1
|
MacLeod AR, Crooke ST. RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions. J Clin Pharmacol 2018; 57 Suppl 10:S43-S59. [PMID: 28921648 DOI: 10.1002/jcph.957] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
RNA-based therapeutic technologies represent a rapidly expanding class of therapeutic opportunities with the power to modulate cellular biology in ways never before possible. With RNA-targeted therapeutics, inhibitors of previously undruggable proteins, gene expression modulators, and even therapeutic proteins can be rationally designed based on sequence information alone, something that is not possible with other therapeutic modalities. The most advanced RNA therapeutic modalities are antisense oligonucleotides (ASOs) and small interfering RNAs. Particularly with ASOs, recent clinical data have demonstrated proof of mechanism and clinical benefit with these approaches across several nononcology disease areas by multiple routes of administration. In cancer, next-generation ASOs have recently demonstrated single-agent activity in patients with highly refractory cancers. Here we discuss advances in RNA therapeutics for the treatment of cancer and the challenges that remain to solidify these as mainstay therapeutic modalities to bridge the pharmacogenomic divide that remains in cancer drug discovery.
Collapse
Affiliation(s)
- A Robert MacLeod
- Vice President, Oncology Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Stanley T Crooke
- CEO and Chairman of the Board, Ionis Pharmaceuticals, Carlsbad, CA, USA
| |
Collapse
|
2
|
González-Carmona MA, Quasdorff M, Vogt A, Tamke A, Yildiz Y, Hoffmann P, Lehmann T, Bartenschlager R, Engels JW, Kullak-Ublick GA, Sauerbruch T, Caselmann WH. Inhibition of hepatitis C virus RNA translation by antisense bile acid conjugated phosphorothioate modified oligodeoxynucleotides (ODN). Antiviral Res 2012; 97:49-59. [PMID: 23142319 DOI: 10.1016/j.antiviral.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND The 5'-noncoding region (5'NCR) of the HCV-genome comprises an internal ribosome entry site essential for HCV-translation/replication. Phosphorothioate oligodeoxynucleotides (tS-ODN) complementary to this region can inhibit HCV-translation in vitro. In this study, bile acid conjugated tS-ODN were generated to increase cell-selective inhibition of 5'NCR-dependent HCV-translation. METHODS Different bile acid conjugated tS-ODN complementary to the HCV5'NCR were selected for their inhibitory potential in an in vitro transcription/translation assay. To analyze OATP (organic anion transporting polypeptides)-selective uptake of bile acid conjugated ODN, different hepatoma cells were stably transfected with the OATP1B1-transporter and primary human hepatocytes were used. An adenovirus encoding the HCV5'NCR fused to the luciferase gene (Ad-GFP-NCRluc) was generated to quantify 5'NCR-dependent HCV gene expression in OATP-overexpressing hepatoma cells and in vivo. RESULTS A 17mer phosphorothioate modified ODN (tS-ODN4_13) complementary to HCV5'NCR was able to inhibit 5'NCR-dependent HCV-translation in an in vitro transcription/translation test system by more than 90% and it was also effective in Huh7-cells containing the HCV subgenomic replicon. Conjugation to taurocholate (tS-ODN4_13T) significantly increased selective ODN uptake by primary human hepatocytes and by OATP1B1-expressing HepG2-cells compared to parental HepG2-cells. Correspondingly, tS-ODN4_13T significantly inhibited HCV gene expression in liver-derived OATP1B1-expressing HepG2- or CCL13-cells up to 70% compared to unconjugated tS-ODN and compared to mismatch taurocholate coupled tS-ODN. In vivo, tS-ODN4_13T showed also a trend to block 5'NCR-dependent HCV gene expression. CONCLUSIONS The tested taurocholate conjugated 17mer antisense ODN complementary to HCV5'NCV showed an increased and selective uptake by hepatocytes and liver-derived cells through OATP-mediated transport resulting in enhanced specific inhibition of HCV gene expression in vitro and in vivo. Thus, this novel approach may represent a promising strategy to improve antisense approaches with ODN in the control of hepatitis C infection.
Collapse
|
3
|
Selection, optimization, and pharmacokinetic properties of a novel, potent antiviral locked nucleic acid-based antisense oligomer targeting hepatitis C virus internal ribosome entry site. Antimicrob Agents Chemother 2011; 55:3105-14. [PMID: 21502629 DOI: 10.1128/aac.00222-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have screened 47 locked nucleic acid (LNA) antisense oligonucleotides (ASOs) targeting conserved (>95% homology) sequences in the hepatitis C virus (HCV) genome using the subgenomic HCV replicon assay and generated both antiviral (50% effective concentration [EC(50)]) and cytotoxic (50% cytotoxic concentration [CC(50)]) dose-response curves to allow measurement of the selectivity index (SI). This comprehensive approach has identified an LNA ASO with potent antiviral activity (EC(50) = 4 nM) and low cytotoxicity (CC(50) >880 nM) targeting the 25- to 40-nucleotide region (nt) of the HCV internal ribosome entry site (IRES) containing the distal and proximal miR-122 binding sites. LNA ASOs targeting previously known accessible regions of the IRES, namely, loop III and the initiation codon in loop IV, had poor SI values. We optimized the LNA ASO sequence by performing a 1-nucleotide walk through the 25- to 40-nt region and show that the boundaries for antiviral efficacy are extremely precise. Furthermore, we have optimized the format for the LNA ASO using different gapmer and mixomer patterns and show that RNase H is required for antiviral activity. We demonstrate that RNase H-refractory ASOs targeting the 25- to 40-nt region have no antiviral effect, revealing important regulatory features of the 25- to 40-nt region and suggesting that RNase H-refractory LNA ASOs can act as potential surrogates for proviral functions of miR-122. We confirm the antisense mechanism of action using mismatched LNA ASOs. Finally, we have performed pharmacokinetic experiments to demonstrate that the LNA ASOs have a very long half-life (>5 days) and attain hepatic maximum concentrations >100 times the concentration required for in vitro antiviral activity.
Collapse
|
4
|
Lavén G, Kalek M, Jezowska M, Stawinski J. Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies. NEW J CHEM 2010. [DOI: 10.1039/b9nj00585d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Trepanier JB, Tanner JE, Alfieri C. Oligonucleotide-Based Therapeutic Options against Hepatitis C Virus Infection. Antivir Ther 2006. [DOI: 10.1177/135965350601100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hepatitis C virus (HCV) is the cause of a silent pandemic that, due to the chronic nature of the disease and the absence of curative therapy, continues to claim an ever-increasing number of lives. Current antiviral regimens have proven largely unsatisfactory for patients with HCV drug-resistant genotypes. It is therefore important to explore alternative therapeutic stratagems whose mode of action allows them to bypass viral resistance. Antisense oligonucleotides, ribozymes, small interfering RNAs, aptamers and deoxyribozymes constitute classes of oligonucleotide-based compounds designed to target highly conserved or functionally crucial regions contained within the HCV genome. The therapeutic expectation for such compounds is the elimination of HCV from infected individuals. Progress in oligonucleotide-based HCV antivirals towards clinical application depends on development of nucleotide designs that bolster efficacy while minimizing toxicity, improvement in liver-targeting delivery systems, and refinement of small-animal models for preclinical testing.
Collapse
Affiliation(s)
- Janie B Trepanier
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| | | | - Caroline Alfieri
- Sainte-Justine Hospital Research Centre, and the Department of Microbiology and Immunology, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Caldarelli SA, Mehiri M, Di Giorgio A, Martin A, Hantz O, Zoulim F, Terreux R, Condom R, Patino N. A cyclic PNA-based compound targeting domain IV of HCV IRES RNA inhibits in vitro IRES-dependent translation. Bioorg Med Chem 2005; 13:5700-9. [PMID: 16061387 DOI: 10.1016/j.bmc.2005.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 11/28/2022]
Abstract
A cyclic molecule 1 constituted by a hepta-peptide nucleic acid sequence complementary to the apical loop of domain IV of hepatitis C virus (HCV) internal ribosome entry site (IRES) RNA has been prepared via a 'mixed' liquid-phase strategy, which relies on easily available protected PNA and poly(2-aminoethylglycinamide) building blocks. This compound 1 has been elaborated to mimic 'loop-loop' interactions. For comparison, its linear analog has also been investigated. Although preliminary biological assays have revealed the ability of 1 to inhibit in vitro the HCV IRES-dependent translation in a dose-dependent manner, the linear analog has shown a slightly higher activity.
Collapse
Affiliation(s)
- Sergio A Caldarelli
- Laboratoire de Chimie Bioorganique UMR-CNRS 6001, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hoffmann P, Quasdorff M, González-Carmona MÁ, Caselmann WH. Recent patents on experimental therapy for hepatitis C virus infection (1999 – 2002). Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.11.1707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
|
9
|
Abstract
Hepatitis C virus (HCV) has infected millions of people worldwide and has emerged as a global health crisis. The currently available therapy is interferon (IFN) either alone or in combination with ribavirin. However, the disappointing efficacy of IFN has led to the considerable need for improved treatments and a number of new therapies are under evaluation in clinical trials. These include pegylated IFNs, which have altered physiochemical characteristics allowing once-weekly dosing. Combination of pegylated IFN with ribavirin should further improve sustained response rates. However, not all patients are successfully treated with IFNs, particularly those infected with genotype 1 of the virus, and it is likely that potent, specific drugs will be required. The majority of new approaches currently trying to combat this viral disease are aimed at inhibition of viral targets. Most effort has been directed towards inhibition of the NS3 serine protease, and potent inhibitors have now been described. However, a clinical candidate is yet to emerge against this difficult target. Considerable work by leading researchers has provided crystal structures of the key replicative enzymes, NS3 protease, NS3 helicase, NS5B polymerase and full-length NS3 protease-helicase, and there is much hope that such structural information will bear fruit. More recently, inhibition of host targets, particularly inosine monophosphate dehydrogenase (IMPDH), has become of interest and there are on-going clinical trials with such inhibitors. Research aimed at novel treatments for HCV disease is gathering pace and very recent developments in cell-based assay systems can only hasten the discovery of improved therapies.
Collapse
Affiliation(s)
- B W Dymock
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK.
| |
Collapse
|
10
|
Martinand-Mari C, Lebleu B, Robbins I. Oligonucleotide-based strategies to inhibit human hepatitis C virus. Oligonucleotides 2004; 13:539-48. [PMID: 15025918 DOI: 10.1089/154545703322860834] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hepatitis C virus (HCV) infection represents a worldwide problem, and current antiviral regimens are not satisfactory. The need to develop novel, specific, anti-HCV antiviral drugs is clear. Antisense oligonucleotides (AS-ON), ribozymes, and more recently, small interfering RNAs (siRNAs) have been widely used to control gene expression, and several clinical trials are in progress. The potential to use AS-ON as tools to control HCV infection, either by promoting an RNase H mediated cleavage of viral genomic RNA or by interfering with the assembly of a translation initiation complex on the internal ribosome entry site (IRES) is reviewed. Extensive knowledge of IRES structure and conservation among HCV genotypes have rendered the HCV IRES (and, in particular, its IIId loop) particularly attractive for antisense approaches. Encouraging data have been obtained with IRES-targeted RNase H-competent and incompetent ON analogs. We demonstrate here that very short steric blocking ONs can inhibit the formation of translation preinitiation complexes on the IRES and block IRES-mediated translation in a cell-free translation assay and in a transfected hepatoma cell line.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- UMR 5124 CNRS, Laboratoire des Défenses Antivirales et Antitumorales, Université Montpellier 2, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
11
|
Wen SY, Wang XH, Lin L, Guan W, Wang SQ. Preparation and property analysis of a hepatocyte targeting pH-sensitive liposome. World J Gastroenterol 2004; 10:244-9. [PMID: 14716832 PMCID: PMC4717013 DOI: 10.3748/wjg.v10.i2.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To develop a hepatocyte targeting pH-sensitive liposome for drug delivery based on active targeting technology mediated by asialoglycoprotein receptors.
METHODS: Four types of targeting molecules with galactose residue were synthesized and mixed with pH-sensitive lipids DC-chol/DOPE to prepare liposome with integrated property of hepatocyte specificity and pH sensitivity. Liposome 18-gal was selected with the best transfection activity through cellular uptake experiment. Property analysis was made through experiments of competitive inhibition of receptors, red blood cell hemolysis, in vitro cytotoxicity test by MTS assay and mediation of inhibitory effects of antisense phosphorothioate ODN on gene expression, etc.
RESULTS: Liposome 18-gal had the desired properties of hepatocyte specificity, pH sensitivity, low cytotoxicity, and high transfection efficiency.
CONCLUSION: Liposome 18-gal can be further developed as a potential hepatocyte- targeting delivery system.
Collapse
Affiliation(s)
- Si-Yuan Wen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | |
Collapse
|
12
|
Amberg S, Tamke A, Caselmann WH, Engels JW. Specific inhibition of hepatitis C viral gene expression by non-polar (phenylalkyl)phosphonates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1631-4. [PMID: 14565483 DOI: 10.1081/ncn-120023086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Different phenylalkyl backbone modified antisense oligonucleotides complementary to the Hepatitis C virus (HCV) RNA nucleotides 326-342 were synthesized. The lipohilic character of modified oligonucleotides was determined from RP-HPLC retention times. The inhibitory effect of these antisense oligonucleotides on HCV gene expression was analyzed in an in vitro test system.
Collapse
Affiliation(s)
- S Amberg
- Institute of Organic Chemistry and Chemical Biology, J.W. Goethe University, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
13
|
McCaffrey AP, Meuse L, Karimi M, Contag CH, Kay MA. A potent and specific morpholino antisense inhibitor of hepatitis C translation in mice. Hepatology 2003; 38:503-8. [PMID: 12883495 DOI: 10.1053/jhep.2003.50330] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hepatitis C virus (HCV) is an RNA virus infecting one in every 40 people worldwide. Current treatments are ineffective and HCV is the leading cause of liver failure leading to transplantation in the United States and Europe. Translational control of HCV is a prime therapeutic target. We assessed the inhibitory potential of morpholino phosphoramidate antisense oligonucleotides (morpholinos) on HCV translation by codelivering them with reporter plasmids expressing firefly luciferase under the translational control of the HCV internal ribosome entry site (IRES) into the livers of mice. Real-time imaging of HCV IRES luciferase reporter messenger RNA (mRNA) translation in living mice showed that a 20-mer complementary to nucleotides 345-365 of the IRES inhibited translation by greater than 95% for at least 6 days and showed mismatch specificity. No significant nonspecific inhibition of a cap-dependent luciferase or encephalomyocarditis virus (EMCV) IRES luciferase reporter translation was observed. Inhibition by the 20-mer morpholino was dose dependent, with 1 nmol/mouse giving the highest inhibition. In conclusion, morpholino antisense oligonucleotides are potent inhibitors of HCV IRES translation in a preclinical mouse model; morpholinos have potential as molecular therapeutics for treating HCV and other viral infections. The in vivo model described is a broadly applicable, straightforward, and rapid readout for inhibitor efficacy. As such, it will greatly facilitate the development of novel therapeutic strategies for viral hepatitis. Notably, the level of antisense inhibition observed in this in vivo model is similar to the maximal inhibition we have obtained previously with RNA interference in mice.
Collapse
Affiliation(s)
- Anton P McCaffrey
- Program in Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
14
|
Jia ZS, Chen L, Hao CQ, Feng ZH, Li JG, Wang JP, Cao YZ, Zhou YX. Intracellular immunization by hammerhead ribozyme against HCV. Shijie Huaren Xiaohua Zazhi 2003; 11:148-150. [DOI: 10.11569/wcjd.v11.i2.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of hammerhead ribozyme 213 (Rz 213) against hepatitis C virus (HCV) infection.
METHODS: Rz213 cleaving 5'oncoding region (5'CR) of HCV was beforehand transfected in a human hepatic carcinoma cell (HHCC) line and selected for G418 resistance. Cells stably expressing Rz213 were retransfected with pCMVNCRluc containing 5扤CR-luc fusion genes by lipofectAMINE; luciferase activity in lysate of transfactant was measured in scintillation counter.
RESULTS: HHCC cells stably expressing Rz213 exhibited significant resistance to retransfection of targeting gene.
CONCLUSION: Stably transfected cells with Rz213 were selected and expressed in HHCC, and thus exerted the intracellular immunity against infection of HCV.
Collapse
|
15
|
Tallet-Lopez B, Aldaz-Carroll L, Chabas S, Dausse E, Staedel C, Toulmé JJ. Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res 2003; 31:734-42. [PMID: 12527783 PMCID: PMC140505 DOI: 10.1093/nar/gkg139] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Initiation of protein synthesis on the hepatitis C virus (HCV) mRNA involves a structured element corresponding to the 5' untranslated region and constituting an internal ribosome entry site (IRES). The domain IIId of the HCV IRES, an imperfect RNA hairpin extending from nucleotides 253 to 279 of the viral mRNA, has been shown to be essential for translation and for the binding of the 40S ribosomal subunit. We investigated the properties of a series of antisense 2'-O-methyloligoribonucleotides targeted to various portions of the domain IIId. Several oligomers, 14-17 nt in length, selectively inhibited in vitro translation of a bicistronic RNA construct in rabbit reticulocyte lysate with IC(50)s <10 nM. The effect was restricted to the second cistron (the Renilla luciferase) located downstream of the HCV IRES; no effect was observed on the expression of the first cistron (the firefly luciferase) which was translated in a cap-dependent manner. Moreover, antisense 2'-O-methyloligoribonucleotides specifically competed with the 40S ribosomal subunit for binding to the IRES RNA in a filter- retention assay. The antisense efficiency of the oligonucleotides was nicely correlated to their affinity for the IIId subdomain and to their ability to displace 40S ribosomal subunit, making this process a likely explanation for in vitro inhibition of HCV-IRES-dependent translation.
Collapse
|
16
|
Stuyver LJ, Whitaker T, McBrayer TR, Hernandez-Santiago BI, Lostia S, Tharnish PM, Ramesh M, Chu CK, Jordan R, Shi J, Rachakonda S, Watanabe KA, Otto MJ, Schinazi RF. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob Agents Chemother 2003; 47:244-54. [PMID: 12499198 PMCID: PMC149013 DOI: 10.1128/aac.47.1.244-254.2003] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A base-modified nucleoside analogue, beta-D-N(4)-hydroxycytidine (NHC), was found to have antipestivirus and antihepacivirus activities. This compound inhibited the production of cytopathic bovine viral diarrhea virus (BVDV) RNA in a dose-dependant manner with a 90% effective concentration (EC(90)) of 5.4 microM, an observation that was confirmed by virus yield assays (EC(90) = 2 microM). When tested for hepatitis C virus (HCV) replicon RNA reduction in Huh7 cells, NHC had an EC(90) of 5 microM on day 4. The HCV RNA reduction was incubation time and nucleoside concentration dependent. The in vitro antiviral effect of NHC was additive with recombinant alpha interferon-2a and could be prevented by the addition of exogenous cytidine and uridine but not of other natural ribo- or 2'-deoxynucleosides. When HCV RNA replicon cells were cultured in the presence of increasing concentrations of NHC (up to 40 micro M) for up to 45 cell passages, no resistant replicon was selected. Similarly, resistant BVDV could not be selected after 20 passages. NHC was phosphorylated to the triphosphate form in Huh7 cells, but in cell-free HCV NS5B assays, synthetic NHC-triphosphate (NHC-TP) did not inhibit the polymerization reaction. Instead, NHC-TP appeared to serve as a weak alternative substrate for the viral polymerase, thereby changing the mobility of the product in polyacrylamide electrophoresis gels. We speculate that incorporated nucleoside analogues with the capacity of changing the thermodynamics of regulatory secondary structures (with or without introducing mutations) may represent an important class of new antiviral agents for the treatment of RNA virus infections, especially HCV.
Collapse
|
17
|
Beckebaum S, Cicinnati VR, Gerken G. DNA-based immunotherapy: potential for treatment of chronic viral hepatitis? Rev Med Virol 2002; 12:297-319. [PMID: 12211043 DOI: 10.1002/rmv.359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent HBV and HCV infection represent major causes of chronic liver disease with a high risk of progression to liver cirrhosis and hepatocellular carcinoma (HCC). Conventional protein-based vaccines are highly efficacious in preventing HBV infection; whereas in therapeutic settings with chronically infected patients, results have been disappointing. Prophylactic vaccination against HCV infection has not yet been achieved due to many impediments including frequent spontaneous mutations of the virus with escape from immune system control. Using animal models it has been demonstrated that DNA-based immunisation strategies may overcome this problem because of their potential to induce immunity against multiple viral epitopes. DNA-based vaccines mimic the effect of live attenuated viral vaccines, eliciting cell mediated immunity in addition to inducing humoral responses. Efficacy may further be improved by addition of DNA encoding immunomodulatory cytokines and more recently, direct genetic modulation of antigen-presenting cells, such as dendritic cells (DC), has been shown to increase antigen-specific immune responses. This review focuses on immunological aspects of chronic HBV and HCV infection and on the potential of DNA- and DC-based vaccines for the treatment of chronic viral hepatitis.
Collapse
Affiliation(s)
- Susanne Beckebaum
- Department of Gastroenterology and Hepatology, University of Essen, Germany
| | | | | |
Collapse
|
18
|
Lehmann TJ, Engels JW. Synthesis and properties of bile acid phosphoramidites 5'-tethered to antisense oligodeoxynucleotides against HCV. Bioorg Med Chem 2001; 9:1827-35. [PMID: 11425584 DOI: 10.1016/s0968-0896(01)00079-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recently, we synthesized antisense oligonucleotides (AS-ODNs) directed against the non-coding-region (NCR) and the adjacent core region of the hepatitis C virus (HCV) RNA. Backbone modifications like phosphorothioates, methyl- and benzylphosphonates were introduced three at each end of the sequence. For improvement of liver specific drug targeting and/or hepatocellular uptake efficient AS-ODNs were covalently conjugated to biomolecules such as cholesterol or bile acids. The use of base-labile alkylphosphonates afforded mild conditions for deprotection of bile acid conjugated AS-ODNs. Here, we describe a convenient synthesis of new cholic acid and taurocholic acid phosphoramidites. Derivatization to taurocholic acid was effected directly before phosphitylation reaction, which is the last step of the phosphoramidite synthesis. These building blocks were coupled to the 5'-position of AS-ODNs in the last step of solid-phase synthesis. After mild deprotection, purification and characterization the properties of these modified AS-ODNs like their lipophilicity or their ability to form stable duplices to DNA and RNA were investigated. Enhanced lipophilicity and formation of stable duplices and heteroduplices makes bile acid conjugated AS-ODNs interesting as antiviral antisense therapeutics against HCV.
Collapse
Affiliation(s)
- T J Lehmann
- Institute of Organic Chemistry, Johann Wolfgang Goethe-University, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|
19
|
Lehmann TJ, Serwe M, Caselmann WH, Engels JW. Design and properties of hepatitis C virus antisense oligonucleotides for liver specific drug targeting. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:1343-6. [PMID: 11563018 DOI: 10.1081/ncn-100002551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Different backbone modified antisense oligonucleotides (AS-ODNs) directed against the hepatitis C virus genome were 5'-conjugated to cholesterol, cholic acid or taurocholic acid to enhance liver specific drug targeting and hepatocellular uptake. The lipophilic character of modified AS-ODNs was determined from RP-HPLC retention times and duplex stability was correlated with Tm-values from UV melting curves.
Collapse
Affiliation(s)
- T J Lehmann
- Institute of Organic Chemistry, Johann Wolfgang Goethe-University, Marie-Curie-Strasse 11, D-60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
20
|
Amberg S, Engels JW. Phenylalkyl backbone modified oligodeoxynucleotides, their synthesis and the influence of the alkyl chain length. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:1275-8. [PMID: 11563002 DOI: 10.1081/ncn-100002535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenylalkyl modified phosphoramidites (alkyl chain length n = 1, 2, 3, 5; Fig. 1) were synthesised and incorporated into a DNA hexamer (5'-d(GCCp-GCG); p = place of modification). The obtained diastereomeres were separated by RP-HPLC. After hybridisation with the complementary DNA strand Tm-value and thermodynamic data were measured. The stability of duplexes depends on the linker length and the absolute configuration of the backbone modified oligodeoxynucleotides (Rp, Sp).
Collapse
Affiliation(s)
- S Amberg
- Institut für Organische Chemie, Johann Wolfgang Goethe-Universität, Marie Curie Strasse 11, D-60439 Frankfurt am Main, Germany
| | | |
Collapse
|
21
|
Caselmann WH, Serwe M, Lehmann T, Ludwig J, Sproat BS, Engels JW. Design, delivery and efficacy testing of therapeutic nucleic acids used to inhibit hepatitis C virus gene expression in vitro and in vivo. World J Gastroenterol 2000; 6:626-629. [PMID: 11819663 PMCID: PMC4688832 DOI: 10.3748/wjg.v6.i5.626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|