1
|
Rojas-Barón L, Tana-Hernandez L, Nguele Ampama MH, Sanchéz R, Gärtner U, Wagenlehner FME, Preußer C, Pogge von Strandmann E, Hermosilla C, Taubert A, Francia ME, Velasquez ZD. Adverse impact of acute Toxoplasma gondii infection on human spermatozoa. FEBS J 2025. [PMID: 40318165 DOI: 10.1111/febs.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/14/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect virtually any nucleated cell within human and other endoderm animal tissue, including male reproductive organs. Herein, we investigate the capacity of T. gondii tachyzoites to infect and proliferate within the testes and epididymis and examine the resulting impact on human spermatozoa structure and functionality. We confirmed that T. gondii tachyzoites colonise and proliferate within the testes and epididymis, altering the tissue structural homeostasis, and causing immune cell infiltration and cellular damage. In addition to demonstrating that T. gondii remains infective within the testes and epididymis, in vitro experiments demonstrated a direct interaction between T. gondii tachyzoites and human spermatozoa. This resulted in a significant proportion of headless spermatozoa. Scanning and transmission electron microscopy revealed structural defects in spermatozoa, such as twisted tails and plasma membrane disruptions. Moreover, T. gondii tachyzoites triggered the loss of mitochondrial membrane potential (MMP) in spermatozoa without modulating reactive oxygen species (ROS) concentrations, and triggered cell death, pointing at mitochondrial dysfunction as a potential mechanism mediating spermatozoan damage. Our findings suggest that T. gondii infection can have profound implications for male fertility by directly damaging spermatozoa and altering testicular and epididymal structures. The study underscores the need for further research to elucidate the long-term impact of T. gondii on male reproductive health, particularly in the context of iatrogenic infertility. Given the widespread seroprevalence of T. gondii in the human population, our research emphasises the importance of considering parasitic infections in diagnosing and managing male infertility in the field of andrology.
Collapse
Affiliation(s)
| | | | | | - Raúl Sanchéz
- Center of excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco, Chile
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Germany
| | - Florian M E Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Germany
| | - Christian Preußer
- EV - Core Facility, Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, Germany
| | - Elke Pogge von Strandmann
- EV - Core Facility, Institute for Tumor Immunology, Center for Tumor Biology and Immunology (ZTI), Philipps University Marburg, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Germany
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Uruguay
- Department of Parasitology and Mycology, School of Medicine, Universidad de la Republica, Montevideo, Uruguay
| | | |
Collapse
|
2
|
Xia H, Zhang J, Mao W, Yi K, Wang T, Liao L. Pathogenesis of acephalic spermatozoa syndrome caused by PMFBP1 mutation. Basic Clin Androl 2024; 34:22. [PMID: 39668357 PMCID: PMC11639112 DOI: 10.1186/s12610-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/26/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Acephalic spermatozoa syndrome is a rare but severe type of teratozoospermia. The familial trait of acephalic spermatozoa syndrome suggests that genetic factors play an important role. However, known mutations account for only some acephalic spermatozoa syndrome patients, and more studies are needed to elucidate its pathogenesis. The current study aimed to elucidate the pathogenesis of acephalic spermatozoa syndrome caused by PMFBP1 mutation. RESULTS We identified a homozygous splice site mutation (NM_031293.2, c.2089-1G > T) in PMFBP1 through Sanger sequencing. Western blotting and immunofluorescence analyses revealed that this splice site mutation resulted in the absence of PMFBP1 protein expression in the patient's sperm cells. We generated an in vitro model carrying the splice site mutation in PMFBP1 and confirmed, through RT‒PCR and Sanger sequencing, that it led to a deletion of 4 base pairs from exon 15. CONCLUSION A homozygous splice site mutation results in a deletion of 4 bp from exon 15 of PMFBP1, thereby affecting the expression of the PMFBP1 protein. The absence of PMFBP1 protein expression can lead to acephalic spermatozoa syndrome. This finding elucidates the underlying cause of acephalic spermatozoa syndrome associated with this specific mutation (NM_031293.2, c.2089-1G > T) in PMFBP1.
Collapse
Affiliation(s)
- Huaqiang Xia
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Juan Zhang
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Wuyuan Mao
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, 41000, Hunan, China
| | - Teng Wang
- Reproductive Medicine Center, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China
| | - Lingyan Liao
- Pharmacy Department, Zhuzhou Central Hospital, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, 410120, China.
| |
Collapse
|
3
|
Ying LJ, Yu L, Yang T, Wu YB, Xu JY, Jia YL, Zheng Y, Li F. Semen parameters are seriously affected in acephalic spermatozoa syndrome. Basic Clin Androl 2022; 32:20. [PMID: 36028792 PMCID: PMC9413908 DOI: 10.1186/s12610-022-00170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have reported that some patients with headless spermatozoa have poor semen quality, but there has been no published systematic analysis of semen quality in patients with different proportions of headless spermatozoa in semen. We aimed to explore the association of acephalic spermatozoa syndrome and semen quality in men with distinct proportions of headless spermatozoa. MATERIAL AND METHODS Semen parameter values in patients for whom headless spermatozoa were found in the ejaculates was studied and compared to that of 413 age-matched prenatal examination patients. All semen samples were analyzed following the same methodology in a single laboratory. RESULTS All semen parameter values except semen volume were negatively (P < 0.05) correlated with the proportion of headless spermatozoa. The semen samples were divided into four groups on the basis of the proportion of headless spermatozoa (PHS) as follows: 0 < PHS ≤ 5% (n = 172, Group A1); 5 < PHS ≤ 10% (n = 76, Group A2); 10 < PHS ≤ 20% (n = 71, Group B); and PHS > 20% (n = 71, Group C). In Group A1, only one semen parameter value (progressive motility) was lower than those of the control group, but in Group A2, this increased to five (sperm vitality, normal sperm morphology, sperm motility, VCL (curvilinear velocity) and ALH (amplitude of lateral head displacement)). Worse still, all semen parameter values were significantly lower in Group B and Group C than in the control group (P < 0.05). CONCLUSIONS Semen samples containing headless spermatozoa tend to have lower quality than samples without headless spermatozoa. Increases in the proportion of headless spermatozoa in semen are associated with decreased semen quality. We suggest that headless spermatozoa should be seriously assessed and accurately counted in semen analysis, especially for ejaculate in which the proportion of headless spermatozoa exceeds 5%.
Collapse
Affiliation(s)
- Li-Juan Ying
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Lin Yu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Tingting Yang
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Ying-Bi Wu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Jin-Yan Xu
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Ye-Lin Jia
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Yan Zheng
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China
| | - Fuping Li
- Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, No. 1416, Section 1, Chenglong Avenue, Sichuan, 610066, Chengdu, China.
| |
Collapse
|
4
|
Tapia Contreras C, Hoyer-Fender S. The Transformation of the Centrosome into the Basal Body: Similarities and Dissimilarities between Somatic and Male Germ Cells and Their Relevance for Male Fertility. Cells 2021; 10:2266. [PMID: 34571916 PMCID: PMC8471410 DOI: 10.3390/cells10092266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
The sperm flagellum is essential for the transport of the genetic material toward the oocyte and thus the transmission of the genetic information to the next generation. During the haploid phase of spermatogenesis, i.e., spermiogenesis, a morphological and molecular restructuring of the male germ cell, the round spermatid, takes place that includes the silencing and compaction of the nucleus, the formation of the acrosomal vesicle from the Golgi apparatus, the formation of the sperm tail, and, finally, the shedding of excessive cytoplasm. Sperm tail formation starts in the round spermatid stage when the pair of centrioles moves toward the posterior pole of the nucleus. The sperm tail, eventually, becomes located opposed to the acrosomal vesicle, which develops at the anterior pole of the nucleus. The centriole pair tightly attaches to the nucleus, forming a nuclear membrane indentation. An articular structure is formed around the centriole pair known as the connecting piece, situated in the neck region and linking the sperm head to the tail, also named the head-to-tail coupling apparatus or, in short, HTCA. Finally, the sperm tail grows out from the distal centriole that is now transformed into the basal body of the flagellum. However, a centriole pair is found in nearly all cells of the body. In somatic cells, it accumulates a large mass of proteins, the pericentriolar material (PCM), that together constitute the centrosome, which is the main microtubule-organizing center of the cell, essential not only for the structuring of the cytoskeleton and the overall cellular organization but also for mitotic spindle formation and chromosome segregation. However, in post-mitotic (G1 or G0) cells, the centrosome is transformed into the basal body. In this case, one of the centrioles, which is always the oldest or mother centriole, grows the axoneme of a cilium. Most cells of the body carry a single cilium known as the primary cilium that serves as an antenna sensing the cell's environment. Besides, specialized cells develop multiple motile cilia differing in substructure from the immotile primary cilia that are essential in moving fluids or cargos over the cellular surface. Impairment of cilia formation causes numerous severe syndromes that are collectively subsumed as ciliopathies. This comparative overview serves to illustrate the molecular mechanisms of basal body formation, their similarities, and dissimilarities, in somatic versus male germ cells, by discussing the involved proteins/genes and their expression, localization, and function. The review, thus, aimed to provide a deeper knowledge of the molecular players that is essential for the expansion of clinical diagnostics and treatment of male fertility disorders.
Collapse
Affiliation(s)
| | - Sigrid Hoyer-Fender
- Göttingen Center of Molecular Biosciences, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology-Developmental Biology, Faculty of Biology and Psychology, Georg-August University of Göttingen, 37077 Göttingen, Germany;
| |
Collapse
|
5
|
Mazaheri Moghaddam M, Mazaheri Moghaddam M, Hamzeiy H, Baghbanzadeh A, Pashazadeh F, Sakhinia E. Genetic basis of acephalic spermatozoa syndrome, and intracytoplasmic sperm injection outcomes in infertile men: a systematic scoping review. J Assist Reprod Genet 2021; 38:573-586. [PMID: 33452591 PMCID: PMC7910383 DOI: 10.1007/s10815-020-02008-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Acephalic spermatozoa syndrome (ASS) is known as a severe type of teratozoospermia, defined as semen composed of mostly headless spermatozoa that affect male fertility. In this regard, this systematic review aimed to discuss gene variants associated with acephalic spermatozoa phenotype as well as the clinical outcomes of intracytoplasmic sperm injection (ICSI) treatment for the acephalic spermatozoa-associated male infertility. METHODS A systematic search was performed on PubMed, Embase, Scopus, and Ovid databases until May 17, 2020. This systematic scoping review was reported in terms of the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) statement. RESULTS Twenty articles were included in this systematic review. Whole-exome and Sanger sequencing have helped in the identification of variants in SUN5, PMFBP1, BRDT, TSGA10, DNAH6, HOOK1, and CEP112 genes as possible causes of this phenotype in humans. The results of the ICSI are conflicting due to both positive and negative reports of ICSI outcomes. CONCLUSION ASS has a genetic origin, and several genetic alterations related to the pathogenesis of this anomaly have been recently identified. Notably, only SUN5 and PMFBP1 mutations are well-known to be implicated in ASS. Accordingly, more functional studies are needed to confirm the pathogenicity of other variants. ICSI could provide a promising treatment for acephalic spermatozoa-associated male infertility. Besides the importance of sperm head-tail junction integrity, some other factors, whether within the sperm cell or female factors, may be involved in the ICSI outcome.
Collapse
Affiliation(s)
- Marziyeh Mazaheri Moghaddam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Madiheh Mazaheri Moghaddam
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran
| | - Hamid Hamzeiy
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
- Genomize Inc., Istanbul, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
A novel homozygous missense mutation of PMFBP1 causes acephalic spermatozoa syndrome. J Assist Reprod Genet 2021; 38:949-955. [PMID: 33484382 DOI: 10.1007/s10815-021-02075-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To identify the pathogenic mutation in PMFBP1 leading to acephalic spermatozoa syndrome. METHODS Sanger sequencing was used to screen for mutations in the known pathogenic genes SUN5 and PMFBP1 in a patient with acephalic spermatozoa syndrome. Western blotting and immunofluorescence were used to detect the expression and localization of PMFBP1 in sperm. At the same time, a PMFBP1 mutant was constructed, and the expression level of PMFBP1 protein was further verified by in vitro experiments. RESULTS We identified a novel homozygous PMFBP1 missense mutation, c.301A>C (p.T101P), in an infertile male from a consanguineous family. Our results showed that the expression of PMFBP1 mutant protein was decreased obviously in sperm of the patient. CONCLUSION Our results showed that the novel homozygous missense mutation of PMFBP1 may be a cause of acephalic spermatozoa syndrome, which provided a basis for genetic counseling for the patient.
Collapse
|
7
|
Nie H, Tang Y, Qin W. Beyond Acephalic Spermatozoa: The Complexity of Intracytoplasmic Sperm Injection Outcomes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6279795. [PMID: 32104701 PMCID: PMC7035536 DOI: 10.1155/2020/6279795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
This review analyses the genetic mechanisms of acephalic spermatozoa (AS) defects, which are associated with primary infertility in men. Several target genes of headless sperms have been identified but intracytoplasmic sperm injection (ICSI) outcomes are complex. Based on electron microscopic observations, broken points of the sperm neck are AS defects that are based on various genes that can be classified into three subtypes: HOOK1, SUN5, and PMFBP1 genes of subtype II; TSGA10 and BRDT genes of subgroup III, while the genetic mechanism(s) and aetiology of AS defects of subtype I have not been described and remain to be explored. Interestingly, all AS sperm of subtype II achieved better ICSI outcomes than other subtypes, resulting in clinical pregnancies and live births. For subtype III, the failure of clinical pregnancy can be explained by the defects of paternal centrioles that arrest embryonic development; for subtype I, this was due to a lack of a distal centriole. Consequently, the embryo quality and potential ICSI results of AS defects can be predicted by the subtypes of AS defects. However, this conclusion with regard to ICSI outcomes based on subtypes still needs further research, while the existence of quality of oocyte and implantation failure in women cannot be ignored.
Collapse
Affiliation(s)
- Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory of Family Planning Research Institute of Guangdong Province of China, Guangzhou, China
- Department of Central Laboratory of Family Planning Special Hospital of Guangdong Province of China, Guangzhou, China
| |
Collapse
|
8
|
Ito C, Akutsu H, Yao R, Yoshida K, Yamatoya K, Mutoh T, Makino T, Aoyama K, Ishikawa H, Kunimoto K, Tsukita S, Noda T, Kikkawa M, Toshimori K. Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice. Sci Rep 2019; 9:14249. [PMID: 31582806 PMCID: PMC6776547 DOI: 10.1038/s41598-019-50516-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hidenori Akutsu
- Department of Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Keiichi Yoshida
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Next-generation Development Center for Cancer Treatment, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Kenji Yamatoya
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
| | - Tohru Mutoh
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis (ex FEI), Thermo Ficher Scientific, Shinagawa Seaside West Tower 1F, 4-12-2 HigashiSinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California San Francisco 600 16th St., San Francisco, CA, 94143, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Sachiko Tsukita
- Graduate School of Frontier Biosciences and Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tetsuo Noda
- Director's Room, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
9
|
Avidor-Reiss T, Mazur M, Fishman EL, Sindhwani P. The Role of Sperm Centrioles in Human Reproduction - The Known and the Unknown. Front Cell Dev Biol 2019; 7:188. [PMID: 31632960 PMCID: PMC6781795 DOI: 10.3389/fcell.2019.00188] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023] Open
Abstract
Each human spermatozoon contains two remodeled centrioles that it contributes to the zygote. There, the centrioles reconstitute a centrosome that assembles the sperm aster and participate in pronuclei migration and cleavage. Thus, centriole abnormalities may be a cause of male factor infertility and failure to carry pregnancy to term. However, the precise mechanisms by which sperm centrioles contribute to embryonic development in humans are still unclear, making the search for a link between centriole abnormalities and impaired male fecundity particularly difficult. Most previous investigations into the role of mammalian centrioles during fertilization have been completed in murine models; however, because mouse sperm and zygotes appear to lack centrioles, these studies provide information that is limited in its applicability to humans. Here, we review studies that examine the role of the sperm centrioles in the early embryo, with particular emphasis on humans. Available literature includes case studies and case-control studies, with a few retrospective studies and no prospective studies reported. This literature has provided some insight into the morphological characteristics of sperm centrioles in the zygote and has allowed identification of some centriole abnormalities in rare cases. Many of these studies suggest centriole involvement in early embryogenesis based on phenotypes of the embryo with only indirect evidence for centriole abnormality. Overall, these studies suggest that centriole abnormalities are present in some cases of sperm with asthenoteratozoospermia and unexplained infertility. Yet, most previously published studies have been restricted by the laborious techniques (like electron microscopy) and the limited availability of centriolar markers, resulting in small-scale studies and the lack of solid causational evidence. With recent progress in sperm centriole biology, such as the identification of the unique composition of sperm centrioles and the discovery of the atypical centriole, it is now possible to begin to fill the gaps in sperm centriole epidemiology and to identify the etiology of sperm centriole dysfunction in humans.
Collapse
Affiliation(s)
- Tomer Avidor-Reiss
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Matthew Mazur
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| | - Emily L Fishman
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States
| | - Puneet Sindhwani
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, Toledo, OH, United States.,Department of Urology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, United States
| |
Collapse
|
10
|
Kim J, Kwon JT, Jeong J, Kim J, Hong SH, Kim J, Park ZY, Chung KH, Eddy EM, Cho C. SPATC1L maintains the integrity of the sperm head-tail junction. EMBO Rep 2018; 19:embr.201845991. [PMID: 30026308 DOI: 10.15252/embr.201845991] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 11/09/2022] Open
Abstract
Spermatogenesis is a tightly regulated process involving germ cell-specific and germ cell-predominant genes. Here we investigate a novel germ cell-specific gene, Spatc1l (spermatogenesis and centriole associated 1 like). Expression analyses show that SPATC1L is expressed in mouse and human testes. We find that mouse SPATC1L localizes to the neck region in testicular sperm. Moreover, SPATC1L associates with the regulatory subunit of protein kinase A (PKA). Using CRISPR/Cas9-mediated genome engineering, we generate mice lacking SPATC1L. Disruption of Spatc1l in mice leads to male sterility owing to separation of sperm heads from tails. The lack of SPATC1L is associated with a reduction in PKA activity in testicular sperm, and we identify capping protein muscle Z-line beta as a candidate target of phosphorylation by PKA in testis. Taken together, our results implicate the SPATC1L-PKA complex in maintaining the stability of the sperm head-tail junction, thereby revealing a new molecular basis for sperm head-tail integrity.
Collapse
Affiliation(s)
- Jihye Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jun Tae Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Juri Jeong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jaehwan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Seong Hyeon Hong
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jinyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Kyung Hwun Chung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Edward M Eddy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Chunghee Cho
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
11
|
Palermo GD, O'Neill CL, Chow S, Cheung S, Parrella A, Pereira N, Rosenwaks Z. Intracytoplasmic sperm injection: state of the art in humans. Reproduction 2017; 154:F93-F110. [PMID: 29158352 PMCID: PMC5719728 DOI: 10.1530/rep-17-0374] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
Abstract
Among infertile couples, 25% involve both male and female factors, while male factor alone accounts for another 25% due to oligo-, astheno-, teratozoospermia, a combination of the three, or even a complete absence of sperm cells in the ejaculate and can lead to a poor prognosis even with the help of assisted reproductive technology (ART). Intracytoplasmic sperm injection (ICSI) has been with us now for a quarter of a century and in spite of the controversy generated since its inception, it remains in the forefront of the techniques utilized in ART. The development of ICSI in 1992 has drastically decreased the impact of male factor, resulting in millions of pregnancies worldwide for couples who, without ICSI, would have had little chance of having their own biological child. This review focuses on the state of the art of ICSI regarding utility of bioassays that evaluate male factor infertility beyond the standard semen analysis and describes the current application and advances in regard to ICSI, particularly the genetic and epigenetic characteristics of spermatozoa and their impact on reproductive outcome.
Collapse
Affiliation(s)
- G D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - C L O'Neill
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - S Chow
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - S Cheung
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - A Parrella
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - N Pereira
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| | - Z Rosenwaks
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive MedicineWeill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 2016; 91:217-232. [PMID: 27779748 DOI: 10.1111/cge.12905] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Infertility, defined by the inability of conceiving a child after 1 year is estimated to concern approximately 50 million couples worldwide. As the male gamete is readily accessible and can be studied by a simple spermogram it is easier to subcategorize male than female infertility. Subjects with a specific sperm phenotype are more likely to have a common origin thus facilitating the search for causal factors. Male infertility is believed to be often multifactorial and caused by both genetic and extrinsic factors, but severe cases of male infertility are likely to have a predominant genetic etiology. Patients presenting with a monomorphic teratozoospermia such as globozoospermia or macrospermia with more than 85% of the spermatozoa presenting this specific abnormality have been analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm anomalies such as severe alteration of sperm motility, in particular multiple morphological anomalies of the sperm flagella (MMAF) or sperm unability to fertilize the oocyte (oocyte activation failure syndrome) has also enable the identification of new infertility genes. Here we review the recent works describing the identification and characterization of gene defects having a direct qualitative effect on sperm morphology or function.
Collapse
Affiliation(s)
- P F Ray
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Biochimie et Génétique Moléculaire, CHU Grenoble Alpes, Grenoble, France
| | - A Toure
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Sorbonne Paris Cité, Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | - C Arnoult
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France
| | - C Coutton
- Université Grenoble Alpes, Grenoble, France.,Institut for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, Grenoble, France.,UF de Génétique Chromosomique, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
13
|
Sha YW, Ding L, Wu JX, Lin SB, Wang X, Ji ZY, Li P. Headless spermatozoa in infertile men. Andrologia 2016; 49. [PMID: 27709648 DOI: 10.1111/and.12716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 11/26/2022] Open
Abstract
Spermatozoa morphology, an important parameter in a semen specimen's potential fertility evaluation, is a significant factor for in vitro fertilisation in assisted reproductive technology. Eleven sterile men with headless spermatozoa, a type of human teratozoospermia, are presented. Their ejaculates' headless spermatozoa percentages were high with rare normal spermatozoa forms. Additionally, abnormal morphology (e.g. round-headed or microcephalic spermatozoa) was also found. Spermatozoa motility was somewhat affected, potentially because of the missing mitochondrial sheath at the sperm tail base. Patients who underwent assisted reproductive technology treatment experienced adverse pregnancy outcomes. Work types and corresponding environments seemed irrelevant, but specific family history may have prompted its genetic origin. Computer-assisted semen analysis systems easily mistake headless spermatozoa as oligozoospermia because of nonrecognition of the loose head. However, morphological testing, especially with an electronic microscope, clearly identifies abnormal spermatozoa. Future exploration requires more methods investigating the frequency and percentage of this morphological abnormality in different populations with varied fertility levels. Such research would estimate the probable correlation of the abnormality with other semen parameters and examine the potential developmental or genetic origins. During clinical work, medical staff should detect these cases, avoid misdiagnosis and provide proper consultation about diagnosis and assisted reproductive technology treatment.
Collapse
Affiliation(s)
- Y-W Sha
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| | - L Ding
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| | - J-X Wu
- Laboratory of Reproductive Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - S-B Lin
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| | - X Wang
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| | - Z-Y Ji
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| | - P Li
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen City, Xiamen, China
| |
Collapse
|
14
|
Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, Zhang Z, He X, Zhou P, Wei Z, Gecz J, Cao Y. Biallelic SUN5 Mutations Cause Autosomal-Recessive Acephalic Spermatozoa Syndrome. Am J Hum Genet 2016; 99:942-949. [PMID: 27640305 DOI: 10.1016/j.ajhg.2016.08.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/05/2016] [Indexed: 01/06/2023] Open
Abstract
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs∗7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs∗7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72∗] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284∗]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.
Collapse
Affiliation(s)
- Fuxi Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; School of Life Science, Anhui Medical University, Hefei 230022, China.
| | - Fengsong Wang
- School of Life Science, Anhui Medical University, Hefei 230022, China
| | - Xiaoyu Yang
- Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China
| | - Zhou Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Jozef Gecz
- School of Medicine, Robinson Research Institute, The University of Adelaide, and South Australian Health and Medical Research Institute, Adelaide, South Australia 5006, Australia
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China.
| |
Collapse
|
15
|
Rondanino C, Duchesne V, Escalier D, Jumeau F, Verhaeghe F, Peers MC, Mitchell V, Rives N. Evaluation of sperm nuclear integrity in patients with different percentages of decapitated sperm in ejaculates. Reprod Biomed Online 2015; 31:89-99. [PMID: 26001636 DOI: 10.1016/j.rbmo.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
The decapitated sperm defect is a rare type of teratozoospermia responsible for male infertility. Spermatozoa from patients affected by this syndrome are used for intracytoplasmic sperm injection (ICSI) although little is known about their DNA integrity. This study evaluated sperm nuclear alterations in four patients and ten fertile men (control group). Sperm samples were examined by light, transmission electron and high-magnification contrast microscopy and analysed after terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling, aniline blue staining and fluorescence in-situ hybridization. Spermatozoa from patients presented varying degrees of decapitation, along with morphological and ultrastructural head abnormalities. Whereas the proportion of spermatozoa with fragmented DNA and numerical chromosome abnormalities was similar in patients 1-3 and controls, the percentage of spermatozoa with hypocondensed chromatin was higher in patients 1-3 than in fertile men. Patient 4 presented a distinct phenotype, with an increased proportion of flagellated spermatozoa with DNA strand breaks as well as increased aneuploidy and diploidy rates compared with controls and with patients 1-3. No successful pregnancy resulted from ICSI although embryos were obtained for three patients. The morphological defects and the nuclear alterations observed in spermatozoa of patients with the decapitated sperm syndrome may have contributed to ICSI failures.
Collapse
Affiliation(s)
- Christine Rondanino
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Laboratoire de Biologie de la Reproduction - CECOS, CHU - Hôpitaux de Rouen, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Rouen, France.
| | - Véronique Duchesne
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Laboratoire de Biologie de la Reproduction - CECOS, CHU - Hôpitaux de Rouen, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Rouen, France
| | - Denise Escalier
- Institut National de la Santé et de la Recherche Médicale U933, Hôpital Armand-Trousseau, Université Pierre et Marie Curie-Paris 6 and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Fanny Jumeau
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Laboratoire de Biologie de la Reproduction - CECOS, CHU - Hôpitaux de Rouen, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Rouen, France
| | - France Verhaeghe
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Laboratoire de Biologie de la Reproduction - CECOS, CHU - Hôpitaux de Rouen, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Rouen, France
| | - Marie-Claire Peers
- Institut de Biologie de la Reproduction - Spermiologie - CECOS, CHRU de Lille, Lille, France
| | - Valérie Mitchell
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Institut de Biologie de la Reproduction - Spermiologie - CECOS, CHRU de Lille, Lille, France
| | - Nathalie Rives
- EA 4308 'Gamétogenèse et qualité du gamète', Rouen, France; Laboratoire de Biologie de la Reproduction - CECOS, CHU - Hôpitaux de Rouen, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Rouen, France
| |
Collapse
|
16
|
Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction. Proc Natl Acad Sci U S A 2015; 112:E430-9. [PMID: 25605924 DOI: 10.1073/pnas.1424648112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
"Pinhead sperm," or "acephalic sperm," a type of human teratozoospermia, refers to the condition in which ejaculate contains mostly sperm flagella without heads. Family clustering and homogeneity of this syndrome suggests a genetic basis, but the causative genes remain largely unknown. Here we report that Spata6, an evolutionarily conserved testis-specific gene, encodes a protein required for formation of the segmented columns and the capitulum, two major structures of the sperm connecting piece essential for linking the developing flagellum to the head during late spermiogenesis. Inactivation of Spata6 in mice leads to acephalic spermatozoa and male sterility. Our proteomic analyses reveal that SPATA6 is involved in myosin-based microfilament transport through interaction with myosin subunits (e.g., MYL6).
Collapse
|
17
|
Yang K, Grzmil P, Meinhardt A, Hoyer-Fender S. Haplo-deficiency of ODF1/HSPB10 in mouse sperm causes relaxation of head-to-tail linkage. Reproduction 2014; 148:499-506. [PMID: 25118300 DOI: 10.1530/rep-14-0370] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The small heat shock protein ODF1/HSPB10 is essential for male fertility in mice. Targeted deletion of Odf1 resulted in acephalic sperm in homozygous mice of mixed background (C57BL/6J//129/Sv), whereas heterozygous animals are fully fertile. To further elucidate the function of ODF1, we generated incipient congenic mice with targeted deletion of Odf1 by successive backcrossing on the 129/Sv background. We observed that fecundity of heterozygous Odf1(+/-) male mice was severely reduced over backcross generations. However, neither aberrant sperm parameters nor sperm anomalies could be observed. Ultra-structural analyses of sperm from incipient congenic heterozygous Odf1(+/-) males of backcross generation N7 revealed no obvious pathological findings. However, we observed an enlargement of the distance between nuclear membrane and capitulum, indicating a weakening of the sperm head-to-tail coupling. Severe male subfertility provoked by haplo-deficiency of ODF1 is therefore most probably caused by impaired head-to-tail coupling that eventually might induce sperm decapitation on the specific conditions of in vivo fertilisation. As subfertility in haplo-deficient ODF1 male mice could not be diagnosed by semen analysis, it seems to be a paradigm for unexplained infertility that is a frequent diagnosis for male fertility impairment in humans.
Collapse
Affiliation(s)
- Kefei Yang
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental BiologyGZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyInstitute of Human GeneticsUniversity Medicine, Heinrich-Düker-Weg 12, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyDepartment of Genetics and EvolutionInstitute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland andDepartment of Anatomy and Cell BiologyAulweg 123, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Pawel Grzmil
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental BiologyGZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyInstitute of Human GeneticsUniversity Medicine, Heinrich-Düker-Weg 12, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyDepartment of Genetics and EvolutionInstitute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland andDepartment of Anatomy and Cell BiologyAulweg 123, Justus-Liebig-University Gießen, 35392 Gießen, Germany Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental BiologyGZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyInstitute of Human GeneticsUniversity Medicine, Heinrich-Düker-Weg 12, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyDepartment of Genetics and EvolutionInstitute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland andDepartment of Anatomy and Cell BiologyAulweg 123, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Andreas Meinhardt
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental BiologyGZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyInstitute of Human GeneticsUniversity Medicine, Heinrich-Düker-Weg 12, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyDepartment of Genetics and EvolutionInstitute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland andDepartment of Anatomy and Cell BiologyAulweg 123, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology - Developmental BiologyGZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyInstitute of Human GeneticsUniversity Medicine, Heinrich-Düker-Weg 12, Georg-August-Universität Göttingen, 37077 Göttingen, GermanyDepartment of Genetics and EvolutionInstitute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland andDepartment of Anatomy and Cell BiologyAulweg 123, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| |
Collapse
|
18
|
Liška F, Gosele C, Popova E, Chylíková B, Křenová D, Křen V, Bader M, Tres LL, Hubner N, Kierszenbaum AL. Overexpression of full-length centrobin rescues limb malformation but not male fertility of the hypodactylous (hd) rats. PLoS One 2013; 8:e60859. [PMID: 23577170 PMCID: PMC3620055 DOI: 10.1371/journal.pone.0060859] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/03/2013] [Indexed: 11/24/2022] Open
Abstract
Rat hypodactyly (hd) mutation is characterized by abnormal spermatogenesis and sperm decapitation, limb malformation (missing digits II and III) and growth retardation. We have previously reported centrobin (centrosome BRCA2-interacting protein) truncation at the C-terminus in the hd mutant. Here, we report data from a transgenic rescue experiment carried out to determine a role of centrobin in pathogenesis of hd. The transgenic construct, consisting of full-length-coding cDNA linked to a ubiquitous strong promoter/enhancer combination, was inserted to chromosome 16 into a LINE repeat. No known gene is present in the vicinity of the insertion site. Transgenic centrobin was expressed in all tissues tested, including testis. Transgenic animals show normal body weight and limb morphology as well as average weight of testis and epididymis. Yet, abnormal spermatogenesis and sperm decapitation persisted in the transgenic animals. Western blotting showed the coexistence of full-length and truncated or partially degraded centrobin in sperm of the rescued transgenic animals. Immunocytochemistry showed a buildup of centrobin and ODF2 (outer dense fiber 2) at the sperm decapitation site in the hd mutant and rescued transgenic rats. Additional findings included bulge-like formations and thread-like focal dissociations along the sperm flagellum and the organization of multiple whorls of truncated sperm flagella in the epididymal lumen. We conclude that centrobin is essential for normal patterning of the limb autopod. Centrobin may be required for stabilizing the attachment of the sperm head to flagellum and for maintaining the structural integrity of the sperm flagellum. We postulate that the presence of truncated centrobin, coexisting with full-length centrobin, together with incorrect timing of transgenic centrobin expression may hamper the rescue of fertility in hd male rats.
Collapse
Affiliation(s)
- František Liška
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University in Prague, Praha, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 2009; 5:e1000712. [PMID: 19893612 PMCID: PMC2763286 DOI: 10.1371/journal.pgen.1000712] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 10/05/2009] [Indexed: 01/11/2023] Open
Abstract
Polyamines are known to play important roles in the proliferation and differentiation of many types of cells. Although considerable amounts of polyamines are synthesized and stored in the testes, their roles remain unknown. Ornithine decarboxylase antizymes (OAZs) control the intracellular concentration of polyamines in a feedback manner. OAZ1 and OAZ2 are expressed ubiquitously, whereas OAZ-t/OAZ3 is expressed specifically in germline cells during spermiogenesis. OAZ-t reportedly binds to ornithine decarboxylase (ODC) and inactivates ODC activity. In a prior study, polyamines were capable of inducing a frameshift at the frameshift sequence of OAZ-t mRNA, resulting in the translation of OAZ-t. To investigate the physiological role of OAZ-t, we generated OAZ-t–disrupted mutant mice. Homozygous OAZ-t mutant males were infertile, although the polyamine concentrations of epididymides and testes were normal in these mice, and females were fertile. Sperm were successfully recovered from the epididymides of the mutant mice, but the heads and tails of the sperm cells were easily separated in culture medium during incubation. Results indicated that OAZ-t is essential for the formation of a rigid junction between the head and tail during spermatogenesis. The detached tails and heads were alive, and most of the headless tails showed straight forward movement. Although the tailless sperm failed to acrosome-react, the heads were capable of fertilizing eggs via intracytoplasmic sperm injection. OAZ-t likely plays a key role in haploid germ cell differentiation via the local concentration of polyamines. Polyamines are essential for cell proliferation and differentiation, but their role in these processes is unknown. Ornithine decarboxylase antizymes (OAZs) are enzymes that control the concentration of polyamines in cells. To elucidate the role of one of these enzymes, OAZ-t, in the regulation of polyamine concentration during sperm formation, we generated mutant mice in which the OAZ-t gene was disrupted. When we observed sperm from the mice lacking a functional Oaz-t gene, we found that the sperm heads separated easily from the tails, indicating that OAZ-t is essential for the formation of a rigid junction between the head and tail during sperm development. Many of the headless tails could continue swimming, but they were unable to participate in the signaling processes required for successful fertilization. However, tailless heads could produce healthy pups when injected into unfertilized eggs. Such a phenotype has not been previously found. The mutant mice evoked rare cases of infertile human patients whose sperm behaves in a proper fashion. Our study underscores the importance of research into the processes of spermatogenesis and fertilization.
Collapse
|
20
|
Netzel-Arnett S, Bugge TH, Hess RA, Carnes K, Stringer BW, Scarman AL, Hooper JD, Tonks ID, Kay GF, Antalis TM. The glycosylphosphatidylinositol-anchored serine protease PRSS21 (testisin) imparts murine epididymal sperm cell maturation and fertilizing ability. Biol Reprod 2009; 81:921-32. [PMID: 19571264 DOI: 10.1095/biolreprod.109.076273] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
An estimated 25%-40% of infertile men have idiopathic infertility associated with deficient sperm numbers and quality. Here, we identify the membrane-anchored serine protease PRSS21, also known as testisin, to be a novel proteolytic factor that directs epididymal sperm cell maturation and sperm-fertilizing ability. PRSS21-deficient spermatozoa show decreased motility, angulated and curled tails, fragile necks, and dramatically increased susceptibility to decapitation. These defects reflect aberrant maturation during passage through the epididymis, because histological and electron microscopic structural analyses showed an increased tendency for curled and detached tails as spermatozoa transit from the corpus to the cauda epididymis. Cauda epididymal spermatozoa deficient in PRSS21 fail to mount a swelling response when exposed to hypotonic conditions, suggesting an impaired ability to respond to osmotic challenges facing maturing spermatozoa in the female reproductive tract. These data suggest that aberrant regulation of PRSS21 may underlie certain secondary male infertility syndromes, such as "easily decapitated" spermatozoa in humans.
Collapse
Affiliation(s)
- Sarah Netzel-Arnett
- Center for Vascular and Inflammatory Diseases, Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhou J, Du YR, Qin WH, Hu YG, Huang YN, Bao L, Han D, Mansouri A, Xu GL. RIM-BP3 is a manchette-associated protein essential for spermiogenesis. Development 2009; 136:373-82. [DOI: 10.1242/dev.030858] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During spermiogenesis, round spermatids are converted into motile sperm in mammals. The mechanisms responsible for sperm morphogenesis are poorly understood. We have characterized a novel protein, RIM-BP3, with a specialized function in spermatid development in mice. The RIM-BP3 protein is associated with the manchette, a transient microtubular structure believed to be important for morphogenesis during spermiogenesis. Targeted deletion of the RIM-BP3 gene resulted in male infertility owing to abnormal sperm heads, which are characterized by a deformed nucleus and a detached acrosome. Consistent with its role in morphogenesis, the RIM-BP3 protein physically associates with Hook1, a known manchette-bound protein required for sperm head morphogenesis. Interestingly, RIM-BP3 does not interact with the truncated Hook1 protein characterized in azh (abnormal spermatozoon head) mutant mice. Moreover, RIM-BP3 and Hook1 mutant mice display several common abnormalities, in particular with regard to the ectopic positioning of the manchette within the spermatid, a presumed cause of sperm head deformities. These observations suggest an essential role for RIM-BP3 in manchette development and function through its interaction with Hook1. As the occurrence of deformed spermatids is one of the common abnormalities leading to malfunctional sperm, identification of RIM-BP3 might provide insight into the molecular cue underlying causes of male infertility in humans.
Collapse
Affiliation(s)
- Jing Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ya-Rui Du
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei-Hua Qin
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ye-Guang Hu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan-Nv Huang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lan Bao
- The Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Daishu Han
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Ahmed Mansouri
- Max Planck Institute of Biophysical Chemistry, Department of Molecular Cell Biology, Am Fassberg, 37077 Goettingen, Germany
| | - Guo-Liang Xu
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
22
|
Shimomura K, Sakurai K, Shimada M, Hagiwara M, Kato M, Furuhama K. Occurrence of headless sperms in adolescent rat urine. Lab Anim 2008; 42:204-12. [DOI: 10.1258/la.2007.06036e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Summary Increased incidence of headless sperms (HS) was spontaneously observed in the urine of adolescent naïve male SPF/VAF Crl:CD(SD) rats. To clarify the factors contributing to this event, the HS incidence in urine and the epididymis was periodically examined in conjunction with measurements of testis and epididymis weights, motility and morphology of sperms and testosterone, transferrin or follicle-stimulating hormone (FSH) concentrations in serum and/or the testis. The urinary HS incidence was 61%, 69%, 44%, 30%, 14%, 9% and 7% in 100 sperms counted at ages 8, 9, 10, 11, 12, 13 and 14 weeks, respectively; namely, HS peaked at 9 weeks, gradually decreased from 10 weeks and became almost a plateau from 12 weeks onwards. The epididymal HS incidence, which was lower than that in urine, peaked at 8 weeks, decreased from 10 weeks and became almost zero from 12 weeks. By scanning electron microscopy of HS in the epididymis, a narrow gap between the sperm head and neck was clearly seen along with the posterior ring. Concentrations of testicular testosterone and transferrin, a marker for Sertoli cell maturation, reached mature animal levels at 12 weeks. In contrast, no change in serum FSH concentration was seen throughout the study period. These results demonstrate that a marked increase in urinary HS incidence in naïve rats at ages 8–11 weeks would be a physiological phenomenon seen in connection with the process of Sertoli cell maturation.
Collapse
Affiliation(s)
- Kazuhiro Shimomura
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Ken Sakurai
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Makoto Shimada
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Miyoko Hagiwara
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Michiyuki Kato
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| | - Kazuhisa Furuhama
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co, Ltd, 16-13 Kita-Kasai 1-Chome, Edogawa-Ku, Tokyo 134-8630, Japan
| |
Collapse
|
23
|
|
24
|
Abstract
As individuals with genetic sperm defects are intracytoplasmic sperm injection candidates, the study of the chromosomal constitution of their spermatozoa is of great interest. This study is a review of the current literature concerning fluorescence in situ hybridisation studies in spermatozoa with genetic sperm defect as 'round head', 'dysplasia of fibrous sheath' (DFS), 'primary ciliary dyskinesia' (PCD), the 'detached tail' and the 'absence of fibrous sheath'. Regarding sperm head defects, elevated XY disomy and diplodies were detected. Genetic defects affecting the sperm tail seemed to have a different correlation with chromosome meiotic segregation. Only chromosome 18, among the autosomes, was studied and the percentage of frequency of disomy was generally within the normal range. In the more frequently studied defect, DFS, the alterations in gonosome disomy and diploidy were recorded by different groups. Regarding PCD defects, elevated frequencies of disomy of sex chromosomes and diploidy were observed, whereas the absence of the fibrous sheath and the detached tail did not show any meiotic disturbance. The problem of genetic sperm defects should be seriously considered when these sperm are used for assisted reproduction, owing to the high risk of transmission of chromosomal imbalance and of mutations that could cause genetic sperm defects in offspring.
Collapse
Affiliation(s)
- G Collodel
- Department of General Surgery, Biology Section, University of Siena, Siena, Italy.
| | | |
Collapse
|