1
|
Nafiz TN, Sankar P, Mishra LK, Rousseau RP, Saqib M, Subbian S, Parihar SP, Mishra BB. Differential requirement of formyl peptide receptor 1 in macrophages and neutrophils in the host defense against Mycobacterium tuberculosis Infection. Sci Rep 2024; 14:23595. [PMID: 39384825 PMCID: PMC11464745 DOI: 10.1038/s41598-024-71180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/26/2024] [Indexed: 10/11/2024] Open
Abstract
Formyl peptide receptors (FPR), part of the G-protein coupled receptor superfamily, are pivotal in directing phagocyte migration towards chemotactic signals from bacteria and host tissues. Although their roles in acute bacterial infections are well-documented, their involvement in immunity against tuberculosis (TB) remains unexplored. Here, we investigate the functions of Fpr1 and Fpr2 in defense against Mycobacterium tuberculosis (Mtb), the causative agent of TB. Elevated levels of Fpr1 and Fpr2 were found in the lungs of mice, rabbits and peripheral blood of humans infected with Mtb, suggesting a crucial role in the immune response. The effects of Fpr1 and Fpr2 deletion on bacterial load, lung damage, and cellular inflammation were assessed in a murine TB model utilizing hypervirulent strain of Mtb from the W-Beijing lineage. While Fpr2 deletion had no impact on disease outcome, Fpr1-deficient mice demonstrated improved bacterial control, especially by macrophages. Bone marrow-derived macrophages from these Fpr1-/- mice exhibited an enhanced ability to contain bacterial growth over time. Contrarily, treating genetically susceptible mice with Fpr1-specific inhibitors caused impaired early bacterial control, corresponding with increased Mtb persistence in necrotic neutrophils. Furthermore, ex vivo assays revealed that Fpr1-/- neutrophils were unable to restrain Mtb growth, indicating a differential function of Fpr1 among myeloid cells. These findings highlight the distinct and complex roles of Fpr1 in myeloid cell-mediated immunity against Mtb infection, underscoring the need for further research into these mechanisms for a better understanding of TB immunity.
Collapse
Affiliation(s)
- Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Robert P Rousseau
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Suraj P Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Bibhuti B Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
2
|
Nafiz TN, Sankar P, Mishra LK, Rousseau RP, Saqib M, Subbian S, Parihar SP, Mishra BB. Differential requirement of Formyl Peptide Receptor 1 in macrophages and neutrophils in the host defense against Mycobacterium tuberculosis Infection. RESEARCH SQUARE 2024:rs.3.rs-4421561. [PMID: 38853986 PMCID: PMC11160921 DOI: 10.21203/rs.3.rs-4421561/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Formyl peptide receptors (FPR), part of the G-protein coupled receptor superfamily, are pivotal in directing phagocyte migration towards chemotactic signals from bacteria and host tissues. Although their roles in acute bacterial infections are well-documented, their involvement in immunity against tuberculosis (TB) remains unexplored. This study investigates the functions of Fpr1 and Fpr2 in defense against Mycobacterium tuberculosis (Mtb), the causative agent of TB. Elevated levels of Fpr1 and Fpr2 were found in the lungs of mice, rabbits and peripheral blood of humans infected with Mtb, suggesting a crucial role in the immune response. The effects of Fpr1 and Fpr2 deletion on bacterial load, lung damage, and cellular inflammation were assessed using a TB model of hypervirulent strain of Mtb from the W-Beijing lineage. While Fpr2 deletion showed no impact on disease outcome, Fpr1-deficient mice demonstrated improved bacterial control, especially by macrophages. Bone marrow-derived macrophages from these Fpr1 -/- mice exhibited an enhanced ability to contain bacterial growth over time. Contrarily, treating genetically susceptible mice with Fpr1-specific inhibitors caused impaired early bacterial control, corresponding with increased bacterial persistence in necrotic neutrophils. Furthermore, ex vivo assays revealed that Fpr1 -/- neutrophils were unable to restrain Mtb growth, indicating a differential function of Fpr1 among myeloid cells. These findings highlight the distinct and complex roles of Fpr1 in myeloid cell-mediated immunity against Mtb infection, underscoring the need for further research into these mechanisms for a better understanding of TB immunity.
Collapse
Affiliation(s)
- Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Poornima Sankar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Lokesh K Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Robert P. Rousseau
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Mohd Saqib
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Suraj P. Parihar
- Center for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa
| | - Bibhuti B. Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
de Melo IS, Sabino-Silva R, Costa MA, Vaz ER, Anselmo-E-Silva CI, de Paula Soares Mendonça T, Oliveira KB, de Souza FMA, Dos Santos YMO, Pacheco ALD, Freitas-Santos J, Caixeta DC, Goulart LR, de Castro OW. N-Formyl-Methionyl-Leucyl-Phenylalanine Plays a Neuroprotective and Anticonvulsant Role in Status Epilepticus Model. Cell Mol Neurobiol 2023; 43:4231-4244. [PMID: 37742326 PMCID: PMC11407717 DOI: 10.1007/s10571-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/μL, 1 μL) followed by fMLP (1 mg/mL, 1 μL) or vehicle (VEH, saline 0.9%, 1 μL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Collapse
Affiliation(s)
- Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| | - Robinson Sabino-Silva
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil.
| | - Maisa Araújo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Emília Rezende Vaz
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | | | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Fernanda Maria Araújo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Dos Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Douglas Carvalho Caixeta
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
4
|
Chen YC, Chang YP, Hsiao CC, Wu CC, Wang YH, Chao TY, Leung SY, Fang WF, Lee CP, Wang TY, Hsu PY, Lin MC. Blood M2a monocyte polarization and increased formyl peptide receptor 1 expression are associated with progression from latent tuberculosis infection to active pulmonary tuberculosis disease. Int J Infect Dis 2020; 101:210-219. [PMID: 32971238 DOI: 10.1016/j.ijid.2020.09.1056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES This study aims to explore the role of M2a polarization and formyl peptide receptor (FPR) regulation in the reactivation of Mycobacterium tuberculosis (Mtb) infection. METHODS M1/M2a monocyte percentage and FPR1/2/3 protein expression of blood immune cells were measured in 38 patients with sputum culture (+) active pulmonary TB disease, 18 subjects with latent TB infection (LTBI), and 28 noninfected healthy subjects (NIHS) using flow cytometry method. RESULTS M1 percentage was decreased in active TB versus either NIHS or LTBI group, while M2a percentage and M2a/M1 percentage ratio were increased. FPR1 expression on M1/M2a, FPR2 expression on M1, and FPR3 expression of M1 were all decreased in active TB versus LTBI group, while FPR1 over FPR2 expression ratio on NK T cell was increased in active TB versus either NIHS or LTBI group. In 11 patients with active TB disease, M1 percentage became normal again after anti-TB treatment. In vitro Mtb-specific antigen stimulation of monocytic THP-1 cells resulted in M2a polarization in association with increased FPR2 expression on M2a. CONCLUSIONS Increased M2a and decreased M1 phenotypes of blood monocyte may serve as a marker for active TB disease, while decreased FPR1 on blood monocyte may indicate LTBI status.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences and Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Yi-Hsi Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Ting-Ya Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
5
|
Serrano CJ, Cuevas-Córdoba B, Macías-Segura N, González-Curiel RA, Martínez-Balderas VY, Enciso-Moreno L, Small P, Hernández-Pando R, Enciso-Moreno JA. Transcriptional profiles discriminate patients with pulmonary tuberculosis from non-tuberculous individuals depending on the presence of non-insulin diabetes mellitus. Clin Immunol 2015; 162:107-17. [PMID: 26628192 DOI: 10.1016/j.clim.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023]
Abstract
Our objective was to identify transcriptional biomarkers in peripheral blood mononuclear cells (PBMC) that discriminate individuals with latent tuberculosis infection (LTBI) from those with pulmonary tuberculosis (PTB) in subjects with non-insulin-dependent diabetes mellitus (NIDDM) and in individuals without NIDDM. Using gene expression microarrays we identified differentially expressed genes from lungs of mice infected with Mycobacterium tuberculosis (Mtb) or a mutant (ΔsigH) representing a non-inflammatory model. Genes expressed in blood, with inflammatory related functions were evaluated in humans by RT-qPCR. NCF1 and ORM transcripts have the better discriminatory capacity to identify PTB subjects from LTBI and non-infected controls (NICs) independently of the presence of NIDDM. The sequential evaluation of the mRNA levels of NCF1 and ORM as multiple diagnostic tests showed 95% Sensitivity (Se) and 80% Specificity (Sp). In addition, FPR2 promises to be a good biomarker for the PTB detection in subjects with NIDDM (Se=100%; Sp=90%).
Collapse
Affiliation(s)
- Carmen J Serrano
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Betzaida Cuevas-Córdoba
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Noé Macías-Segura
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico; Department of Immunology, Faculty of Medicine, Autonomous University of San Luis Potosí (UASLP), SLP, Mexico
| | | | | | - Leonor Enciso-Moreno
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Peter Small
- TB Program, Bill and Melinda Gates Foundation, Seattle, USA
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
6
|
Concordant or discordant results by the tuberculin skin test and the quantiFERON-TB test in children reflect immune biomarker profiles. Genes Immun 2014; 15:265-74. [DOI: 10.1038/gene.2014.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/15/2023]
|