1
|
Liang X, Wang G, Xue C, Zhou Y. RBMS1 interference inhibits malignant progression of glioblastoma cells and promotes ferroptosis. Discov Oncol 2024; 15:548. [PMID: 39392522 PMCID: PMC11469991 DOI: 10.1007/s12672-024-01430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a brain tumor characterized by the highest malignancy and the poorest prognoses. RNA binding motif single strand interacting protein 1 (RBMS1) has been implicated to be involved in various cancer progression. This study was conceived to explore the role and the mechanism of RBMS1 in GBM. MATERIALS RT-qPCR and western blot were used to evaluate RBMS1 expression and examine the transfection efficiency of sh-RBMS1. Cell proliferation was detected using CCK-8 assay and colony formation assay while cell apoptosis was detected with flow cytometry. Cell migration and invasion were detected with wound healing and transwell assay. The activities of MMP2 and MMP9 were detected using gelatin zymography. Western blot was used to measure proliferation-, apoptosis-, ferroptosis- and EMT-related proteins. Lipid peroxidation was detected with TBARS Assay Kit and lipid ROS was detected with a BODIPY 581/591 C11 kit. The total iron level was detected using corresponding assay kits. RESULTS According to GEPIA database, RBMS1 expression was upregulated in GBM and the present study found that RBMS1 expression was upregulated in GBM cells. After interfering RBMS1, GBM cell proliferation, migration, invasion and EMT process were inhibited while cell apoptosis and ferroptosis were promoted. However, ferroptosis inhibitor Fer-1 partially counteracted the protective effects of RBMS1 knockdown on GBM. CONCLUSION Collectively, this study revealed that RBMS1 silence inhibited the malignant progression of GBM possibly through ferroptosis.
Collapse
Affiliation(s)
- Xiaosong Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Chunxiao Xue
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China
| | - Yifu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, No. 999 Zhongxing Southern Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
2
|
Aljabban J, Syed S, Syed S, Rohr M, Mukhtar M, Aljabban H, Cottini F, Mohammed M, Hughes T, Gonzalez T, Panahiazr M, Hadley D, Benson D. Characterization of monoclonal gammopathy of undetermined significance progression to multiple myeloma through meta-analysis of GEO data. Heliyon 2023; 9:e17298. [PMID: 37539132 PMCID: PMC10394915 DOI: 10.1016/j.heliyon.2023.e17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The etiology of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) is still obscure as are the processes that enable the progression of MGUS to MM. Understanding the unique vs. shared transcriptomes can potentially elucidate why individuals develop one or the other. Furthermore, highlighting key pathways and genes involved in the pathogenesis of MM or the development of MGUS to MM may allow the discovery of novel drug targets and therapies. We employed STARGEO platform to perform three separate meta-analysis to compare MGUS and MM transcriptomes. For these analyses we tagged (1) 101 MGUS patient plasma cells from bone marrow samples and 64 plasma cells from healthy controls (2) 383 MM patient CD138+ cells from bone marrow and the 101 MGUS samples in the first analysis as controls (3) 517 MM patient peripheral blood samples and 97 peripheral blood samples from healthy controls. We then utilized Ingenuity Pathway Analysis (IPA) to analyze the unique genomic signatures within and across these samples. Our study identified genes that may have unique roles in MGUS (GADD45RA and COMMD3), but also newly identified signaling pathways (EIF2, JAK/STAT, and MYC) and gene activity (NRG3, RBFOX2, and PARP15) in MGUS that have previously been shown to be involved in MM suggesting a spectrum of molecular overlap. On the other hand, genes such as DUSP4, RN14, LAMP5, differentially upregulated in MM, may be seen as tipping the scales from benignity to malignancy and could serve as drug targets or novel biomarkers for risk of progression. Furthermore, our analysis of MM identified newly associated gene/pathway activity such as inhibition of Wnt-signaling and defective B cell development. Finally, IPA analysis, suggests the multifactorial, oncogenic qualities of IFNγ signaling in MM may be a unifying pathway for these diverse mechanisms and prompts the need for further studies.
Collapse
Affiliation(s)
- Jihad Aljabban
- University of Wisconsin Hospital and Clinics, Department of Medicine, United States
| | - Sharjeel Syed
- University of Chicago Medical Center, Department of Medicine, United States
| | - Saad Syed
- Northwestern Memorial Hospital, Department of Medicine, United States
| | - Michael Rohr
- University of Central Florida College of Medicine, United States
| | - Mohamed Mukhtar
- Michigan State University College of Human Medicine, United States
| | | | - Francesca Cottini
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| | | | - Tiffany Hughes
- Ohio State University Wexner Medical Center, United States
| | | | - Maryam Panahiazr
- University of California San Francisco, Department of Surgery, United States
| | - Dexter Hadley
- University of Central Florida College of Medicine, United States
- University of Central Florida, Chief of the Department of Artificial Intelligence, United States
| | - Don Benson
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| |
Collapse
|
3
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
4
|
Habib K, Bishayee K, Kang J, Sadra A, Huh SO. RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a. Mol Cells 2022; 45:588-602. [PMID: 35754370 PMCID: PMC9385565 DOI: 10.14348/molcells.2022.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/27/2022] Open
Abstract
Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelop-mental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.
Collapse
Affiliation(s)
- Khadija Habib
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jieun Kang
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
5
|
Gyamfi J, Kim J, Choi J. Cancer as a Metabolic Disorder. Int J Mol Sci 2022; 23:ijms23031155. [PMID: 35163079 PMCID: PMC8835572 DOI: 10.3390/ijms23031155] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer has long been considered a genetic disease characterized by a myriad of mutations that drive cancer progression. Recent accumulating evidence indicates that the dysregulated metabolism in cancer cells is more than a hallmark of cancer but may be the underlying cause of the tumor. Most of the well-characterized oncogenes or tumor suppressor genes function to sustain the altered metabolic state in cancer. Here, we review evidence supporting the altered metabolic state in cancer including key alterations in glucose, glutamine, and fatty acid metabolism. Unlike genetic alterations that do not occur in all cancer types, metabolic alterations are more common among cancer subtypes and across cancers. Recognizing cancer as a metabolic disorder could unravel key diagnostic and treatments markers that can impact approaches used in cancer management.
Collapse
Affiliation(s)
- Jones Gyamfi
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Veritas Hall D 306, 85 Songdogwahak-ro, Incheon 21983, Korea; (J.G.); (J.K.)
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Jinyoung Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Veritas Hall D 306, 85 Songdogwahak-ro, Incheon 21983, Korea; (J.G.); (J.K.)
| | - Junjeong Choi
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Veritas Hall D 306, 85 Songdogwahak-ro, Incheon 21983, Korea; (J.G.); (J.K.)
- Correspondence: ; Tel.: +82-32-749-4521; Fax: +82-32-749-4105
| |
Collapse
|
6
|
Ma S, Wei H, Wang C, Han J, Chen X, Li Y. MiR-26b-5p inhibits cell proliferation and EMT by targeting MYCBP in triple-negative breast cancer. Cell Mol Biol Lett 2021; 26:52. [PMID: 34895159 PMCID: PMC8903572 DOI: 10.1186/s11658-021-00288-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background The study was designed to elucidate the association and functional roles of miR-26b-5p and c-MYC binding protein (MYCBP) in triple-negative breast cancer (TNBC). Method Luciferase reporter assay was used to confirm the relationship between miR-26b-5p and MYCBP in TNBC cells. The expression levels of miR-26b-5p and MYCBP in tissue specimens and cell lines were determined using reverse transcription-quantitative PCR. Cell proliferation, migration and invasion were assessed using CCK-8 assay, colony formation and transwell assay. Results We first observed that miR-26b-5p directly targets the 3′-UTR of MYCBP to inhibit MYCBP expression in MDA-MB-468 and BT-549 cells. The expression of miR-26b-5p was inversely correlated with MYCBP expression in TNBC tissues. We further demonstrated that MYCBP knockdown suppressed the proliferation, migration and invasion of TNBC cells. Furthermore, MYCBP overexpression counteracted the suppressive effect of miR-26b-5p on TNBC cell behaviors. Western blot analysis demonstrated that the E-cadherin protein level was increased, while protein levels of N-cadherin and vimentin were decreased in cells transfected with miR-26b-5p, which were all reversed by ectopic expression of MYCBP. Conclusions In summary, our findings revealed the tumor suppressive role of miR-26b-5p in regulating TNBC cell proliferation and mobility, possibly by targeting MYCBP.
Collapse
Affiliation(s)
- Sugang Ma
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Hui Wei
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Chunyan Wang
- Department of Obstetrics, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Jixia Han
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Xiumin Chen
- Department of Breast Surgery, Jinan Sixth People's Hospital, Jinan, 250200, Shandong, China
| | - Yang Li
- Department of Laboratory Medicine, Jinan Sixth People's Hospital, No. 1920 Huiquan Road, Zhangqiu District, Jinan, 250200, Shandong, China.
| |
Collapse
|
7
|
Wang A, Zhang T, Wei W, Wang H, Zhang Z, Yang W, Xia W, Mao Q, Xu L, Jiang F, Dong G. The Long Noncoding RNA LINC00665 Facilitates c-Myc Transcriptional Activity via the miR-195-5p MYCBP Axis to Promote Progression of Lung Adenocarcinoma. Front Oncol 2021; 11:666551. [PMID: 34277412 PMCID: PMC8281894 DOI: 10.3389/fonc.2021.666551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently received growing substantial attention in cancer research due to their important roles in various cancer types. However, the underlying mechanisms and functions of lncRNAs, especially in lung adenocarcinoma (LUAD), remain elusive. Based on pan-cancer screening analyses, we identified that the noncoding RNA LINC00665 was up-regulated in lung adenocarcinoma, which was subsequently confirmed in clinical samples and cell lines. Higher expression of LINC00665 was positively associated with poor prognosis and advanced T stage. Next, using gain- and loss- of function approaches, we revealed that LINC00665 promotes cell proliferation, cell migration, invasion, and suppresses cell apoptosis in LUAD through in vitro and in vivo experiments. Additionally, our findings showed that LINC00665 was predominately localized in the cytoplasm so as to interact with Ago2 protein, which could function as miRNA sponges. The results of bioinformatics prediction and RNA pull-down assay indicated that LINC00665 directly interacted with miR-195-5p. This was also confirmed by fluorescence colocalization. Furthermore, luciferase reporter assay demonstrated that Myc binding protein (MYCBP, also called AMY-1), which enhanced c-Myc transcriptional activity, was the target gene of LINC00665 dependent on miR-195-5p. Finally, rescue functional assay results uncovered that the oncogenic capability of LINC00665 was dependent on miR-195-5p and c-Myc transcriptional activity. In summary, this work elucidates that LINC00665 accelerates LUAD progression via the miR-195-5p/MYCBP axis by acting as a competing endogenous RNA (ceRNA), suggesting that LINC00665 may represent a potential therapeutic target for clinical intervention of LUAD.
Collapse
Affiliation(s)
- Anpeng Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Te Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Hui Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Zeyu Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenming Yang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjie Xia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Qixing Mao
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Abstract
Recent technological advances have expanded the annotated protein coding content of mammalian genomes, as hundreds of previously unidentified, short open reading frame (ORF)-encoded peptides (SEPs) have now been found to be translated. Although several studies have identified important physiological roles for this emerging protein class, a general method to define their interactomes is lacking. Here, we demonstrate that genetic incorporation of the photo-crosslinking noncanonical amino acid AbK into SEP transgenes allows for the facile identification of SEP cellular interaction partners using affinity-based methods. From a survey of seven SEPs, we report the discovery of short ORF-encoded histone binding protein (SEHBP), a conserved microprotein that interacts with chromatin-associated proteins, localizes to discrete genomic loci, and induces a robust transcriptional program when overexpressed in human cells. This work affords a straightforward method to help define the physiological roles of SEPs and demonstrates its utility by identifying SEHBP as a short ORF-encoded transcription factor.
Collapse
|
9
|
Santos ES, Rodrigues-Fernandes CI, Cabral JC, Fonseca FP, Leme AFP. Epigenetic alterations in ameloblastomas: A literature review. J Clin Exp Dent 2021; 13:e295-e302. [PMID: 33680332 PMCID: PMC7920560 DOI: 10.4317/jced.56191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Background Ameloblastoma is a locally aggressive tumor, originated from odontogenic epithelium, and affects the jawbones with an elevated recurrence rate. The molecular mechanisms involved with the pathogenesis of this tumor remain undetermined. This review aimed to describe the current data regarding epigenetic alterations in ameloblastoma. Material and Methods A systematized electronic search was performed in the English-language literature in three databases, combining the following keywords: ameloblastoma, epigenetic, methylation, noncoding RNA, histone acetylation. Results According to the gathered results of 11 studies in this review, epigenetic alterations could induce the development and progression of ameloblastoma. DNA methylation has been the most assessed mechanism in ameloblastomas. Conclusions Current literature data indicate that epigenetic events can be involved in the etiopathogenesis of ameloblastomas. Key words:Ameloblastoma, epigenetic, methylation, noncoding RNA, histone acetylation.
Collapse
Affiliation(s)
- Erison-Santana Santos
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Joab-Cabral Cabral
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Felipe-Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana-Franco-Paes Leme
- Brazilian Biosciences National Laboratory, The Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
10
|
Liang J, Xia L, Oyang L, Lin J, Tan S, Yi P, Han Y, Luo X, Wang H, Tang L, Pan Q, Tian Y, Rao S, Su M, Shi Y, Cao D, Zhou Y, Liao Q. The functions and mechanisms of prefoldin complex and prefoldin-subunits. Cell Biosci 2020; 10:87. [PMID: 32699605 PMCID: PMC7370476 DOI: 10.1186/s13578-020-00446-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.
Collapse
Affiliation(s)
- Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Xia Luo
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
- Department of Medical Microbiology Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794 USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013 Hunan China
| |
Collapse
|
11
|
Khawaled S, Nigita G, Distefano R, Oster S, Suh SS, Smith Y, Khalaileh A, Peng Y, Croce CM, Geiger T, Seewaldt VL, Aqeilan RI. Pleiotropic tumor suppressor functions of WWOX antagonize metastasis. Signal Transduct Target Ther 2020; 5:43. [PMID: 32300104 PMCID: PMC7162874 DOI: 10.1038/s41392-020-0136-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 02/05/2023] Open
Abstract
Tumor progression and metastasis are the major causes of death among cancer associated mortality. Metastatic cells acquire features of migration and invasion and usually undergo epithelia-mesenchymal transition (EMT). Acquirement of these various hallmarks rely on different cellular pathways, including TGF-β and Wnt signaling. Recently, we reported that WW domain-containing oxidoreductase (WWOX) acts as a tumor suppressor and has anti-metastatic activities involving regulation of several key microRNAs (miRNAs) in triple-negative breast cancer (TNBC). Here, we report that WWOX restoration in highly metastatic MDA-MB435S cancer cells alters mRNA expression profiles; further, WWOX interacts with various proteins to exert its tumor suppressor function. Careful alignment and analysis of gene and miRNA expression in these cells revealed profound changes in cellular pathways mediating adhesion, invasion and motility. We further demonstrate that WWOX, through regulation of miR-146a levels, regulates SMAD3, which is a member of the TGF-β signaling pathway. Moreover, proteomic analysis of WWOX partners revealed regulation of the Wnt-signaling activation through physical interaction with Disheveled. Altogether, these findings underscore a significant role for WWOX in antagonizing metastasis, further highlighting its role and therapeutic potential in suppressing tumor progression.
Collapse
Affiliation(s)
- Saleh Khawaled
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Rosario Distefano
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sara Oster
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan, Republic of Korea
| | - Yoav Smith
- Genomic Data Analysis Unit, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Abed Khalaileh
- Department of Surgery, Hadassah Medical Center, Jerusalem, Israel
| | - Yong Peng
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria L Seewaldt
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Rami I Aqeilan
- Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, IMRIC, Jerusalem, Israel. .,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Nakamura M, Hayashi M, Konishi H, Nunode M, Ashihara K, Sasaki H, Terai Y, Ohmichi M. MicroRNA-22 enhances radiosensitivity in cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression. Oncol Lett 2020; 19:2213-2222. [PMID: 32194719 PMCID: PMC7038919 DOI: 10.3892/ol.2020.11344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRs) influence the expression of their target genes post-transcriptionally and serve an important role in multiple cellular processes. The downregulation of miR-22 is associated with a poor prognosis in cervical cancer. However, the mechanisms underlying miR-22-mediated gene regulation and its function are yet to be elucidated. In the present study, the effect of miR-22 expression on the radiosensitivity of cervical cancer was investigated. First, miR-22 was either up- or downregulated to evaluate the regulation of the MYC-binding protein (MYCBP) in four cervical cancer cell lines (C-4I, SKG-II and SiHa). Notably, MYCBP expression was inversely associated with miR-22 induction. A dual-luciferase reporter gene assay revealed that miR-22 directly targets the MYCBP 3'-untranslated region. Subsequently, the level of human telomerase reverse transcriptase component (hTERT; an E-box-containing c-Myc target gene) was analyzed after the up- or downregulation of miR-22. Notably, miR-22-mediated repression of MYCBP reduced hTERT expression. In addition, the influence of miR-22 on radiosensitivity in C-4I, SKG-II and SiHa cells was examined using a clonogenic assay and in mouse xenograft models. Upregulation of miR-22 was associated with increased radiosensitivity. Furthermore, lentiviral transduction of miR-22 reduced the Ki-67 index while increasing the TUNEL index in xenograft tissue. The current findings indicate the potential utility of miR-22 in radiotherapy for cervical cancer.
Collapse
Affiliation(s)
- Mayumi Nakamura
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Misa Nunode
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
13
|
Singh S, Singh VK, Rai G. Identification of Differentially Expressed Hematopoiesis-associated Genes in Term Low Birth Weight Newborns by Systems Genomics Approach. Curr Genomics 2020; 20:469-482. [PMID: 32655286 PMCID: PMC7327969 DOI: 10.2174/1389202920666191203123025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022] Open
Abstract
Background Low Birth Weight (LBW) (birth weight <2.5 Kg) newborns are associated with a high risk of infection, morbidity and mortality during their perinatal period. Compromised innate immune responses and inefficient hematopoietic differentiation in term LBW newborns led us to evaluate the gene expression status of hematopoiesis. Materials and Methods In this study, we compared our microarray datasets of LBW-Normal Birth Weight (NBW) newborns with two reference datasets to identify hematopoietic stem cells genes, and their differential expression in the LBW newborns, by hierarchical clustering algorithm using gplots and RcolorBrewer package in R. Results Comparative analysis revealed 108 differentially expressed hematopoiesis genes (DEHGs), of which 79 genes were up-regulated, and 29 genes were down-regulated in LBW newborns compared to their NBW counterparts. Moreover, protein-protein interactions, functional annotation and pathway analysis demonstrated that the up-regulated genes were mainly involved in cell proliferation and differentiation, MAPK signaling and Rho GTPases signaling, and the down-regulated genes were engaged in cell proliferation and regulation, immune system regulation, hematopoietic cell lineage and JAK-STAT pathway. The binding of down-regulated genes (LYZ and GBP1) with growth factor GM-CSF using docking and MD simulation techniques, indicated that GM-CSF has the potential to alleviate the repressed hematopoiesis in the term LBW newborns. Conclusion Our study revealed that DEHGs belonged to erythroid and myeloid-specific lineages and may serve as potential targets for improving hematopoiesis in term LBW newborns to help build up their weak immune defense against life-threatening infections.
Collapse
Affiliation(s)
- Sakshi Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay K Singh
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Geeta Rai
- 1Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India; 2Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
14
|
Zhu XX, Li JH, Cai JP, Hou X, Huang CS, Huang XT, Wang JQ, Li SJ, Xu QC, Yin XY. EYA4 inhibits hepatocellular carcinoma by repressing MYCBP by dephosphorylating β-catenin at Ser552. Cancer Sci 2019; 110:3110-3121. [PMID: 31385398 PMCID: PMC6778622 DOI: 10.1111/cas.14159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and the fourth leading cause of cancer-related death worldwide. Our previous study showed that EYA4 functioned by suppressing growth of HCC tumor cells, but its molecular mechanism is still not elucidated. Based on the results of gene microassay, EYA4 was inversely correlated with MYCBP and was verified in human HCC tissues by immunohistochemistry and western blot. Overexpressed and KO EYA4 in human HCC cell lines confirmed the negative correlation between EYA4 and MYCBP by qRT-PCR and western blot. Transfected siRNA of MYCBP in EYA4 overexpressed cells and overexpressed MYCBP in EYA4 KO cells could efficiently rescue the proliferation and G2/M arrest effects of EYA4 on HCC cells. Mechanistically, armed with serine/threonine-specific protein phosphatase activity, EYA4 reduced nuclear translocation of β-catenin by dephosphorylating β-catenin at Ser552, thereby suppressing the transcription of MYCBP which was induced by β-catenin/LEF1 binding to the promoter of MYCBP. Clinically, HCC patients with highly expressed EYA4 and poorly expressed MYCBP had significantly longer disease-free survival and overall survival than HCC patients with poorly expressed EYA4 and highly expressed MYCBP. In conclusion, EYA4 suppressed HCC tumor cell growth by repressing MYCBP by dephosphorylating β-catenin S552. EYA4 combined with MYCBP could be potential prognostic biomarkers in HCC.
Collapse
Affiliation(s)
- Xiao-Xu Zhu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Hui Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian-Peng Cai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xun Hou
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen-Song Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi-Tai Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie-Qin Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi-Jin Li
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiong-Cong Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Li M, Li A, Zhou S, Lv H, Yang W. SPAG5 upregulation contributes to enhanced c-MYC transcriptional activity via interaction with c-MYC binding protein in triple-negative breast cancer. J Hematol Oncol 2019; 12:14. [PMID: 30736840 PMCID: PMC6367803 DOI: 10.1186/s13045-019-0700-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks effective therapeutic targets. Sperm-associated antigen 5 (SPAG5) is a mitotic spindle-associated protein that is involved in various biological processes in cervical cancer and bladder urothelial carcinoma. However, the role of SPAG5 in TNBC remains undefined. METHODS The expression of SPAG5 was examined in TNBC patients via quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC). The biological functions of SPAG5 in TNBC and the underlying mechanisms were investigated in vitro and in vivo. RESULTS SPAG5 expression was significantly upregulated in TNBC tissues compared with that in paired adjacent noncancerous tissues (ANTs). High SPAG5 expression was associated with increased lymph node metastasis and high risk of local recurrence. SPAG5 protein expression was significantly associated with poor disease-free survival in TNBC. Gene set enrichment analysis of TNBC data from The Cancer Genome Atlas (TCGA) indicated that high SPAG5 expression was significantly associated with cell cycle and the ATR-BRCA pathway. Functional assays demonstrated that SPAG5 expression promoted tumor growth in vitro and in vivo. In addition, SPAG5-silenced cells were more sensitive to the PARP inhibitor (PARPi) olaparib. Mechanistically, SPAG5 interacted with c-MYC binding protein (MYCBP), thereby increasing MYCBP protein levels and leading to increased c-MYC transcriptional activity, which promoted the expression of the c-MYC target genes: CDC20, CDC25C, BRCA1, BRCA2, and RAD51.Knockdown of MYCBP or c-MYC abolished the SPAG5-induced cell-cycle progression and cell proliferation of TNBC. CONCLUSIONS Collectively, our results indict that SPAG5 is an efficient prognostic factor in TNBC, and that SPAG5 knockdown increases the sensitivity of TNBC to the PARPi olaparib. SPAG5 promotes tumor growth and DNA repair by increasing c-MYC transcriptional activity via interaction with MYCBP. The SPAG5/MYCBP/c-MYC axis may represent a potential therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Anqi Li
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shuling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. .,Institute of Pathology, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Lehrer S, Rheinstein PH, Rosenzweig KE. Loss of MycBP may be associated with the improved survival in 1P co-deletion of lower grade glioma patients. Clin Neurol Neurosurg 2018; 172:112-115. [PMID: 29986195 DOI: 10.1016/j.clineuro.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The chromosome 1p/19q co-deletion is a favorable prognostic factor in patients with low grade glioma. In the current analysis, we examined MycBP expression in low grade glioma. MycBP lies on chromosome 1p. PATIENTS AND METHODS We evaluated the association between MycBP and overall survival in the TCGA Lower Grade Glioma (LGG) dataset in TCGA (The Cancer Genome Atlas). RESULTS Loss of MycBP copy number segment expression coincides with co-deletion of 1 P. The deleterious effect of MycBP on survival is significant (p = 0.00006306, hazard ratio 2.02, 95% CI 1.4-2.9). Patients with astrocytoma have the poorest survival of low grade glioma patients. MycBP mRNA is significantly overexpressed in astrocytomas when compared to normal brain (2.156 fold change, p = 0.0000488). CONCLUSION Our report that Chromosome 1 P co-deletion may confer better survival in patients with lower grade glioma in part because of loss of MycBP corroborates other studies of the importance of MycBP in glioma development. Further work with microRNAs may lead to new treatments.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, United States.
| | | | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
17
|
Gong L, Xia Y, Qian Z, Shi J, Luo J, Song G, Xu J, Ye Z. Overexpression of MYC binding protein promotes invasion and migration in gastric cancer. Oncol Lett 2018; 15:5243-5249. [PMID: 29552163 PMCID: PMC5840499 DOI: 10.3892/ol.2018.7944] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
Gastric cancer (GC) is the second leading cause of cancer-associated mortality worldwide. Although the mortality rate of patients with GC has improved, it remains a significant health issue. The MYC proto-oncogene protein serves key roles in cellular proliferation, differentiation, transformation and apoptosis. Previous studies have identified the abnormal expression of MYC-binding protein (MYCBP) during tumorigenesis in multiple types of cancer. Furthermore, evidence demonstrates that the abnormal expression of MYCBP contributes to the invasion and migration of human cancer types, including colon cancer and glioma; however, its influence on GC remains unclear. In the present study, the expression of MYCBP in GC cells and tissues was analyzed by reverse transcription-quantitative polymerase chain reaction. Additionally, GC cell lines were transfected with small interfering RNAs against MYCBP or lymphoid enhancer-binding factor 1 (LEF-1) and assessed by in vitro transwell migration and invasion assays. The results indicated that the expression of MYCBP in GC cells and tissues was markedly increased compared with a normal gastric epithelial cell line and adjacent normal gastric mucosal tissues, respectively. Furthermore, MYCBP downregulation notably inhibited the metastatic capacity of GC cells, and LEF-1 knockdown was found to downregulate the expression of MYCBP. On the basis of the findings of the present study, MYCBP may be a direct target of the β-catenin/LEF-1 pathway via binding LEF-1, and could potentially be used as a biomarker for the diagnosis and prognosis of GC.
Collapse
Affiliation(s)
- Lijie Gong
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zhenyuan Qian
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Shi
- Department of Breast and Thyroid Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, P.R. China
| | - Jungang Luo
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Guangyuan Song
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Ji Xu
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
- Department of Gastrointestinal and Pancreatic Surgery, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Zaiyuan Ye
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
18
|
ALK is a critical regulator of the MYC-signaling axis in ALK positive lung cancer. Oncotarget 2018; 9:8823-8835. [PMID: 29507657 PMCID: PMC5823650 DOI: 10.18632/oncotarget.24260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/09/2018] [Indexed: 12/31/2022] Open
Abstract
A subset of lung cancers is dependent on the anaplastic lymphoma kinase (ALK) oncogene for survival, a mechanism that is exploited by the use of the ALK inhibitor crizotinib. Despite exceptional initial tumor responses to ALK inhibition by crizotinib, durable clinical response is limited and the emergence of drug resistance occurs. Furthermore, intrinsic resistance is frequently observed, where patients fail to respond initially to ALK-inhibitor therapy. These events demonstrate the underlying complexity of a molecularly-defined oncogene-driven cancer and highlights the need to identify compensating survival pathways. Using a loss-of-function whole genome short-hairpin (shRNA) screen, we identified MYCBP as a determinant of response to crizotinib, implicating the MYC signaling axis in resistance to crizotinib-treated ALK+ NSCLC. Further analysis reveals that ALK regulates transcriptional expression of MYC and activates c-MYC transactivation of c-MYC target genes. Inhibition of MYC by RNAi or small molecules sensitizes ALK+ cells to crizotinib. Taken together, our findings demonstrate a dual oncogene mechanism, where ALK positively regulates the MYC signaling axis, providing an additional oncogene target whose inhibition may prevent or overcome resistance.
Collapse
|
19
|
Carlson CH, Choi Y, Chan AP, Serapiglia MJ, Town CD, Smart LB. Dominance and Sexual Dimorphism Pervade the Salix purpurea L. Transcriptome. Genome Biol Evol 2017; 9:2377-2394. [PMID: 28957462 PMCID: PMC5622329 DOI: 10.1093/gbe/evx174] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/24/2022] Open
Abstract
The heritability of gene expression is critical in understanding heterosis and is dependent on allele-specific regulation by local and remote factors in the genome. We used RNA-Seq to test whether variation in gene expression among F1 and F2 intraspecific Salix purpurea progeny is attributable to cis- and trans-regulatory divergence. We assessed the mode of inheritance based on gene expression levels and allele-specific expression for F1 and F2 intraspecific progeny in two distinct tissue types: shoot tip and stem internode. In addition, we explored sexually dimorphic patterns of inheritance and regulatory divergence among F1 progeny individuals. We show that in S. purpurea intraspecific crosses, gene expression inheritance largely exhibits a maternal dominant pattern, regardless of tissue type or pedigree. A significantly greater number of cis- and trans-regulated genes coincided with upregulation of the maternal parent allele in the progeny, irrespective of the magnitude, whereas the paternal allele was higher expressed for genes showing cis × trans or compensatory regulation. Importantly, consistent with previous genetic mapping results for sex in shrub willow, we have delimited sex-biased gene expression to a 2 Mb pericentromeric region on S. purpurea chr15 and further refined the sex determination region. Altogether, our results offer insight into the inheritance of gene expression in S. purpurea as well as evidence of sexually dimorphic expression which may have contributed to the evolution of dioecy in Salix.
Collapse
Affiliation(s)
- Craig H. Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | - Yongwook Choi
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Agnes P. Chan
- J. Craig Venter Institute, Rockville, Maryland 20850 USA
| | - Michelle J. Serapiglia
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| | | | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, New York 14456 USA
| |
Collapse
|
20
|
Kern DM, Monda JK, Su KC, Wilson-Kubalek EM, Cheeseman IM. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. eLife 2017; 6:26866. [PMID: 28841134 PMCID: PMC5602300 DOI: 10.7554/elife.26866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | | | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
21
|
Li J, Liang Y, Lv H, Meng H, Xiong G, Guan X, Chen X, Bai Y, Wang K. miR-26a and miR-26b inhibit esophageal squamous cancer cell proliferation through suppression of c-MYC pathway. Gene 2017; 625:1-9. [PMID: 28476684 DOI: 10.1016/j.gene.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022]
Abstract
Dysregulation of c-Myc is one of the most common abnormalities in human malignancies, including esophageal cancer, one of the world's most lethal cancers. MicroRNA-26 family, including miR-26a and miR-26b, is transcriptionally suppressed by c-MYC. Our previous microarray data indicated a decreased-expression of miR-26 family in esophageal squamous cell carcinoma (ESCC). However, its roles in c-MYC pathway regulation and esophageal cancer tumorigenesis have yet not been elucidated. In this study, we expanded the detection of miR-26 expression in ESCC patients and found that the great majority of ESCC tissues showed an >50% reduction, even in the early-staged tumor. Furthermore, ectopic expression of miR-26a or miR-26b induced ESCC cell growth inhibition and G1 phase arrest. MYC binding protein (MYCBP) was identified as a direct target of miR-26. MiR-26 could dramatically decrease MYCBP mRNA and protein levels, as well as the expression of luciferase carrying MYCBP 3'-untranslated region. Moreover, knock-down of MYCBP mimicked the effect of miR-26. More importantly, miR-26 overexpression could downregulate a series of c-MYC target genes as MYCBP silence did. Taken together, these results indicate that miR-26 family can suppress esophageal cancer cell proliferation by inhibition of MYCBP, subsequently downregulate c-MYC pathway. Besides, we also found that reduction of miR-26 expression in ESCC was not due to DNA methylation. Hence, our study reveals a novel feedback loop for c-MYC pathway and implicates miR-26 as a potential target for prevention and treatment of esophageal cancer.
Collapse
Affiliation(s)
- Juan Li
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yue Liang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China; The Third Battalion of Cadet Brigade, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hao Lv
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China; The Third Battalion of Cadet Brigade, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China; Department of clinical laboratory, Wuhan General Hospital of PLA, Wuhan, Hubei 430070, People's Republic of China
| | - Gang Xiong
- Department of Thoracic and Cardiac Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xingying Guan
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Xuedan Chen
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China.
| | - Kai Wang
- Department of Medical Genetics, College of Basic Medicine, Third Military Medical University, Chongqing 400038, People's Republic of China.
| |
Collapse
|
22
|
Seo J, Jin D, Choi CH, Lee H. Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs. PLoS One 2017; 12:e0168412. [PMID: 28056026 PMCID: PMC5215789 DOI: 10.1371/journal.pone.0168412] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are responsible for the regulation of target genes involved in various biological processes, and may play oncogenic or tumor suppressive roles. Many studies have investigated the relationships between miRNAs and their target genes, using mRNA and miRNA expression data. However, mRNA expression levels do not necessarily represent the exact gene expression profiles, since protein translation may be regulated in several different ways. Despite this, large-scale protein expression data have been integrated rarely when predicting gene-miRNA relationships. This study explores two approaches for the investigation of gene-miRNA relationships by integrating mRNA expression and protein expression data. First, miRNAs were ranked according to their effects on cancer development. We calculated influence scores for each miRNA, based on the number of significant mRNA-miRNA and protein-miRNA correlations. Furthermore, we constructed modules containing mRNAs, proteins, and miRNAs, in which these three molecular types are highly correlated. The regulatory interactions between miRNA and genes in these modules have been validated based on the direct regulations, indirect regulations, and co-regulations through transcription factors. We applied our approaches to glioblastomas (GBMs), ranked miRNAs depending on their effects on GBM, and obtained 52 GBM-related modules. Compared with the miRNA rankings and modules constructed using only mRNA expression data, the rankings and modules constructed using mRNA and protein expression data were shown to have better performance. Additionally, we experimentally verified that miR-504, highly ranked and included in the identified modules, plays a suppressive role in GBM development. We demonstrated that the integration of both expression profiles allows a more precise analysis of gene-miRNA interactions and the identification of a higher number of cancer-related miRNAs and regulatory mechanisms.
Collapse
Affiliation(s)
- Jiyoun Seo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwanjgu, Republic of Korea
| | - Daeyong Jin
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwanjgu, Republic of Korea
| | - Chan-Hun Choi
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do, Republic of Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwanjgu, Republic of Korea
| |
Collapse
|
23
|
Yogesha M, Rao VG, Martis EAF, Coutinho EC, Gohlke H, Chidangil S, Dongre P, D'Souza JS. Structural features of FAP174, a MYCBP-1 orthologue from Chlamydomonas reinhardtii, revealed by computational and experimental analyses. RSC Adv 2017. [DOI: 10.1039/c7ra07836f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The ciliary MYCBP-1 (FAP174) from Chlamydomonas reinhardtii is an R2D2 protein and harbors a Dimerization and Docking domain.
Collapse
Affiliation(s)
- M. Yogesha
- Department of Atomic & Molecular Physics
- Manipal University
- India
| | | | - Elvis A. F. Martis
- Molecular Simulations Group
- Department of Pharmaceutical Chemistry
- Bombay College of Pharmacy
- Mumbai 400098
- India
| | - Evans C. Coutinho
- Molecular Simulations Group
- Department of Pharmaceutical Chemistry
- Bombay College of Pharmacy
- Mumbai 400098
- India
| | - Holger Gohlke
- Mathematisch-Naturwissenschaftliche Fakultät
- Institut für Pharmazeutische und Medizinische Chemie
- Heinrich-Heine-Universität Düsseldorf
- 40225 Düsseldorf
- Germany
| | | | | | - Jacinta S. D'Souza
- Department of Atomic & Molecular Physics
- Manipal University
- India
- UM-DAE Centre for Excellence in Basic Sciences
- Kalina Campus
| |
Collapse
|
24
|
Valente GT, Nakajima RT, Fantinatti BEA, Marques DF, Almeida RO, Simões RP, Martins C. B chromosomes: from cytogenetics to systems biology. Chromosoma 2016; 126:73-81. [PMID: 27558128 DOI: 10.1007/s00412-016-0613-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/01/2023]
Abstract
Though hundreds to thousands of reports have described the distribution of B chromosomes among diverse eukaryote groups, a comprehensive theory of their biological role has not yet clearly emerged. B chromosomes are classically understood as a sea of repetitive DNA sequences that are poor in genes and are maintained by a parasitic-drive mechanism during cell division. Recent developments in high-throughput DNA/RNA analyses have increased the resolution of B chromosome biology beyond those of classical and molecular cytogenetic methods; B chromosomes contain many transcriptionally active sequences, including genes, and can modulate the activity of autosomal genes. Furthermore, the most recent knowledge obtained from omics analyses, which is associated with a systemic view, has demonstrated that B chromosomes can influence cell biology in a complex way, possibly favoring their own maintenance and perpetuation.
Collapse
Affiliation(s)
- Guilherme T Valente
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael T Nakajima
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Bruno E A Fantinatti
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Diego F Marques
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil
| | - Rodrigo O Almeida
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Rafael P Simões
- Department of Bioprocess and Biotechnology, Agronomic Science School, UNESP - Sao Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences, UNESP - Sao Paulo State University, Sao Paulo, Botucatu, 18618-689, Brazil.
| |
Collapse
|
25
|
Rao VG, Sarafdar RB, Chowdhury TS, Sivadas P, Yang P, Dongre PM, D'Souza JS. Myc-binding protein orthologue interacts with AKAP240 in the central pair apparatus of the Chlamydomonas flagella. BMC Cell Biol 2016; 17:24. [PMID: 27287193 PMCID: PMC4901443 DOI: 10.1186/s12860-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
Background Flagella and cilia are fine thread-like organelles protruding from cells that harbour them. The typical ‘9 + 2’ cilia confer motility on these cells. Although the mechanistic details of motility remain elusive, the dynein-driven motility is regulated by various kinases and phosphatases. A-kinase anchoring proteins (AKAPs) are scaffolds that bind to a variety of such proteins. Usually, they are known to possess a dedicated domain that in vitro interacts with the regulatory subunits (RI and RII) present in the cAMP-dependent protein kinase (PKA) holoenzyme. These subunits conventionally harbour contiguous stretches of a.a. residues that reveal the presence of the Dimerization Docking (D/D) domain, Catalytic interface domain and cAMP-Binding domain. The Chlamydomonas reinhardtii flagella harbour two AKAPs; viz., the radial spoke AKAP97 or RSP3 and the central pair AKAP240. Both these were identified on the basis of their RII-binding property. Interestingly, AKAP97 binds in vivo to two RII-like proteins (RSP7 and RSP11) that contain only the D/D domain. Results We found a Chlamydomonas Flagellar Associated Protein (FAP174) orthologous to MYCBP-1, a protein that binds to organellar AKAPs and Myc onco-protein. An in silico analysis shows that the N-terminus of FAP174 is similar to those RII domain-containing proteins that have binding affinities to AKAPs. Binding of FAP174 was tested with the AKAP97/RSP3 using in vitro pull down assays; however, this binding was rather poor with AKAP97/RSP3. Antibodies were generated against FAP174 and the cellular localization was studied using Western blotting and immunoflourescence in wild type and various flagella mutants. We show that FAP174 localises to the central pair of the axoneme. Using overlay assays we show that FAP174 binds AKAP240 previously identified in the C2 portion of the central pair apparatus. Conclusion It appears that the flagella of Chlamydomonas reinhardtii contain proteins that bind to AKAPs and except for the D/D domain, lack the conventional a.a. stretches of PKA regulatory subunits (RSP7 and RSP11). We add FAP174 to this growing list. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0103-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Ruhi B Sarafdar
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Twinkle S Chowdhury
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Priyanka Sivadas
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Pinfen Yang
- Wehr Life Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Kalina campus, Santacruz (E), Mumbai, 400098, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, Kalina campus, Santacruz (E), Mumbai, 400098, India.
| |
Collapse
|
26
|
Abstract
Onset of cancer and neurodegenerative disease occurs by abnormal cell growth and neuronal cell death, respectively, and the number of patients with both diseases has been increasing in parallel with an increase in mean lifetime, especially in developed countries. Although both diseases are sporadic, about 10% of the diseases are genetically inherited, and analyses of such familial forms of gene products have contributed to an understanding of the molecular mechanisms underlying the onset and pathogenesis of these diseases. I have been working on c-myc, a protooncogene, for a long time and identified various c-Myc-binding proteins that play roles in c-Myc-derived tumorigenesis. Among these proteins, some proteins have been found to be also responsible for the onset of neurodegenerative diseases, including Parkinson's disease, retinitis pigmentosa and cerebellar atrophy. In this review, I summarize our findings indicating the common mechanisms of onset between cancer and neurodegenerative diseases, with a focus on genes such as DJ-1 and Myc-Modulator 1 (MM-1) and signaling pathways that contribute to the onset and pathogenesis of cancer and neurodegenerative diseases.
Collapse
|
27
|
Wang H, Yan X, Ji LY, Ji XT, Wang P, Guo SW, Li SZ. miR-139 Functions as An Antioncomir to Repress Glioma Progression Through Targeting IGF-1 R, AMY-1, and PGC-1β. Technol Cancer Res Treat 2016; 16:497-511. [PMID: 26868851 DOI: 10.1177/1533034616630866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumor with poor prognosis, characterized by a highly heterogeneous cell population, extensive proliferation, and migration. A lot of molecular mechanisms regulate gliomas development and invasion, including abnormal expression of oncogenes and variation of epigenetic modification. MicroRNAs could affect cell growth and functions. Several reports have demonstrated that miR-139 plays multifunctions in kinds of solid tumors through different pathways. However, the antitumor mechanisms of this miR-139 are not unveiled in detail. In this study, we not only validated the low expression level of miR-139 in glioma tissues and cell lines but also detected the effect of miR-139 on modulating gliomas proliferation and invasion both in vitro and in vivo. We identified insulin-like growth factor 1 receptor, associate of Myc 1, and peroxisome proliferator-activated receptor γ coactivator 1β as direct targets of miR-139 and the levels of them were all inversely correlated with miR-139 in gliomas. Insulin like growth factor 1 receptor promoted gliomas invasion through Akt signaling and increased proliferation in the peroxisome proliferator-activated receptor γ coactivator 1β-dependent way. Associate of Myc 1 also facilitated gliomas progression by activating c-Myc pathway. Overexpression of the target genes could retrieve the antitumor function of miR-139, respectively, in different degrees. The nude mice transplantation tumor experiment displayed that glioma cells stably expressed miR-139 growth much slower in vivo than the negative control cells. Taken together, these findings suggested miR-139 acted as a favorable factor against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new evidenced prognostic marker and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Hong Wang
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China.,2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xi Yan
- 3 Department of Internal Medicine, Xi'an Dongfang Hospital
| | - Li-Ya Ji
- 4 Department of Neurology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - Xi-Tuan Ji
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Wang
- 2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Shi-Wen Guo
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - San-Zhong Li
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Marstad A, Landsverk OJB, Strømme O, Otterlei M, Collas P, Sundan A, Brede G. A-kinase anchoring protein AKAP95 is a novel regulator of ribosomal RNA synthesis. FEBS J 2016; 283:757-70. [PMID: 26683827 DOI: 10.1111/febs.13630] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 11/23/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
The RNA polymerase I transcription apparatus acquires and integrates the combined information from multiple cellular signalling cascades to regulate ribosome production essential for cell growth and proliferation. In the present study, we show that a subpopulation of A-kinase anchoring protein 95 (AKAP95) targets the nucleolus during interphase and is involved in regulating rRNA production. We show that AKAP95 co-localizes with the nucleolar upstream binding factor, an essential rRNA transcription factor. Similar to other members of the C2 H2 -zinc finger family, we show, using systematic selection and evolution of ligands by exponential enrichment and in vitro binding analysis, that AKAP95 has a preference for GC-rich DNA in vitro, whereas fluorescence recovery after photobleaching analysis reveals AKAP95 to be a highly mobile protein that exhibits RNA polymerase I and II dependent nucleolar trafficking. In line with its GC-binding features, chromatin immunoprecipitation analysis revealed AKAP95 to be associated with ribosomal chromatin in vivo. Manipulation of AKAP95-expression in U2OS cells revealed a reciprocal relationship between the expression of AKAP95 and 47S rRNA. Taken together, our data indicate that AKAP95 is a novel nucleolus-associated protein with a regulatory role on rRNA production.
Collapse
Affiliation(s)
- Anne Marstad
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ole Jørgen B Landsverk
- Department of Pathology, Centre for Immune Regulation, Oslo University Hospital Norway, Norway
| | - Olaf Strømme
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Marit Otterlei
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Anders Sundan
- Centre of Molecular Inflammation Research (CEMIR), Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,KG Jebsen Centre for Myeloma Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaute Brede
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
29
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|
30
|
Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ, Chuang PT. Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 2014; 28:2547-2563. [PMID: 25403183 PMCID: PMC4233246 DOI: 10.1101/gad.249425.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
Control of Gli function by Suppressor of Fused (Sufu), a major negative regulator, is a key step in mammalian Hedgehog (Hh) signaling, but how this is achieved in the nucleus is unknown. We found that Hh signaling results in reduced Sufu protein levels and Sufu dissociation from Gli proteins in the nucleus, highlighting critical functions of Sufu in the nucleus. Through a proteomic approach, we identified several Sufu-interacting proteins, including p66β (a member of the NuRD [nucleosome remodeling and histone deacetylase] repressor complex) and Mycbp (a Myc-binding protein). p66β negatively and Mycbp positively regulate Hh signaling in cell-based assays and zebrafish. They function downstream from the membrane receptors, Patched and Smoothened, and the primary cilium. Sufu, p66β, Mycbp, and Gli are also detected on the promoters of Hh targets in a dynamic manner. Our results support a new model of Hh signaling in the nucleus. Sufu recruits p66β to block Gli-mediated Hh target gene expression. Meanwhile, Mycbp forms a complex with Gli and Sufu without Hh stimulation but remains inactive. Hh pathway activation leads to dissociation of Sufu/p66β from Gli, enabling Mycbp to promote Gli protein activity and Hh target gene expression. These studies provide novel insight into how Sufu controls Hh signaling in the nucleus.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yoko Nozawa
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Hirohito Shimizu
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
31
|
Zeitels LR, Acharya A, Shi G, Chivukula D, Chivukula RR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Richardson JA, Mendell JT. Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev 2014; 28:2585-90. [PMID: 25395662 PMCID: PMC4248289 DOI: 10.1101/gad.250951.114] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, Zeitels et al. generated miR-26a transgenic mice. Despite measurable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice. This study reveals a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity. Down-regulation of miR-26 family members has been implicated in the pathogenesis of multiple malignancies. In some settings, including glioma, however, miR-26-mediated repression of PTEN promotes tumorigenesis. To investigate the contexts in which the tumor suppressor versus oncogenic activity of miR-26 predominates in vivo, we generated miR-26a transgenic mice. Despite measureable repression of Pten, elevated miR-26a levels were not associated with malignancy in transgenic animals. We documented reduced miR-26 expression in human colorectal cancer and, accordingly, showed that miR-26a expression potently suppressed intestinal adenoma formation in Apcmin/+ mice, a model known to be sensitive to Pten dosage. These studies reveal a tumor suppressor role for miR-26 in intestinal cancer that overrides putative oncogenic activity, highlighting the therapeutic potential of miR-26 delivery to this tumor type.
Collapse
Affiliation(s)
- Lauren R Zeitels
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Asha Acharya
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Guanglu Shi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Divya Chivukula
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Raghu R Chivukula
- Department of Medicine, The Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | - James A Richardson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Department of Pathology
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Simmons Cancer Center, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
32
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
33
|
Kinnaird JH, Weir W, Durrani Z, Pillai SS, Baird M, Shiels BR. A Bovine Lymphosarcoma Cell Line Infected with Theileria annulata Exhibits an Irreversible Reconfiguration of Host Cell Gene Expression. PLoS One 2013; 8:e66833. [PMID: 23840536 PMCID: PMC3694138 DOI: 10.1371/journal.pone.0066833] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/13/2013] [Indexed: 01/20/2023] Open
Abstract
Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner.
Collapse
Affiliation(s)
- Jane H. Kinnaird
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - William Weir
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Zeeshan Durrani
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sreerekha S. Pillai
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Margaret Baird
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian R. Shiels
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
|
35
|
Conacci-Sorrell M, Ngouenet C, Eisenman RN. Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 2010; 142:480-93. [PMID: 20691906 DOI: 10.1016/j.cell.2010.06.037] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/02/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
The Myc oncoprotein family comprises transcription factors that control multiple cellular functions and are widely involved in oncogenesis. Here we report the identification of Myc-nick, a cytoplasmic form of Myc generated by calpain-dependent proteolysis at lysine 298 of full-length Myc. Myc-nick retains conserved Myc box regions but lacks nuclear localization signals and the bHLHZ domain essential for heterodimerization with Max and DNA binding. Myc-nick induces alpha-tubulin acetylation and altered cell morphology by recruiting histone acetyltransferase GCN5 to microtubules. During muscle differentiation, while the levels of full-length Myc diminish, Myc-nick and acetylated alpha-tubulin levels are increased. Ectopic expression of Myc-nick accelerates myoblast fusion, triggers the expression of myogenic markers, and permits Myc-deficient fibroblasts to transdifferentiate in response to MyoD. We propose that the cleavage of Myc by calpain abrogates the transcriptional inhibition of differentiation by full-length Myc and generates Myc-nick, a driver of cytoplasmic reorganization and differentiation.
Collapse
|
36
|
Tumor-suppressive microRNA-22 inhibits the transcription of E-box-containing c-Myc target genes by silencing c-Myc binding protein. Oncogene 2010; 29:4980-8. [DOI: 10.1038/onc.2010.241] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Ishizaki R, Shin HW, Iguchi-Ariga SMM, Ariga H, Nakayama K. AMY-1 (associate of Myc-1) localization to the trans-Golgi network through interacting with BIG2, a guanine-nucleotide exchange factor for ADP-ribosylation factors. Genes Cells 2006; 11:949-59. [PMID: 16866877 DOI: 10.1111/j.1365-2443.2006.00991.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AMY-1 (associate of Myc-1) was originally identified as a c-Myc-binding protein that enhances the c-Myc transcription activity, and subsequently found to interact with A-kinase-anchoring proteins (AKAPs), including AKAP149, S-AKAP84 and AKAP95. We show here that, using anti-AMY-1 antibodies we raised, AMY-1 localizes to the trans-Golgi network (TGN) and the nucleus. To explore the possible function of AMY-1, we have undertaken a search for interacting partners by co-immunoprecipitation experiments using cells stably expressing FLAG-tagged AMY-1. Interestingly, we have found that AMY-1 interacts with BIG2 and BIG1, both of which are high molecular weight guanine-nucleotide exchange factors for ADP-ribosylation factors (ARFs) and mainly localize to the TGN. Furthermore, we have demonstrated that AMY-1 is associated with the TGN through interacting with BIG2 but not with BIG1 using an RNA interference approach, although AMY-1 can interact with both BIG1 and BIG2 in vitro. Taken together with the facts that BIG2 contains domains that bind to regulatory subunits of protein kinase A and that recruitment of ARF1 onto Golgi membranes is mediated, at least in part, by activation of protein kinase A, these results suggest that BIG2 alone or in concert with recruited AMY-1 coordinates ARF-mediated membrane trafficking and signaling pathways.
Collapse
Affiliation(s)
- Ray Ishizaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Banerjee D, Chadalavada RSV, Bourdon V, Korkola JE, Motzer RJ, Chaganti RSK. Transcriptional Program Associated with IFN-αResponse of Renal Cell Carcinoma. J Interferon Cytokine Res 2006; 26:156-70. [PMID: 16542138 DOI: 10.1089/jir.2006.26.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Metastatic renal cell carcinoma (RCC) is refractory to therapy; however, 10%-20% of patients respond favorably with interferon-alpha (IFN-alpha) treatment. To understand the molecular basis of response to IFN-alpha therapy, we performed global gene expression analysis of sensitive and resistant RCC cell lines in the absence and in the presence of IFN-alpha, using high-density oligonucleotide arrays to detect differentially expressed genes. In the absence of IFN-alpha, no significant differences in gene expression were observed between six sensitive and six resistant cell lines. Gene expression analysis following a time course of IFN-alpha2b treatment in one sensitive (SK-RC-17) and one resistant (SK-RC-12) cell line revealed that 484 and 354 transcripts, respectively, were modulated. A considerable number of these transcripts were similarly modulated between the two cell types that included several known targets of IFN signaling associated with antiviral and immunomodulatory activity. A further analysis of gene expression pattern in response to IFN revealed that several transcripts associated with proapoptotic function were upregulated in the sensitive cells. In the resistant cells, transcripts associated with cell survival and proliferation were induced, and key apoptotic molecules were suppressed. This study suggests that the IFN-alpha response of individual RCC tumors is determined by the expression pattern of genes in the apoptosis vs. survival and proliferation pathways rather than by alterations in expression of one or more individual genes.
Collapse
Affiliation(s)
- Debendranath Banerjee
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
39
|
Jung HC, Kim K. Identification of MYCBP as a beta-catenin/LEF-1 target using DNA microarray analysis. Life Sci 2005; 77:1249-62. [PMID: 15979100 DOI: 10.1016/j.lfs.2005.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 02/22/2005] [Indexed: 02/07/2023]
Abstract
Abnormal activation of the beta-catenin signaling pathway can cause various types of cancer. Activation of Wnt pathway leads to stabilization of the beta-catenin protein, which results in its translocation to the nucleus and the formation of complexes with lymphoid enhancer factor-1 (LEF-1) and other T-cell factor (TCF) family of transcription factors to affect the transcription of target genes. However, the entrapment pattern of beta-catenin in the nucleus of normal epithelial cells differs from that in colon carcinoma cells. Normal epithelial cells may have different binding partners of beta-catenin and LEF-1 compared to tumor cells, which may result in differential expression of target genes. To investigate LEF-1-induced gene expression profiles, we used DNA microarrays to search the alterations of gene expression in normal epithelia versus cancer cells. Here, we reported 10 potential targets genes of beta-catenin/LEF-1. We showed that the expression of c-myc binding protein (MYCBP) in colon carcinoma cells was consistently upregulated by overexpressed LEF-1, which is confirmed by microarray data, RT-PCR and luciferase assay. We suggest that the MYCBP gene can be a direct target of beta-catenin/LEF-1 pathway through its LEF-1 binding site(s) in the MYCBP promoter, and that MYCBP up-regulation in colon carcinoma cell may play a co-activator role of c-MYC.
Collapse
Affiliation(s)
- Ho-Chul Jung
- College of Pharmacy, Chonnam National University, Gwangju, Korea
| | | |
Collapse
|
40
|
Chang JTC, Yang HT, Wang TCV, Cheng AJ. Upstream stimulatory factor (USF) as a transcriptional suppressor of human telomerase reverse transcriptase (hTERT) in oral cancer cells. Mol Carcinog 2005; 44:183-92. [PMID: 16010690 DOI: 10.1002/mc.20129] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase activity is suppressed in normal human somatic tissues but is activated in cancer cells and immortal cell lines. The reverse transcriptase (RT) subunit human telomerase reverse transcriptase (hTERT) is the key regulator of telomerase activity. The hTERT promoter contains E-box elements and may allow upstream stimulatory factor (USF), a basic helix-loop-helix (bHLH) leucine zipper family proteins, to bind and regulate the expression. In this study, we investigated whether and how USF effect on hTERT. Through luciferase reporter assays, we found that both USF1 and USF2 possess a comparable effect on the inhibition of hTERT expression. Immunoprecipitation (IP) and immunoblotting (IB) analysis reveal that the suppression of hTERT by USF was not through the interaction of USF with c-myc or mad, nor disturbed the cellular protein levels of those. In gel mobility shift and chromatin immunoprecipitation (CHIP) assays, we found that the USF suppression is through direct binding at the E-box site of hTERT promoter and rendering the effect actively. Analysis on clinical normal and tumor tissues reveal that the expression of USF1 and USF2 was lower in the tumor tissues, correlated with hTERT expression and telomerase activity. Taking together, our results demonstrate that USF is a negative transcriptional repressor for hTERT in oral cancer cells. It is possible that USF lose the inhibitory effect on hTERT expression leading to telomerase reactivation and oral carcinogenesis.
Collapse
|
41
|
van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EMH, Willemze R, Tensen CP. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis. Cancer Res 2004; 64:5578-86. [PMID: 15313894 DOI: 10.1158/0008-5472.can-04-1253] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sézary syndrome (Sz) is a malignancy of CD4+ memory skin-homing T cells and presents with erythroderma, lymphadenopathy, and peripheral blood involvement. To gain more insight into the molecular features of Sz, oligonucleotide array analysis was performed comparing gene expression patterns of CD4+ T cells from peripheral blood of patients with Sz with those of patients with erythroderma secondary to dermatitis and healthy controls. Using unsupervised hierarchical clustering gene, expression patterns of T cells from patients with Sz were classified separately from those of benign T cells. One hundred twenty-three genes were identified as significantly differentially expressed and had an average fold change exceeding 2. T cells from patients with Sz demonstrated decreased expression of the following hematopoietic malignancy-linked tumor suppressor genes: TGF-beta receptor II, Mxi1, Riz1, CREB-binding protein, BCL11a, STAT4, and Forkhead Box O1A. Moreover, the tyrosine kinase receptor EphA4 and the potentially oncogenic transcription factor Twist were highly and selectively expressed in T cells of patients with Sz. High expression of EphA4 and Twist was also observed in lesional skin biopsy specimens of a subset of patients with cutaneous T cell lymphomas related to Sz, whereas their expression was nearly undetectable in benign T cells or in skin lesions of patients with inflammatory dermatoses. Detection of EphA4 and Twist may be used in the molecular diagnosis of Sz and related cutaneous T-cell lymphomas. Furthermore, the membrane-bound EphA4 receptor may serve as a target for directed therapeutic intervention.
Collapse
Affiliation(s)
- Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
There is increasing evidence that subcellular targeting of signaling molecules is an important means of regulating the protein kinase A (PKA) pathway. Subcellular organization of the signaling molecules in the PKA pathway insures that a signal initiated at the receptor level is transferred efficiently to a PKA substrate eliciting some cellular response. This subcellular targeting appears to regulate the function of a highly specialized cell such as the cardiac myocyte. This review focuses on A-kinase anchoring proteins (AKAPs) which are expressed in the heart. It has been determined that, of the approximately 13 different AKAPs expressed in cardiac tissue, several of these are expressed in cardiac myocytes. These AKAPs bind several PKA substrates and some appear to regulate PKA-dependent phosphorylation of these substrates. AKAP tethering of PKA may be essential for efficient regulation of cardiac muscle contraction. The ability of an AKAP to anchor PKA may be altered in the failing heart, thus compromising the ability of the myocyte to respond to stimuli which elicit the PKA pathway.
Collapse
Affiliation(s)
- Mary L Ruehr
- Department of Cardiovascular Medicine, FF10 Cleveland Clinic Foundation, 9500 Euclid avenue, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
43
|
Semizarov D, Kroeger P, Fesik S. siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res 2004; 32:3836-45. [PMID: 15272085 PMCID: PMC506802 DOI: 10.1093/nar/gkh714] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The task of specific gene knockdown in vitro has been facilitated through the use of short interfering RNA (siRNA), which is now widely used for studying gene function, as well as for identifying and validating new drug targets. We explored the possibility of using siRNA for dissecting cellular pathways by siRNA-mediated gene silencing followed by gene expression profiling and systematic pathway analysis. We used siRNA to eliminate the Rb1 gene in human cells and determined the effects of Rb1 knockdown on the cell by using microarray-based gene expression profiling coupled with quantitative pathway analysis using the GenMapp and MappFinder software. Retinoblastoma protein is one of the key cell cycle regulators, which exerts its function through its interactions with E2F transcription factors. Rb1 knockdown affected G1/S and G2/M transitions of the cell cycle, DNA replication and repair, mitosis, and apoptosis, indicating that siRNA-mediated transient elimination of Rb1 mimics the control of cell cycle through Rb1 dissociation from E2F. Additionally, we observed significant effects on the processes of DNA damage response and epigenetic regulation of gene expression. Analysis of transcription factor binding sites was utilized to distinguish between putative direct targets and genes induced through other mechanisms. Our approach, which combines the use of siRNA-mediated gene silencing, mediated microarray screening and quantitative pathway analysis, can be used in functional genomics to elucidate the role of the target gene in intracellular pathways. The approach also holds significant promise for compound selection in drug discovery.
Collapse
Affiliation(s)
- Dimitri Semizarov
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | |
Collapse
|
44
|
Xiao J, Jethanandani P, Ziober BL, Kramer RH. Regulation of α7 Integrin Expression during Muscle Differentiation. J Biol Chem 2003; 278:49780-8. [PMID: 14525975 DOI: 10.1074/jbc.m308542200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the laminin-binding alpha7 integrin is tightly regulated during myogenic differentiation, reflecting required functions that range from cell motility to formation of stable myotendinous junctions. However, the exact mechanism controlling alpha7 expression in a tissue- and differentiation-specific manner is poorly understood. This report provides evidence that alpha7 gene expression during muscle differentiation is regulated by the c-Myc transcription factor. In myoblasts, alpha7 is expressed at basal levels, but following conversion to myotubes the expression of the integrin is strongly elevated. The increased alpha7 mRNA and protein levels following myogenic differentiation are inversely correlated with c-Myc expression. Transfection of myoblasts with the c-Myc transcription factor down-regulated alpha7 expression, whereas overexpression of Madmyc, a dominant-negative c-Myc chimera, induced elevated alpha7 expression. Functional analysis with site-specific deletions identified a specific double E-box sequence in the upstream promoter region (-2.0 to -2.6 kb) that is responsible for c-Myc-induced suppression of alpha7 expression. DNA-protein binding assays and supershift analysis revealed that c-Myc forms a complex with this double E-box sequence. Our results suggest that the interaction of c-Myc with this promoter region is an important regulatory element controlling alpha7 integrin expression during muscle development and myotendinous junction formation.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Base Sequence
- Blotting, Southern
- Blotting, Western
- Cell Differentiation
- Cell Line
- Cell Line, Tumor
- Cell Movement
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA/metabolism
- Down-Regulation
- Gene Deletion
- Gene Expression Regulation
- Humans
- Integrin alpha Chains/biosynthesis
- Integrin alpha Chains/genetics
- Mice
- Models, Genetic
- Molecular Sequence Data
- Muscles/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/metabolism
- Sequence Homology, Nucleic Acid
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Jianqiao Xiao
- Departments of Stomatology and Anatomy, University of California at San Francisco, San Francisco, California 94143-0422, USA
| | | | | | | |
Collapse
|
45
|
Furusawa M, Taira T, Iguchi-Ariga SMM, Ariga H. Molecular cloning of the mouse AMY-1 gene and identification of the synergistic activation of the AMY-1 promoter by GATA-1 and Sp1. Genomics 2003; 81:221-33. [PMID: 12620400 DOI: 10.1016/s0888-7543(03)00006-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported that a novel c-Myc binding protein, AMY-1, stimulated the transcription activity of c-Myc and was translocated from the cytoplasm to the nucleus in a c-Myc-dependent manner. AMY-1 works as an inducer of human K562 cell differentiation upon induction of AraC. To characterize the expression or functional importance of AMY-1, the genomic DNA of mouse AMY-1 was cloned and characterized. Both mouse and human genomic DNAs, the latter of which was retrieved from a human DNA database, comprise five exons spanning about 11 kb. To characterize the promoter of the mouse AMY-1 gene, a series of deletion constructs of the region upstream of the first ATG was linked to the luciferase gene, and their luciferase activities were measured in human HeLa and K562 cells. The results showed that Sp1 was essential for AMY-1 expression in both cell lines and that GATA-1 is also necessary in K562 cells. Sp1 in both cell lines and GATA-1 only in K562 cells were identified as proteins binding to these sites by a mobility shift assay. Furthermore, it was found that GATA-1 stimulated AMY-1 expression synergistically with Sp1 in ectopically expressed insect cells and that both proteins were associated in K562 cells.
Collapse
Affiliation(s)
- Makoto Furusawa
- CREST, Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | |
Collapse
|
46
|
Abstract
The activated product of the myc oncogene deregulates both cell growth and death check points and, in a permissive environment, rapidly accelerates the affected clone through the carcinogenic process. Advances in understanding the molecular mechanism of Myc action are highlighted in this review. With the revolutionary developments in molecular diagnostic technology, we have witnessed an unprecedented advance in detecting activated myc in its deregulated, oncogenic form in primary human cancers. These improvements provide new opportunities to appreciate the tumor subtypes harboring deregulated Myc expression, to identify the essential cooperating lesions, and to realize the therapeutic potential of targeting Myc. Knowledge of both the breadth and depth of the numerous biological activities controlled by Myc has also been an area of progress. Myc is a multifunctional protein that can regulate cell cycle, cell growth, differentiation, apoptosis, transformation, genomic instability, and angiogenesis. New insights into Myc's role in regulating these diverse activities are discussed. In addition, breakthroughs in understanding Myc as a regulator of gene transcription have revealed multiple mechanisms of Myc activation and repression of target genes. Moreover, the number of reported Myc regulated genes has expanded in the past few years, inspiring a need to focus on classifying and segregating bona fide targets. Finally, the identity of Myc-binding proteins has been difficult, yet has exploded in the past few years with a plethora of novel interactors. Their characterization and potential impact on Myc function are discussed. The rapidity and magnitude of recent progress in the Myc field strongly suggests that this marvelously complex molecule will soon be unmasked.
Collapse
Affiliation(s)
- Sara K Oster
- Division of Cellular and Molecular Biology, Ontario Cancer Institute, Princess Margaret Hospital, University of Toronto
| | | | | | | |
Collapse
|
47
|
Flinn EM, Wallberg AE, Hermann S, Grant PA, Workman JL, Wright APH. Recruitment of Gcn5-containing complexes during c-Myc-dependent gene activation. Structure and function aspects. J Biol Chem 2002; 277:23399-406. [PMID: 11973336 DOI: 10.1074/jbc.m201704200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal domain of c-Myc plays a key role in cellular transformation and is involved in both activation and repression of target genes as well as in modulated proteolysis of c-Myc via the proteasome. Given this functional complexity, it has been difficult to clarify the structures within the N terminus that contribute to these different processes as well as the mechanisms by which they function. We have used a simplified yeast model system to identify the primary determinants within the N terminus for (i) chromatin remodeling of a promoter, (ii) gene activation from a chromatin template in vivo, and (iii) interaction with highly purified Gcn5 complexes as well as other chromatin-remodeling complexes in vitro. The results identify two regions that contain autonomous chromatin opening and gene activation activity, but both regions are required for efficient interaction with chromatin-remodeling complexes in vitro. The conserved Myc boxes do not play a direct role in gene activation, and Myc box II is not generally required for in vitro interactions with remodeling complexes. The yeast SAGA complex, which is orthologous to the human GCN5-TRRAP complex that interacts with Myc in human cells, plays a role in Myc-mediated chromatin opening at the promoter but may also be involved in later steps of gene activation.
Collapse
Affiliation(s)
- Elizabeth M Flinn
- Section for Natural Sciences, Södertörns Högskola, Box 4101, Huddinge 141 04, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Fujimoto M, Matsumoto K, Iguchi-Ariga SM, Ariga H. Disruption of MSSP, c-myc single-strand binding protein, leads to embryonic lethality in some homozygous mice. Genes Cells 2001; 6:1067-75. [PMID: 11737267 DOI: 10.1046/j.1365-2443.2001.00488.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND MSSP, c-myc single-strand binding protein, works as a factor for DNA replication, transcription, apoptosis induction, and myc/ras cooperative transformation. The cDNAs encoding four of the family proteins, MSSP-1, MSSP-2, Scr2 and Scr3, were cloned. These proteins possess two copies of putative RNA binding domains, RNP-A and RNP-B, and these RNA binding domains have been suggested to be indispensable to the functions of MSSP. RESULTS To elucidate its role in vivo, we generated Mssp knockout mice by homologous recombination in embryonic stem cells. Although intercrossing of Mssp+/- mice gave rise to mice homozygous to the mutant Mssp allele (Mssp-/-) and the Mssp-/- mice, once born, did not display an overt phenotype, the ratio of littermates born among Mssp+/+, Mssp+/- and Mssp-/- mice was 1 : 1.6 : 0.5, which is not a typical Mendelian ratio. When E2.5 embryos from the pregnant mice were cultured in vitro for 5 days, the inner cell mass and trophoblast giant cells in wild-type (Mssp+/+) E2.5 embryos developed normally. However, Mssp-/- E2.5 embryos displayed significant defects in growth and development. Since Mssp was expressed in uterine gland-transported glycogen, we evaluated the hormonal state of wild-type and Mssp-/- mice. The progesterone concentration of Mssp-/- mice was decrease to 6.5% of that of wild-type mice at E2.5. CONCLUSIONS These results suggest that the deletion of the mssp gene results in both the growth defect in the embryo and the hormonal defect in adult female mouse. The embryonic defect and a decreased concentration of progesterone in female mice reflect a development defect of the pre-implantation embryo in Mssp-/- mice, thereby leading to embryonic lethality.
Collapse
Affiliation(s)
- M Fujimoto
- Graduate School of Pharmaceutical Sciences, College of Medical Technology, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060, Japan
| | | | | | | |
Collapse
|
49
|
Fujioka Y, Taira T, Maeda Y, Tanaka S, Nishihara H, Iguchi-Ariga SM, Nagashima K, Ariga H. MM-1, a c-Myc-binding protein, is a candidate for a tumor suppressor in leukemia/lymphoma and tongue cancer. J Biol Chem 2001; 276:45137-44. [PMID: 11567024 DOI: 10.1074/jbc.m106127200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The c-myc oncogene product (c-Myc) is a transcription factor that dimerizes with Max and recognizes the E-box sequence, and it plays key functions in cell proliferation, differentiation, and apoptosis. We previously showed that MM-1 bound to myc box II within the transactivation domain of c-Myc and repressed the E-box-dependent transcriptional activity of c-Myc. Here we report that MM-1 showed features of a tumor suppressor. In an EST data base search for cDNAs homologous to MM-1, we found a frequent substitution of amino acid 157 of MM-1, from alanine to arginine (A157R), and the substitution was observed more in tumor cells than in normal cells. A survey of the A157R mutation of MM-1 in 57 cultured cancer cells and 90 tissues from cancer patients showed that the A157R was present in about 50-60% of leukemia/lymphoma cells and in more than 75% of squamous cell carcinoma of tongue cancer. Although both the A157R and the wild-type MM-1 bound to c-Myc, only A157R lost the activities to repress both the E-box-dependent transcriptional activity of c-Myc and the myc/ras cooperative transforming activity in rat 3Y1 cells. Furthermore, the wild-type MM-1, but not A157R, arrested the growth of 3Y1 cells. The human MM-1 gene was mapped at chromosome 12q12-12q13, where many chromosome abnormalities in cancer cells have been reported. The results suggest that MM-1 is a novel candidate for a tumor suppressor that controls the transcriptional activity of c-Myc.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acids/chemistry
- Animals
- Blotting, Northern
- Cell Cycle
- Cell Division/drug effects
- Cell Line
- Chromosomes, Human, Pair 12
- Cloning, Molecular
- DNA/metabolism
- DNA, Complementary/metabolism
- Exons
- Expressed Sequence Tags
- Fluorescent Antibody Technique, Indirect
- HeLa Cells
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia/genetics
- Leukemia/metabolism
- Luciferases/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Mutation
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- Time Factors
- Tongue Neoplasms/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Fujioka
- Graduate School of Pharmaceutical Sciences, Department of Pathology, Graduate School of Medicine, College of Medical Technology, Hokkaido University, Kita-ku, Sapporo 060-8012, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Although cell death once was viewed exclusively as the disordered, chaotic outcome of metabolic catastrophe, apoptosis now is recognized as a highly ordered, evolutionarily conserved, and genetically selected program that is essential for normal development. The death receptor pathway of apoptosis, cytotoxic T cells, prolife survival signals, Bcl-2 family of regulators, p53 and regulated cell death in cancer, and oncogenes are reviewed. Future prospects in this arena also are discussed.
Collapse
Affiliation(s)
- D E Fisher
- Division of Pediatric Hematology and Oncology, Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|