD4 and CD8 T cell subsets in human immunodeficiency virus-1-infected individuals. Clin Exp Immunol 2009; 157:90-7. [PMID: 19659774 DOI: 10.1111/j.1365-2249.2009.03960.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 causes T cell anergy and affects T cell maturation. Various mechanisms are responsible for impaired anti-HIV-1-specific responses: programmed death (PD)-1 molecule and its ligand PD-L1 are negative regulators of T cell activity and their expression is increased during HIV-1 infection. This study examines correlations between T cell maturation, expression of PD-1 and PD-L1, and the effects of their blockade. Peripheral blood mononuclear cells (PBMC) from 24 HIV-1(+) and 17 uninfected individuals were phenotyped for PD-1 and PD-L1 expression on CD4(+) and CD8(+) T cell subsets. The effect of PD-1 and PD-L1 blockade on proliferation and interferon (IFN)-gamma production was tested on eight HIV-1(+) patients. Naive (CCR7(+)CD45RA(+)) CD8(+) T cells were reduced in HIV-1 aviraemic (P = 0.0065) and viraemic patients (P = 0.0130); CD8 T effector memory subsets [CCR7(-)CD45RA(-)(T(EM))] were increased in HIV-1(+) aviraemic (P = 0.0122) and viraemic (P = 0.0023) individuals versus controls. PD-1 expression was increased in CD4 naive (P = 0.0496), central memory [CCR7(+)CD45RA(-) (T(CM)); P = 0.0116], T(EM) (P = 0.0037) and CD8 naive T cells (P = 0.0133) of aviraemic HIV-1(+) versus controls. PD-L1 was increased in CD4 T(EMRA) (CCR7(-)CD45RA(+), P = 0.0119), CD8 T(EM) (P = 0.0494) and CD8 T(EMRA) (P = 0.0282) of aviraemic HIV-1(+)versus controls. PD-1 blockade increased HIV-1-specific proliferative responses in one of eight patients, whereas PD-L1 blockade restored responses in four of eight patients, but did not increase IFN-gamma-production. Alteration of T cell subsets, accompanied by increased PD-1 and PD-L1 expression in HIV-1 infection contributes to anergy and impaired anti-HIV-1-specific responses which are not rescued when PD-1 is blocked, in contrast to when PD-L1 is blocked, due possibly to an ability to bind to receptors other than PD-1.
Collapse
Affiliation(s)
- G Rosignoli
- Department of Immunology, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | | | | | | | | |
Collapse
|
10
|
Zheng CF, Jones GJ, Shi M, Wiseman JCD, Marr KJ, Berenger BM, Huston SM, Gill MJ, Krensky AM, Kubes P, Mody CH. Late expression of granulysin by microbicidal CD4+ T cells requires PI3K- and STAT5-dependent expression of IL-2Rbeta that is defective in HIV-infected patients. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7221-9. [PMID: 18490721 PMCID: PMC2661617 DOI: 10.4049/jimmunol.180.11.7221] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Granulysin is a cytolytic effector molecule used by lymphocytes to kill tumor and microbial cells. Regulation of granulysin production is complex. A significant delay (5 days) following stimulation of CD4(+) T cells with IL-2 occurs before granulysin is produced. Unfortunately, the mechanisms responsible for this delay are unknown. We have recently demonstrated that granulysin-mediated killing of Cryptococcus neoformans by CD4(+) T cells is defective during HIV infection. This is because CD4(+) T cells from HIV-infected patients fail to produce granulysin in response to IL-2 activation. The present studies examined the mechanism of delayed production of granulysin and the mechanism of the defect in HIV patients. We demonstrate that IL-2 initially requires both STAT5 and PI3K activation to increase expression of IL-2Rbeta, produce granulysin, and kill C. neoformans. The increased expression of IL-2Rbeta precedes granulysin, and preventing the increased expression of IL-2Rbeta using small interfering RNA knockdown abrogates granulysin expression. Moreover, following the increased expression of IL-2Rbeta, blocking subsequent signaling by IL-2 using IL-2Rbeta-specific blocking Abs abrogates expression of granulysin. Finally, CD4(+) T cells from HIV-infected patients, who are defective in both STAT5 and PI3K signaling, fail to express IL-2Rbeta and fail to produce granulysin. These results suggest that IL-2 signals via PI3K and STAT5 to increase expression of IL-2Rbeta, which in turn is required for production of granulysin. These results provide a mechanism to explain the "late" production of granulysin during normal T cell responses, as well as for defective granulysin production by CD4(+) T cells in HIV-infected patients.
Collapse
Affiliation(s)
- Chun Fu Zheng
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Gareth J. Jones
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Meiqing Shi
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Jeremy C. D. Wiseman
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Kaleb J. Marr
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Byron M. Berenger
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Shaunna M. Huston
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - M. John Gill
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul Kubes
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | - Christopher H. Mody
- Department of Microbiology and Infectious Disease, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Avolio M, Caracciolo S, Tosti G, Vollero L, Fiorentini S, Caruso A. HIV-1 Matrix Protein p17 Prevents Loss of CD28 Expression During IL-2–Induced Maturation of Naïve CD8+T Cells. Viral Immunol 2008; 21:189-202. [DOI: 10.1089/vim.2007.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Manuela Avolio
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| | - Sonia Caracciolo
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| | - Giorgio Tosti
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| | - Luana Vollero
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| | - Simona Fiorentini
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| | - Arnaldo Caruso
- Department of Experimental and Applied Medicine, Section of Microbiology, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
12
|
Potula R, Persidsky Y. Adding fuel to the fire: methamphetamine enhances HIV infection. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1467-70. [PMID: 18458093 DOI: 10.2353/ajpath.2008.080130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Raghava Potula
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | |
Collapse
|
13
|
Chentouf M, Ghannam S, Bès C, Troadec S, Cérutti M, Chardès T. Recombinant anti-CD4 antibody 13B8.2 blocks membrane-proximal events by excluding the Zap70 molecule and downstream targets SLP-76, PLC gamma 1, and Vav-1 from the CD4-segregated Brij 98 detergent-resistant raft domains. THE JOURNAL OF IMMUNOLOGY 2007; 179:409-20. [PMID: 17579062 DOI: 10.4049/jimmunol.179.1.409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The biological effects of rIgG(1) 13B8.2, directed against the CDR3-like loop on the D1 domain of CD4, are partly due to signals that prevent NF-kappaB nuclear translocation, but the precise mechanisms of action, particularly at the level of membrane proximal signaling, remain obscure. We support the hypothesis that rIgG(1) 13B8.2 acts by interfering with the spatiotemporal distribution of signaling or receptor molecules inside membrane rafts. Upon cross-linking of Jurkat T lymphocytes, rIgG(1) 13B8.2 was found to induce an accumulation/retention of the CD4 molecule inside polyoxyethylene-20 ether Brij 98 detergent-resistant membranes at 37 degrees C, together with recruitment of TCR, CD3zeta, p56 Lck, Lyn, and Syk p70 kinases, linker for activation of T cells, and Csk-binding protein/phosphoprotein associated with glycosphingolipid adaptor proteins, and protein kinase Ctheta, but excluded Zap70 and its downstream targets Src homology 2-domain-containing leukocyte protein of 76 kDa, phospholipase Cgamma1, and p95(vav). Analysis of key upstream events such as Zap70 phosphorylation showed that modulation of Tyr(292) and Tyr(319) phosphorylation occurred concomitantly with 13B8.2-induced Zap70 exclusion from the membrane rafts. 13B8.2-induced differential raft partitioning was epitope, cholesterol, and actin dependent but did not require Ab hyper-cross-linking. Fluorescence confocal imaging confirmed the spatiotemporal segregation of the CD4 complex inside rafts and concomitant Zap70 exclusion, which occurred within 10-30 s following rIgG(1) 13B8.2 ligation, reached a plateau at 1 min, and persisted until the end of the 1-h experiment. The differential spatiotemporal partitioning between the CD4 receptor and the Zap70-signaling kinase inside membrane rafts interrupts the proximal signal cross-talk leading to subsequent NF-kappaB nuclear translocation and explains how baculovirus-expressed CD4-CDR3-like-specific rIgG(1) 13B8.2 acts to induce its biological effects.
Collapse
Affiliation(s)
- Myriam Chentouf
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5236, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Faculté de Pharmacie, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | | | | | | | | | | |
Collapse
|
14
|
Colle JH, Moreau JL, Fontanet A, Lambotte O, Joussemet M, Jacod S, Delfraissy JF, Thèze J. Regulatory Dysfunction of the Interleukin-7 Receptor in CD4 and CD8 Lymphocytes From HIV-Infected Patients-Effects of Antiretroviral Therapy. J Acquir Immune Defic Syndr 2006; 42:277-85. [PMID: 16810123 DOI: 10.1097/01.qai.0000214823.11034.4e] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite an increase in plasma IL-7 levels, the CD4 T-cell pool decrease progressively in HIV-infected patients. Here we report on our tests to check the hypothesis that defects in the IL-7 receptor system might be involved in this phenomenon. The cell surface expression of CD127 was measured ex vivo in CD4 and CD8 T lymphocytes drawn from 3 groups of HIV patients. IL-7 function was also followed in vitro by measuring IL-7-driven T-cell proliferation, the induction of the CD25 activation marker, and overexpression of the antiapoptotic molecule Bcl-2. Untreated viremic patients showed a slight but significant decrease in CD127 expression on the surface of their CD4 lymphocytes. By contrast, CD127 expression was substantially altered on the surface of CD8 T lymphocytes taken from untreated viremic patients. IL-7-induced overexpression of the antiapoptotic molecule Bcl-2 was dramatically altered in viremic patients, whereas IL-7-dependent CD25 induction and T-cell proliferation were reduced. Highly active antiretroviral therapy partially corrected these defects in patients with an undetectable viral load and CD4 counts of more than 400 cells/microL. The effects of HAART were less pronounced in patients with undetectable VL but low CD4 counts (<250 cells/microL). The IL-7 receptor is dysfunctional in the CD4 and CD8 lymphocytes of HIV-infected patients. This may be due to abnormal activation of the immune system in HIV-infected patients and may contribute to the reduced CD4 count and the altered function of the CD8 compartment.
Collapse
Affiliation(s)
- Jean-Hervé Colle
- Unité Immunogénétique Cellulaire, Département de Médecine Moléculaire, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Troadec S, Bès C, Chentouf M, Nguyen B, Briant L, Jacquet C, Chebli K, Pugnière M, Roquet F, Cerutti M, Chardès T. Biological activities on T lymphocytes of a baculovirus-expressed chimeric recombinant IgG1 antibody with specificity for the CDR3-like loop on the D1 domain of the CD4 molecule. Clin Immunol 2006; 119:38-50. [PMID: 16426893 DOI: 10.1016/j.clim.2005.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/14/2005] [Accepted: 11/22/2005] [Indexed: 12/16/2022]
Abstract
A baculovirus-expressed chimeric recombinant IgG1 (rIgG1) antibody, with Cgamma1 and Ckappa human constant domains, was derived from the murine monoclonal antibody (mAb) 13B8.2, which is specific for the CDR3-like loop of the CD4 molecule and which inhibits HIV-1 replication. Chimeric rIgG1 antibody 13B8.2 blocked, in a dose-dependent manner, antigen presentation through inhibition of subsequent IL-2 secretion by stimulated T cells. The one-way mixed lymphocyte reaction was abrogated by previous addition of baculovirus-produced rIgG1 13B8.2 in the T-cell culture. Anti-proliferative activity of rIgG1 was demonstrated on CD3-activated CD4+ T lymphocytes from healthy donors, such effect being associated with reduced IL-2 secretion of activated T cells. On the other hand, no proliferation inhibition was observed on CD4+ T lymphocytes activated with phorbol ester plus ionomycin, suggesting that rIgG1 13B8.2 preferentially acts on a proximal TCR-induced signaling pathway. Treatment of DBA1/J human CD4-transgenic mice with 100 microg of recombinant antibody for three consecutive days led to in vivo recovery of rIgG1 antibody 13B8.2 both coated on murine T lymphocytes and free in mouse serum, without CD4 depletion or down-modulation. These findings predict that the baculovirus-expressed chimeric rIgG1 anti-CD4 antibody 13B8.2 is a promising candidate for immunotherapy.
Collapse
Affiliation(s)
- Samuel Troadec
- CNRS UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Santé, Faculté de Pharmacie, 15 Avenue Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kryworuchko M, Thèze J. Interleukin-2: from T cell growth and homeostasis to immune reconstitution of HIV patients. VITAMINS AND HORMONES 2006; 74:531-47. [PMID: 17027529 DOI: 10.1016/s0083-6729(06)74021-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interleukin (IL)-2 was initially described as a major stimulant of T lymphocytes in vitro. Later, the characterization of IL-2 knockout animals showed that the ability to stimulate T cells could be replaced by other cytokines. In vivo, IL-2 plays a unique role in controlling lymphoproliferation. This is partly explained by its role in the generation and maintenance of T regulatory cells (Treg). In HIV-infected patients, the IL-2/IL-2 receptor (IL-2R) system is dysregulated. The fact that IL-2 is underproduced along with defective IL-2R signaling detected in patient lymphocytes, may explain the progressive impairment of the immune system that occurs during chronic infection with this virus. These defects are partly reversed by highly active antiretroviral therapy (HAART). However, in some patients IL-2R defects persist and the CD4 counts remain low despite good control of the viral load. These patients benefit from HAART given in conjunction with IL-2 therapy.
Collapse
Affiliation(s)
- Marko Kryworuchko
- Infectious Disease and Vaccine Research Centre, Division of Virology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | |
Collapse
|
17
|
Root-Bernstein RS. Antigenic complementarity among AIDS-associated infectious agents and molecular mimicry of lymphocyte proteins as inducers of lymphocytotoxic antibodies and circulating immune complexes. J Clin Virol 2005; 31 Suppl 1:S16-25. [PMID: 15567090 DOI: 10.1016/j.jcv.2004.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND People at risk for acquired immunodeficiency syndrome (AIDS) have high rates of cofactor infections in addition to HIV, including cytomegalovirus, hepatitis viruses, Mycobacteria, Mycoplasmas, and Staphylococcus aureus. Most people with AIDS also develop lymphocytotoxic antibodies (LCTA) and circulating immune complexes (CIC). While HIV proteins mimic HLA antigens, many cofactor agents mimic CD4 antigens. It has therefore been proposed that cofactor infections may interact with HIV by producing complementary antigens that induce LCTA and CIC, and that the resulting immunological dysfunction is part of AIDS pathogenesis. OBJECTIVES To test (1) whether HIV and its cofactor infections elicit complementary (idiotype-anti-idiotype) antibodies, and (2) if any of these antibodies mimic anti-lymphocyte antibodies. STUDY DESIGN Two immunological methods are employed to test for antibody complementarity: (1) double antibody diffusion, a modification of Ouchterlony immunodiffusion, in which antibodies are tested for their ability to precipitate each other; (2) double-antibody ELISA, in which an antibody against one infectious agent is adsorbed to an ELISA plate and an antibody against a second agent is used to detect the first. RESULTS Data on over a thousand double antibody diffusion (DAD) and about 70 DA-ELISA experiments are reported. These show that only specific pairs of antibodies are complementary: HIV-CMV; HIV-HBV; HIV-tuberculosis; HIV-mycoplasmas; HIV-S. aureus; and CMV-mycoplasmas. In addition, HIV antibodies precipitate CD4 antibodies; CMV antibodies precipitate HLA-DR antibodies; while mycobacteria and mycoplasma antibodies precipitate macrophage antibodies. CONCLUSIONS Antibodies elicited by HIV infection can interact with antibodies elicited by cofactor infections to form CIC, and some of these antibodies mimic lymphocyte antibodies so that they may function as LCTA. Since LCTA and CIC are associated with increased lymphocyte death in AIDS, the immune response against cofactors in HIV may play a significant role in AIDS pathogenesis. The fact that both HIV and cofactors elicit antibodies with LCTA characteristics may pose problems for vaccine development.
Collapse
Affiliation(s)
- Robert S Root-Bernstein
- Department of Physiology, Michigan State University, 2174 Biomedical and Physical Sciences Building, East Lansing, MI 48824, USA.
| |
Collapse
|