1
|
Okazaki H, Gotoda T, Ogura M, Ishibashi S, Inagaki K, Daida H, Hayashi T, Hori M, Masuda D, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Primary Chylomicronemia. J Atheroscler Thromb 2021; 28:883-904. [PMID: 33980761 PMCID: PMC8532063 DOI: 10.5551/jat.rv17054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Primary chylomicronemia (PCM) is a rare and intractable disease characterized by marked accumulation of chylomicrons in plasma. The levels of plasma triglycerides (TGs) typically range from 1,000 - 15,000 mg/dL or higher.
PCM is caused by defects in the lipoprotein lipase (LPL) pathway due to genetic mutations, autoantibodies, or unidentified causes. The monogenic type is typically inherited as an autosomal recessive trait with loss-of-function mutations in LPL pathway genes (
LPL
,
LMF1
,
GPIHBP1
,
APOC2
, and
APOA5
). Secondary/environmental factors (diabetes, alcohol intake, pregnancy, etc.) often exacerbate hypertriglyceridemia (HTG).
The signs, symptoms, and complications of chylomicronemia include eruptive xanthomas, lipemia retinalis, hepatosplenomegaly, and acute pancreatitis with onset as early as in infancy. Acute pancreatitis can be fatal and recurrent episodes of abdominal pain may lead to dietary fat intolerance and failure to thrive. The main goal of treatment is to prevent acute pancreatitis by reducing plasma TG levels to at least less than 500-1,000 mg/dL. However, current TG-lowering medications are generally ineffective for PCM. The only other treatment options are modulation of secondary/environmental factors. Most patients need strict dietary fat restriction, which is often difficult to maintain and likely affects their quality of life. Timely diagnosis is critical for the best prognosis with currently available management, but PCM is often misdiagnosed and undertreated. The aim of this review is firstly to summarize the pathogenesis, signs, symptoms, diagnosis, and management of PCM, and secondly to propose simple diagnostic criteria that can be readily translated into general clinical practice to improve the diagnostic rate of PCM. In fact, these criteria are currently used to define eligibility to receive social support from the Japanese government for PCM as a rare and intractable disease. Nevertheless, further research to unravel the molecular pathogenesis and develop effective therapeutic modalities is warranted. Nationwide registry research on PCM is currently ongoing in Japan with the aim of better understanding the disease burden as well as the unmet needs of this life-threatening disease with poor therapeutic options.
Collapse
Affiliation(s)
- Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Takanari Gotoda
- Department of Metabolic Biochemistry, Faculty of Medicine, Kyorin University
| | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Jichi Medical University
| | - Kyoko Inagaki
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Nippon Medical School
| | - Hiroyuki Daida
- Faculty of Health Science, Juntendo University, Juntendo University Graduate School of Medicine
| | - Toshio Hayashi
- School of Health Sciences, Nagoya University Graduate School of Medicine
| | - Mika Hori
- Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University
| | - Daisaku Masuda
- Department of Cardiology, Health Care Center, Rinku Innovation Center for Wellness Care and Activities (RICWA), Rinku General Medical Center
| | - Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | | |
Collapse
|
2
|
Minamizuka T, Kobayashi J, Tada H, Miyashita K, Koshizaka M, Maezawa Y, Ono H, Yokote K. Detailed analysis of lipolytic enzymes in a Japanese woman of familial lipoprotein lipase deficiency - Effects of pemafibrate treatment. Clin Chim Acta 2020; 510:216-219. [PMID: 32682802 DOI: 10.1016/j.cca.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND We present here a 72-y-old Japanese woman with lipoprotein lipase (LPL) deficiency and analyzed her lipolytic enzymes in detail before and after pemafibrate treatment. METHODS She had a serum triglycerides (TG) of 22.6 mmol/l at a medical checkup at the age of 52 y. She was referred to our hospital at the age of 61 y. Her serum lipoprotein lipase (LPL) concentration was extremely low, suggesting the clinical diagnosis of LPL deficiency. She experienced an event of acute pancreatitis at the age of 65 y. RESULTS Next-generation sequencing analysis revealed a homozygous nonsense mutation in the LPL gene, c.1277G > A (p.Trp409Ter). Her serum TG, LPL and hepatic lipase (HL) concentrations were 15.0 mmol/l, 23 ng/ml and 66 ng/ml, respectively. Fifteen minutes after intravenous heparin injection (30 U/kg), her serum TG, LPL and HL concentrations turned to 14.1 mmol/l, 20 ng/ml and 660 ng/ml, respectively. Eight weeks of pemafibrate treatment (0.2 mg/day) caused a modest reductions in serum TG (15.02 → 13.58 mmol/l) and considerable increases in preheparin HL (66 → 76 ng/ml) and PHP-HL (660 → 1118 ng/ml) concentrations and PHP-HL activities (253 → 369U/l) despite almost no effect on LPL concentrations and activities. CONCLUSIONS These findings suggest that HL may contribute to the reduction of plasma TG in LPL deficiency.
Collapse
Affiliation(s)
- Takuya Minamizuka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Junji Kobayashi
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan.
| | - Hayato Tada
- Graduate School of Medicine, Kanazawa University Cardiovascular Medicine, Kanazawa City, Japan
| | | | - Masaya Koshizaka
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Yoshiro Maezawa
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Hiraku Ono
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| | - Koutaro Yokote
- Graduate School of Medicine, Chiba University Endocrine Metabolism/Hematology/Geriatric Medicine, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8677, Japan
| |
Collapse
|
3
|
Pu N, Yang Q, Shi XL, Chen WW, Li XY, Zhang GF, Li G, Li BQ, Ke L, Tong ZH, Cooper DN, Chen JM, Li WQ, Li JS. Gene-environment interaction between APOA5 c.553G>T and pregnancy in hypertriglyceridemia-induced acute pancreatitis. J Clin Lipidol 2020; 14:498-506. [PMID: 32561169 DOI: 10.1016/j.jacl.2020.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/15/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The etiology of hypertriglyceridemia (HTG) and, consequently, HTG-induced acute pancreatitis (HTG-AP), is complex. OBJECTIVE Herein, we explore a possible gene-environment interaction between APOA5 c.553G>T (p.185Gly>Cys, rs2075291), a common variant associated with altered triglyceride levels, and pregnancy in HTG-AP. METHODS We enrolled 318 Chinese HTG-AP patients and divided them into 3 distinct groups: Group 1, male patients (n = 183); Group 2, female patients whose disease was unrelated to pregnancy (n = 105); and Group 3, female patients whose disease was related to pregnancy (n = 30). APOA5 rs2075291 genotype status was determined by Sanger sequencing. A total of 362 healthy Han Chinese subjects were used as controls. Data on body mass index, peak triglyceride level, age of disease onset, episode number, and clinical severity of HTG-AP were collected from each patient. Multiple comparisons, between patient groups, between patient groups and controls, or within each patient group, were performed. RESULTS A robust association of APOA5 rs2075291 with HTG-AP in general, and HTG-AP during pregnancy in particular, was demonstrated. The minor T allele showed a stronger association with Group 3 patients than with either Group 1 or Group 2 patients. This stronger association was due mainly to the much higher frequency of TT genotype in Group 3 patients (20%) than that (<6%) in Group 1 and Group 2 patients. Moreover, the TT genotype was associated with a significantly higher peak triglyceride level in Group 3 patients compared with the GG genotype. CONCLUSION Our findings provide evidence for an interaction between APOA5 rs2075291 and pregnancy in HTG-AP.
Collapse
Affiliation(s)
- Na Pu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Xiao-Lei Shi
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiao-Yao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China; Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guo-Fu Zhang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bai-Qiang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jian-Min Chen
- EFS, Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Wei-Qin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jie-Shou Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Li XY, Pu N, Chen WW, Shi XL, Zhang GF, Ke L, Ye B, Tong ZH, Wang YH, Liu G, Chen JM, Yang Q, Li WQ, Li JS. Identification of a novel LPL nonsense variant and further insights into the complex etiology and expression of hypertriglyceridemia-induced acute pancreatitis. Lipids Health Dis 2020; 19:63. [PMID: 32264896 PMCID: PMC7140582 DOI: 10.1186/s12944-020-01249-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hypertriglyceridemia (HTG) is a leading cause of acute pancreatitis. HTG can be caused by either primary (genetic) or secondary etiological factors, and there is increasing appreciation of the interplay between the two kinds of factors in causing severe HTG. Objectives The main aim of this study was to identify the genetic basis of hypertriglyceridemia-induced acute pancreatitis (HTG-AP) in a Chinese family with three affected members (the proband, his mother and older sister). Methods The entire coding and flanking sequences of LPL, APOC2, APOA5, GPIHBP1 and LMF1 genes were analyzed by Sanger sequencing. The newly identified LPL nonsense variant was subjected to functional analysis by means of transfection into HEK-293 T cells followed by Western blot and activity assays. Previously reported pathogenic LPL nonsense variants were collated and compared with respect to genotype and phenotype relationship. Results We identified a novel nonsense variant, p.Gln118* (c.351C > T), in the LPL gene, which co-segregated with HTG-AP in the Chinese family. We provided in vitro evidence that this variant resulted in a complete functional loss of the affected LPL allele. We highlighted a role of alcohol abuse in modifying the clinical expression of the disease in the proband. Additionally, our survey of 12 previously reported pathogenic LPL nonsense variants (in 20 carriers) revealed that neither serum triglyceride levels nor occurrence of HTG-AP was distinguishable among the three carrier groups, namely, simple homozygotes, compound heterozygotes and simple heterozygotes. Conclusions Our findings, taken together, generated new insights into the complex etiology and expression of HTG-AP.
Collapse
Affiliation(s)
- Xiao-Yao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Pu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastroenterology, Subei People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xiao-Lei Shi
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guo-Fu Zhang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ke
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bo Ye
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Hui Wang
- Key laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing, China
| | - George Liu
- Key laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Institute of Cardiovascular Sciences, Health Science Center, Peking University, Beijing, China
| | - Jian-Min Chen
- Inserm, EFS, University of Brest, UMR 1078, GGB, F-29200, Brest, France
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Wei-Qin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Jie-Shou Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Shi XL, Yang Q, Pu N, Li XY, Chen WW, Zhou J, Li G, Tong ZH, Férec C, Cooper DN, Chen JM, Li WQ. Identification and functional characterization of a novel heterozygous missense variant in the LPL associated with recurrent hypertriglyceridemia-induced acute pancreatitis in pregnancy. Mol Genet Genomic Med 2020; 8:e1048. [PMID: 31962008 PMCID: PMC7057096 DOI: 10.1002/mgg3.1048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 01/25/2023] Open
Abstract
Background Acute pancreatitis in pregnancy (APIP) is a life‐threatening disease for both mother and fetus. To date, only three patients with recurrent hypertriglyceridemia‐induced APIP (HTG‐APIP) have been reported to carry rare variants in the lipoprotein lipase (LPL) gene, which encodes the key enzyme responsible for triglyceride (TG) metabolism. Coincidently, all three patients harbored LPL variants on both alleles and presented with complete or severe LPL deficiency. Methods The entire coding regions and splice junctions of LPL and four other TG metabolism genes (APOC2, APOA5, GPIHBP1, and LMF1) were analyzed by Sanger sequencing in a Han Chinese patient who had experienced two episodes of HTG‐APIP. The impact of a novel LPL missense variant on LPL protein expression and activity was analyzed by transient expression in HEK293T cells. Results A novel heterozygous LPL missense variant, p.His210Leu (c.629A > T), was identified in our patient. This variant did not affect protein synthesis but significantly impaired LPL secretion and completely abolished the enzymatic activity of the mutant protein. Conclusion This report describes the first identification and functional characterization of a heterozygous variant in the LPL that predisposed to recurrent HTG‐APIP. Our findings confirm a major genetic contribution to the etiology of individual predisposition to HTG‐APIP.
Collapse
Affiliation(s)
- Xiao-Lei Shi
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qi Yang
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Pu
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Yao Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gang Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Claude Férec
- Inserm, EFS, Univ Brest, UMR 1078, GGB, Brest, France.,Service de Génétique, CHU Brest, Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Jian-Min Chen
- Inserm, EFS, Univ Brest, UMR 1078, GGB, Brest, France
| | - Wei-Qin Li
- Surgical Intensive Care Unit (SICU), Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Lin Z, Li Q, Sun Y, Huang J, Wang W, Fu J, Xu J, Zeng D. Interactions between genetic variants involved in the folate metabolic pathway and serum lipid, homocysteine levels on the risk of recurrent spontaneous abortion. Lipids Health Dis 2019; 18:143. [PMID: 31200713 PMCID: PMC6570969 DOI: 10.1186/s12944-019-1083-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background The interaction between folate pathway gene polymorphisms and homocysteine, serum lipid leverls are poorly understood in patients with recurrent spontaneous abortion (RSA). The aim of this study is to explore the effects of folate pathway gene polymorphisms (the 5–10-methylenetetrahydrofolate reductase, MTHTR C677T, MTHFR A1298C and the methionine synthase reductase, MTRR A66G) and their interactions with homocysteine on serum lipid levels in patients with RSA. Methods A total of 403 RSA women and 342 healthy women were randomly selected. Genotyping of the MTHFR C677T, A1298C and MTRR A66G were performed by TaqMan-MGB technique. Serum homocysteine, folate, fasting glucose, fasting insulin, Interleukin 6, Tumor necrosis factorα (TNFα) and lipid profiles were measured according to the kits. Continuous variables were analyzed using 2-sample t-tests. Categorical variables were analyzed and compared by χ2 or Fisher’s exact tests. Unconditional logistic regression model was applied to test the interactions of gene polymorphisms on RSA. Results The distribution of genotype of CC, CT TT and T allele of MTHFR C677T, genotype of AA and C allele of MTHFR A1298C, and genotype of AA, AG and G allele of MTRR A66G were different between cases and controls (all p were < 0.05). There were significant interactions between MTHFR C677T-A1298C and MTHFR A1298C-MTRR A66G in RSA group and control group, with ORs of 1.62 (95%CI: 1.28–2.04, p < 0.001) and 1.55 (95%CI: 1.27–1.88, p < 0.001), respectively. Serum TNFα level and insulin resistant status (HOMR-IR) were higher in RSA group than in control group (p = 0.038, 0.001, respectively). All the three gene SNPs except MTRR 66AG gene variant had detrimental effects on HOMA-IR (all p were < 0.05). RSA group who carried the MTHFR 677CT, TT, CT/TT genotypes and MTRR 66AG, AG/GG genotypes had detrimental effects on serum homocysteine levels, the MTHFR 677CT, CT/TT genotype carriers had favorable effects on serum folate levels, the MTHFR 677TT, CT/TT, 1298 AC, AC/CC genotype carriers had detrimental effects on serum low-density lipoprotein cholesterol (LDL-C) levels, and the MTRR 66AG genotype carriers had lower high-density lipoprotein cholesterol (HDL-C) levels than the AA genotype carriers (all p were < 0.05). Conclusions Interaction between the MTHFR C677T, A1298C and MTHFR A1298C, MTRR A66G are observed in our RSA group. Besides, all the three gene SNPs except MTRR 66AG gene variant had detrimental effects on HOMA-IR. MTHFR C677T and MTRR A66G gene variants had detrimental effects on serum homocysteine levels and insulin resistance status, while MTHFR C677T, A1298C and MTRR A66G gene variants had detrimental effects on certain serum lipid profiles.
Collapse
Affiliation(s)
- Zhong Lin
- Department of Obstetrics and Gynecology, Liuzhou Maternity and Child Health Care Hospital, 50 Yingshan Road, Liuzhou, 545001, Guangxi, China
| | - Qianxi Li
- Department of Obstetrics and Gynecology, The Maternal & Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi, 530003, China
| | - Yifan Sun
- Department of Clinical Laboratory, Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, 545001, Guangxi, China
| | - Jingchun Huang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Wan Wang
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Jinjian Fu
- Department of Laboratory, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, Guangxi, China
| | - Jianhua Xu
- Department of Laboratory Science, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China. .,Laboratory of Oncology Science and Molecular Biology, ShunDe Hospital of Guangzhou University of Chinese Medicine, Shunde, 528333, Guangdong, China.
| | - Dingyuan Zeng
- Department of Obstetrics and Gynecology, Liuzhou Maternity and Child Health Care Hospital, 50 Yingshan Road, Liuzhou, 545001, Guangxi, China.
| |
Collapse
|
7
|
Liu C, Li L, Guo D, Lv Y, Zheng X, Mo Z, Xie W. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clin Chim Acta 2018; 487:33-40. [PMID: 30218660 DOI: 10.1016/j.cca.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
Increased plasma triglyceride serves as an independent risk factor for cardiovascular disease (CVD). Lipoprotein lipase (LPL), which hydrolyzes circulating triglyceride, plays a crucial role in normal lipid metabolism and energy balance. Hypertriglyceridemia is possibly caused by gene mutations resulting in LPL dysfunction. There are many factors that both positively and negatively interact with LPL thereby impacting TG lipolysis. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a newly identified factor, appears essential for transporting LPL to the luminal side of the blood vessel and offering a platform for TG hydrolysis. Numerous lines of evidence indicate that GPIHBP1 exerts distinct functions and plays diverse roles in human triglyceride-rich lipoprotein (TRL) metabolism. In this review, we discuss the GPIHBP1 gene, protein, its expression and function and subsequently focus on its regulation and provide critical evidence supporting its role in TRL metabolism. Underlying mechanisms of action are highlighted, additional studies discussed and potential therapeutic targets reviewed.
Collapse
Affiliation(s)
- Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - XiLong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada; Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
8
|
Minohara S, Bae SK, Sugiyama S, Shibata N, Gushima T, Motoshita J, Shimoda S, Takagi A, Ikeda Y, Takahashi K. A case of non-alcoholic steatohepatitis complicated with severe acute pancreatitis induced by decreased lipoprotein lipase and hepatic triglyceride lipase activity levels in a young Japanese woman. Clin Case Rep 2018; 6:1769-1773. [PMID: 30214760 PMCID: PMC6132095 DOI: 10.1002/ccr3.1706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/24/2017] [Accepted: 06/09/2018] [Indexed: 02/01/2023] Open
Abstract
We report a case of non-alcoholic steatohepatitis complicated with acute pancreatitis induced by hypertriglyceridemia in a young Japanese woman. A precise examination of the lipid profile showed decreased lipoprotein lipase (LPL) and hepatic triglyceride lipase activity levels, while the LPL mass was at the minimum level of the normal range.
Collapse
Affiliation(s)
- Sawa Minohara
- The Center for Liver DiseaseHamanomachi HospitalChuo‐ku, FukuokaJapan
| | - Sung Kwan Bae
- The Center for Liver DiseaseHamanomachi HospitalChuo‐ku, FukuokaJapan
| | - Saori Sugiyama
- The Center for Liver DiseaseHamanomachi HospitalChuo‐ku, FukuokaJapan
| | - Noriko Shibata
- The Center for Liver DiseaseHamanomachi HospitalChuo‐ku, FukuokaJapan
| | - Toshifumi Gushima
- The Center for Liver DiseaseHamanomachi HospitalChuo‐ku, FukuokaJapan
| | | | - Shinji Shimoda
- Medicine and Biosystemic ScienceKyushu UniversityFukuokaJapan
| | - Atsuko Takagi
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular Center Research InstituteOsakaJapan
| | - Yasuyuki Ikeda
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular Center Research InstituteOsakaJapan
| | | |
Collapse
|
9
|
Neelamekam S, Kwok S, Malone R, Wierzbicki AS, Soran H. The impact of lipoprotein lipase deficiency on health-related quality of life: a detailed, structured, qualitative study. Orphanet J Rare Dis 2017; 12:156. [PMID: 28927429 PMCID: PMC5606084 DOI: 10.1186/s13023-017-0706-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Background Lipoprotein lipase deficiency (LPLD) is an autosomal recessive inherited disorder caused by loss-of-function mutations in genes involved in the lipoprotein lipase pathway. It is characterised by chylomicronaemia, severe hypertriglyceridaemia and an increased risk of recurrent pancreatitis that often requires hospitalisation. This research aimed to improve our understanding of the debilitating impact that LPLD has on the daily lives of patients and their families. Methods The research comprised a 2-h interview with the patient and, where possible, a 1-h interview with a family member; a 1-week pre- and post-interview task (written and/or video diary); and a 30–45-min follow-up telephone interview. Feelings and thoughts at each stage of the disease journey were captured on a 0–10 rating scale, while the impact of disease on overall health status was measured via the EuroQoL 5 domains, 3 levels (EQ-5D-3L) questionnaire (descriptive and visual analogue scale). Results Of four patients identified, three (two female, one male) were recruited to participate in the study; the male patient did not complete the pre-interview task or consent to a family member interview. Demographics and medical history differed among patients in terms of age at symptom onset, their journey to LPLD diagnosis, treatments, the number of attacks of pancreatitis and lengths of hospitalisations. Health-related quality of life, assessed by the EQ-5D-3L, was poor during acute attacks of pancreatitis but was minimally impacted by their condition at interview. Patients described feeling apprehensive, frightened, anxious, depressed or frustrated during and after hospitalisations; spouses of the two female patients also reported being worried or afraid. LPLD affected many aspects of daily living, including diet; socialising and building relationships; state of mind (fear of another attack of pancreatitis or lack of disease control); college and working life (through absenteeism and consequent financial implications); and being reliant on family and friends for support. Conclusions The interviews of the three patients with LPLD highlighted several concerns and emphasised the need for improved education, support, dietary advice and appropriate disease management. Additional support services would ease the fear and uncertainty surrounding attacks of pancreatitis, and would allow for improved treatment during hospitalisations. Electronic supplementary material The online version of this article (10.1186/s13023-017-0706-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sasi Neelamekam
- Cardiovascular Trial Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - See Kwok
- Cardiovascular Trial Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | | | - Handrean Soran
- Cardiovascular Trial Unit, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. .,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Clinical and genetic features of 3 patients with familial chylomicronemia due to mutations in GPIHBP1 gene. J Clin Lipidol 2016; 10:915-921.e4. [PMID: 27578123 DOI: 10.1016/j.jacl.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Familial chylomicronemia is a recessive disorder that may be due to mutations in lipoprotein lipase (LPL) and in other proteins such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface), and LMF1 (a factor required for intracellular formation of active LPL). METHODS We sequenced the familial chylomicronemia candidate genes in 2 adult females presenting long-standing hypertriglyceridemia and a history of acute pancreatitis. RESULTS Both probands had plasma triglyceride >10 mmol/L but no mutations in the LPL gene. The sequence of the other candidate genes showed that one patient was homozygous for a novel missense mutation p.(Cys83Arg), and the other was homozygous for a previously reported nonsense mutation p.(Cys 89*), respectively, in GPIHBP1. Family screening showed that the hypertriglyceridemic brother of the p.(Cys83Arg) homozygote was also homozygous for this mutation. He had no history of pancreatitis. The p.(Cys83Arg) heterozygous carriers had normal triglyceride levels. The substitution of a cysteine residue in the Ly6 domain of GPIHBP1 is predicted to abolish one of the disulfide bridges required to maintain the structure of GPIHBP1. The p.(Cys89*) mutation results in a truncated protein devoid of function. CONCLUSIONS Both mutant GPIHBP1 proteins are expected to be incapable of transferring LPL from the subendothelial space to the endothelial surface.
Collapse
|
11
|
Xie SL, Chen TZ, Huang XL, Chen C, Jin R, Huang ZM, Zhou MT. Genetic Variants Associated with Gestational Hypertriglyceridemia and Pancreatitis. PLoS One 2015; 10:e0129488. [PMID: 26079787 PMCID: PMC4469420 DOI: 10.1371/journal.pone.0129488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Severe hypertriglyceridemia is a well-known cause of pancreatitis. Usually, there is a moderate increase in plasma triglyceride level during pregnancy. Additionally, certain pre-existing genetic traits may render a pregnant woman susceptible to development of severe hypertriglyceridemia and pancreatitis, especially in the third trimester. To elucidate the underlying mechanism of gestational hypertriglyceridemic pancreatitis, we undertook DNA mutation analysis of the lipoprotein lipase (LPL), apolipoprotein C2 (APOC2), apolipoprotein A5 (APOA5), lipase maturation factor 1 (LMF1), and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) genes in five unrelated pregnant Chinese women with severe hypertriglyceridemia and pancreatitis. DNA sequencing showed that three out of five patients had the same homozygous variation, p.G185C, in APOA5 gene. One patient had a compound heterozygous mutation, p.A98T and p.L279V, in LPL gene. Another patient had a compound heterozygous mutation, p.A98T & p.C14F in LPL and GPIHBP1 gene, respectively. No mutations were seen in APOC2 or LMF1 genes. All patients were diagnosed with partial LPL deficiency in non-pregnant state. As revealed in our study, genetic variants appear to play an important role in the development of severe gestational hypertriglyceridemia, and, p.G185C mutation in APOA5 gene appears to be the most common variant implicated in the Chinese population. Antenatal screening for mutations in susceptible women, combined with subsequent interventions may be invaluable in the prevention of potentially life threatening gestational hypertriglyceridemia-induced pancreatitis.
Collapse
Affiliation(s)
- Sai-Li Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tan-Zhou Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xie-Lin Huang
- Ren-Ji Study, Wenzhou Medical University, Wenzhou, China
| | - Chao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Ming Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (M-TZ); (Z-MH)
| | - Meng-Tao Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (M-TZ); (Z-MH)
| |
Collapse
|
12
|
Rahalkar AR, Giffen F, Har B, Ho J, Morrison KM, Hill J, Wang J, Hegele RA, Joy T. Novel LPL mutations associated with lipoprotein lipase deficiency: two case reports and a literature review. Can J Physiol Pharmacol 2009; 87:151-60. [PMID: 19295657 DOI: 10.1139/y09-005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoprotein lipase (LPL) is a key enzyme involved with hydrolysis and removal of triglycerides from plasma. LPL deficiency is a rare condition with an estimated prevalence of 1 in 106. It is characterized biochemically by elevated triglycerides and lowered HDL in the plasma and clinically by a constellation of signs and symptoms during childhood including failure to thrive, lipemia retinalis, eruptive xanthomas, hepatosplenomegaly, and acute pancreatitis. Nearly 100 mutations in the LPL gene have been associated with LPL deficiency. Here we report 2 unrelated pedigrees with LPL deficiency from 2 novel disease-causing LPL mutations: a Gly159Glu missense mutation in exon 5 and a 4-bp ACGG deletion at the 3' boundary of exon 2. We present molecular findings of these 2 cases and review the biochemical, clinical, and genetic features of LPL deficiency.
Collapse
Affiliation(s)
- Amit R Rahalkar
- Department of Vascular Biology and Medicine, Robarts Research Institute and Schulich School of Medicine and Dentistry, University of Western Ontario, P.O. Box 5015, 100 Perth Drive, London, ON N6A5K8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Acute hypertriglyceridemic pancreatitis during pregnancy due to homozygous lipoprotein lipase gene mutation. Clin Chim Acta 2008; 400:137-8. [PMID: 19000906 DOI: 10.1016/j.cca.2008.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 10/17/2008] [Accepted: 10/17/2008] [Indexed: 11/23/2022]
|
14
|
Sepetiba RJC, Andrade J, Hirata RDC, Hirata MH, Sepetiba CRG, Nakamura Y, Matsumoto LO, Cavalli SA, Bertolami MC. Lipoprotein lipase PvuII polymorphism is associated with variations in serum lipid levels in non-diabetic pregnant women. ACTA ACUST UNITED AC 2008; 40:919-26. [PMID: 17653444 DOI: 10.1590/s0100-879x2006005000102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/02/2007] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to determine if there is an association between the single nucleotide polymorphisms (SNPs) of the lipoprotein lipase (LPL) and apolipoprotein E (apo E) genes and the serum lipid profile in pregnancy and puerperium. Non-diabetic women of European descent in the third semester of pregnancy (N = 120) were selected. Those with diseases or other condition that could modify their lipid profile were excluded from the study (N = 32). Serum lipids were measured by routine laboratory procedures and genomic DNA was extracted by a salting out method. LPL (PvuII and HindIII) and apo E (HhaI) SNPs were detected by the polymerase chain reaction and restriction fragment length polymorphism. Categorical and continuous variables were compared by the chi-square test and Student t-test or ANOVA, respectively. Women carrying the LPL P1P1 genotype had higher serum LDL cholesterol (N = 21; 155 +/- 45 mg/dL) than women carrying the P1P2/P2P2 genotypes (N = 67; 133 +/- 45 mg/dL; P = 0.032). During the puerperium period, serum levels of triglycerides and VLDL cholesterol were significantly reduced in women carrying the P1P1 (73%, P = 0.006) and P1P2 (51%, P = 0.002) genotypes but not in women carrying the P2P2 genotype (23%, P > 0.05). On the other hand, serum concentrations of lipids did not differ between the LPL HindIII and apo E genotypes during pregnancy and after delivery. We conclude that LPL PvuII SNP is associated with variations in serum lipids during pregnancy and the puerperal period in non-diabetic women.
Collapse
Affiliation(s)
- R J C Sepetiba
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Magnusson-Olsson AL, Lager S, Jacobsson B, Jansson T, Powell TL. Effect of maternal triglycerides and free fatty acids on placental LPL in cultured primary trophoblast cells and in a case of maternal LPL deficiency. Am J Physiol Endocrinol Metab 2007; 293:E24-30. [PMID: 17299085 DOI: 10.1152/ajpendo.00571.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal hypertriglyceridemia is a normal condition in late gestation and is an adaptation to ensure an adequate nutrient supply to the fetus. Placental lipoprotein lipase (LPL) is involved in the initial step in transplacental fatty acid transport as it hydrolyzes maternal triglycerides (TG) to release free fatty acids (FFA). We investigated LPL activity and protein (Western blot) and mRNA expression (real-time RT-PCR) in the placenta of an LPL-deficient mother with marked hypertriglyceridemia. The LPL activity was fourfold lower, LPL protein expression 50% lower, and mRNA expression threefold higher than that of normal, healthy placentas at term (n = 4-7). To further investigate the role of maternal lipids in placental LPL regulation, we isolated placental cytotrophoblasts from term placentas and studied LPL activity and protein and mRNA expression after incubation in Intralipid (as a source of TG) and oleic, linoleic, and a combination of oleic, linoleic, and arachidonic acids as well as insulin. Intralipid (40 and 400 mg/dl) decreased LPL activity by approximately 30% (n = 10-14, P < 0.05) and 400 microM linoleic and linoleic-oleic-arachidonic acid (n = 10) decreased LPL activity by 37 and 34%, respectively. No major changes were observed in LPL protein or mRNA expression. We found no effect of insulin on LPL activity or protein expression in the cultured trophoblasts. To conclude, the activity of placental LPL is reduced by high levels of maternal TG and/or FFA. This regulatory mechanism may serve to counteract an excessive delivery of FFA to the fetus in conditions where maternal TG levels are markedly increased.
Collapse
Affiliation(s)
- Anne Liese Magnusson-Olsson
- Perinatal Center, Institute of Neuroscience and Physiology, Göteborg University, Box 432, S-405 30 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Eskandar O, Eckford S, Roberts TL. Severe, gestational, non-familial, non-genetic hypertriglyceridemia. J Obstet Gynaecol Res 2007; 33:186-9. [PMID: 17441893 DOI: 10.1111/j.1447-0756.2007.00506.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Severe hypertriglyceridemia is a rare condition in pregnancy. All the cases of severe gestational hypertriglyceridemia that have been reported previously in the literature were caused by genetic mutations or familial hypertriglyceridemia secondary to lipoprotein lipase deficiency or apolipoprotein C-II deficiency. We report the first case of severe, non-genetic, non-familial, pregnancy-induced hypertriglyceridemia. The genetic underlying causes were excluded by molecular genetic investigation. The reported case was managed solely by strict dietary control. Hypertriglyceridemia was diagnosed incidentally during pregnancy, in this case, while taking a blood sample to check her hemoglobin level. Acute pancreatitis, which is a relatively common life threatening complication of this condition, was avoided. This report reviews the subtypes of hyperlipidemia, clinical picture, antenatal management and its effect on pregnancy and vice versa. It is important that the clinician has a clear understanding of the normal lipid profile during pregnancy, the clinical picture, the potential complications, available treatment options of hypertriglyceridemia particularly during pregnancy. The timing and route of delivery should be individualized.
Collapse
Affiliation(s)
- Osama Eskandar
- Department of Obstetrics and Gynecology, North Devon District Hospital, Barnstaple, Devon, UK.
| | | | | |
Collapse
|
17
|
Tamasawa N, Matsui J, Murakami H, Tanabe J, Matsuki K, Ogawa Y, Ikeda Y, Takagi A, Suda T. Glucose-stimulated insulin response in non-diabetic patients with lipoprotein lipase deficiency and hypertriglyceridemia. Diabetes Res Clin Pract 2006; 72:6-11. [PMID: 16256241 DOI: 10.1016/j.diabres.2005.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 08/02/2005] [Accepted: 08/16/2005] [Indexed: 11/17/2022]
Abstract
Elevations in plasma triglyceride (TG) and free fatty acid (FFA) concentrations are generally thought to play a role in the pathogenesis of insulin-resistant diabetes. The objective of this study was to investigate the relationship between hypertriglyceridemia and glucose-stimulated insulin responsiveness in non-diabetic patients. Forty subjects were divided into three BMI-matched groups as follows: one group consisted of 8 patients with a lipoprotein lipase (LPL) deficiency, another consisted of 12 patients with hypertriglyceridemia and a third consisted of 20 subjects with normal TG levels. In response to a 75 g oral glucose tolerance test, plasma insulin levels in the LPL-deficient subjects were higher (106+/-11 microU/ml) than those in the hypertriglyceridemic (69+/-16 microU/ml) and normolipidemic (29+/-3 microU/ml) subjects, at 30 min. On the other hand, their plasma glucose levels (127+/-6 mg/dl) were less than those seen in the normolipidemic group (165+/-9 mg/dl) after 90 min. Thus, LPL-deficient subjects with hypertriglyceridemia displayed an enhanced glucose-stimulated insulin response as well as lower blood glucose levels, the latter of which is not generally seen in those with hypertriglyceridemia and normolipidemia.
Collapse
Affiliation(s)
- Naoki Tamasawa
- Third Department of Internal Medicine, Hirosaki University School of Medicine, Zaifu-5, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Descamps OS, Bruniaux M, Guilmot PF, Tonglet R, Heller FR. Lipoprotein metabolism of pregnant women is associated with both their genetic polymorphisms and those of their newborn children. J Lipid Res 2005; 46:2405-14. [PMID: 16106048 DOI: 10.1194/jlr.m500223-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore whether the placenta contributes to the lipoprotein metabolism of pregnant women, we took advantage of the fact that placental proteins are encoded from the fetal genome and examined the associations between lipids of 525 pregnant women and the presence, in their newborns, of genetic polymorphisms of LPL and apolipoprotein E (APOE), two genes expressed in placenta. After adjustment for maternal polymorphisms, newborn LPL*S447X was associated with lower triglycerides (-21 +/- 9 mg/dl), lower LDL-cholesterol (LDL-C; -12 +/- 5 mg/dl), lower apoB (-14 +/- 4 mg/dl), higher HDL-C (5 +/- 2 mg/dl), and higher apoA-I (9 +/- 4 mg/dl) in their mothers; newborn LPL*N291S was associated with higher maternal triglycerides (114 +/- 31 mg/dl); and newborn APOE*E2 (compared to E3E3) was associated with higher maternal LDL-C (14 +/- 6 mg/dl) and higher maternal apoB (14 +/- 5 mg/dl). These associations (all P < 0.05) were independent of polymorphisms carried by the mothers and of lipid concentrations in newborns and were similar in amplitude to the associations between maternal polymorphisms and maternal lipids. Such findings support the active role of placental LPL and APOE in the metabolism of maternal lipoproteins and suggest that fetal genes may modulate the risk for problems related to maternal dyslipidemia (preeclampsia, pancreatitis, and future cardiovascular disease).
Collapse
Affiliation(s)
- Olivier S Descamps
- Epidemiology Unit, School of Public Health, Université Catholique de Louvain, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Hiéronimus S, Benlian P, Bayer P, Bongain A, Fredenrich A. Combination of apolipoprotein E2 and lipoprotein lipase heterozygosity causes severe hypertriglyceridemia during pregnancy. DIABETES & METABOLISM 2005; 31:295-7. [PMID: 16142021 DOI: 10.1016/s1262-3636(07)70197-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pregnancy is a physiological condition where plasma triglyceride levels are moderately increased. This results from raised synthesis of very-low-density lipoproteins (VLDL) in response to elevated estrogen levels. The occurrence of marked hypertriglyceridemia (HTG) is rare and may result from combination of heterozygote mutation in the lipoprotein lipase (LPL) gene and apolipoprotein E2 isoform, as reported in this case. This observation illustrates the interaction between genetic and environmental factors, since pregnancy may disclose a silent LPL deficiency. The risk of acute pancreatitis threatens both the mother and fetus lives. Early recognition of severe HTG and appropriate management are essential for a successful pregnancy outcome.
Collapse
Affiliation(s)
- S Hiéronimus
- Service d'endocrinologie-médecine de la reproduction, Hôpital l'Archet, Nice, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The venues opened to all by the remarkable studies of the genome are just starting to become manifest; they can now distinguish different variants of a disease; they are given the tools to better understand the pathophysiology of illness; they hope to be able to provide better treatment alternatives to our patients. The examples described in this review demonstrate the applicability of these concepts to pancreatic disorders. Researchers may be just scratching the surface at this time, but the potential is enormous. Many philosophic and ethical questions need to be answered as physicians move along: Should all family members of an index case be screened? Who should pay for testing? Who should get results? But, without the participation of so many patients, their family members, and numerous volunteers, researchers would not have witnessed the bridging of so many gaps as they have so far. All of us may now look forward to the application of this incredible knowledge to the therapeutic solutions so eagerly awaited.
Collapse
Affiliation(s)
- Véronique Morinville
- Division of Gastroenterology and Nutrition, McGill University Health Center, Montreal Children's Hospital, 2300 Tupper Street #D562, Montreal, QC H3H 1P3 Canada
| | | |
Collapse
|
21
|
Al-Shali K, Wang J, Fellows F, Huff MW, Wolfe BM, Hegele RA. Successful pregnancy outcome in a patient with severe chylomicronemia due to compound heterozygosity for mutant lipoprotein lipase. Clin Biochem 2002; 35:125-30. [PMID: 11983347 DOI: 10.1016/s0009-9120(02)00283-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Familial chylomicronemia syndrome is characterized by massive accumulation of plasma chylomicrons, which typically results from an absolute deficiency of lipoprotein lipase (LPL). Chylomicronemia in pregnancy is a rare, but serious clinical problem and can be found in patients with underlying molecular defects in the LPL gene. We report the course and treatment of an 18 yr-old primigravida who had LPL deficiency and hypertriglyceridemia since birth. We also analyzed the molecular basis of her LPL deficiency. DESIGN AND METHODS The patient's antenatal course was complicated by extreme elevations of plasma triglycerides. Her management included a very low fat diet, pharmacotherapy with gemfibrozil in the third trimester, and intermittent hospitalization with periods of fasting supplemented by IV glucose feeding. We used DNA sequencing to determine whether mutations in LPL were present. RESULTS At 38 weeks of gestation, labor was induced, and the patient delivered a healthy 2.77 kilogram male. Postnatal triglycerides fell to prenatal levels. DNA sequencing showed that she was a compound heterozygote for mutant LPL: I > T194 and R > H243. CONCLUSIONS This experience indicates that vigilance is required during pregnancy in patients with familial chylomicronemia due to mutant LPL. Gemfibrozil was used in this patient without apparent adverse effects. Compound heterozygosity for LPL mutations is an important underlying mechanism for LPL deficiency.
Collapse
Affiliation(s)
- Khalid Al-Shali
- The John P. Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Lipoprotein lipase and apoE polymorphisms: relationship to hypertriglyceridemia during pregnancy. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31517-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
23
|
Teitelbaum M. Severe hypertriglyceridemia secondary to venlafaxine and fluoxetine. PSYCHOSOMATICS 2001; 42:440-1. [PMID: 11739916 DOI: 10.1176/appi.psy.42.5.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Gosnell FE, O'Neill BB, Harris HW. Necrotizing pancreatitis during pregnancy: a rare cause and review of the literature. J Gastrointest Surg 2001; 5:371-6. [PMID: 11985977 DOI: 10.1016/s1091-255x(01)80064-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute pancreatitis is an uncommon cause of abdominal pain during pregnancy, and rarely progresses to the necrotizing from of the disease in this clinical setting. Hyperlipidemia is an infrequent cause of acute pancreatitis. Whereas only 100 cases of hyperlipidemia-induced necrotizing pancreatitis have been reported in the literature to date, all of the cases were mild in severity and responsive to conservative medical management. Herein we present a case of life-threatening necrotizing pancreatitis, which developed in a hyperlipidemic pregnant woman and required multiple peripartum pancreatic necrosectomies. Additionally, we review the evaluation of pregnant patients with abdominal pain, the pathophysiology of hyperlipidemia-induced necrotizing pancreatitis, and the operative care of this challenging group of patients, revisiting an innovative technique for management of the retroperitoneum.
Collapse
Affiliation(s)
- F E Gosnell
- Department of Surgery, San Francisco General Hospital, University of California-San Francisco, 1001 Potrero Avenue, San Francisco, CA 94110, U.S.A
| | | | | |
Collapse
|
25
|
Gilbert B, Rouis M, Griglio S, de Lumley L, Laplaud P. Lipoprotein lipase (LPL) deficiency: a new patient homozygote for the preponderant mutation Gly188Glu in the human LPL gene and review of reported mutations: 75 % are clustered in exons 5 and 6. ANNALES DE GENETIQUE 2001; 44:25-32. [PMID: 11334614 DOI: 10.1016/s0003-3995(01)01037-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have investigated the lipoprotein lipase (LPL) gene of a 2-year-old patient presenting classical features of the familial LPL deficiency including undetectable LPL activity. DNA sequence analysis of exon 5 identified the patient as a homozygote for the Gly188Glu mutation, frequently involved in this disease. A review of cases of LPL deficiency with molecular study of the LPL gene showed a total number of 221 reported mutations involved in this disease. Gly188Glu was involved in 23.5 % of cases and 74.6 % of mutations were clustered in exons 5 and 6. Based on these observations, we propose a method of screening for mutations in this gene.
Collapse
Affiliation(s)
- B Gilbert
- Unité de génétique, hôpital Dupuytren, Limoges, France.
| | | | | | | | | |
Collapse
|
26
|
Teitelbaum M. Severe and moderate hypertriglyceridemia secondary to citalopram and fluoxetine. PSYCHOSOMATICS 2000; 41:448-9. [PMID: 11015636 DOI: 10.1176/appi.psy.41.5.448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Mori A, Takagi A, Ikeda Y, Yamamoto A. Improved method for direct DNA sequencing of the human lipoprotein lipase gene using an auto DNA sequencer. Clin Biochem 2000; 33:323-7. [PMID: 10936594 DOI: 10.1016/s0009-9120(00)00073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Mori
- Genomic Science Research Laboratories, Daiichi Pure Chemicals Co., Ltd., Ibaraki, Japan.
| | | | | | | |
Collapse
|
28
|
Shearer GC, Joles JA, Jones H, Walzem RL, Kaysen GA. Estrogen effects on triglyceride metabolism in analbuminemic rats. Kidney Int 2000; 57:2268-74. [PMID: 10844597 DOI: 10.1046/j.1523-1755.2000.00087.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Triglyceride (TG) levels are normally lower in female rats, while the opposite is the case in the Nagase analbuminemic rats (NAR). Increased TG levels in normal males are caused by a testosterone-mediated decrease in postheparin (PH) lipoprotein lipase (LpL). Castration of males reduces TG, while castration of females is without effect. TG levels are reduced by castration of the female NAR, suggesting that estrogen rather than testosterone causes hypertriglyceridemia in this strain. The mechanism for this increase is unknown. METHODS We measured secretion of very-low density lipoprotein (VLDL) TG using Triton WR 1339 clearance as the disappearance from blood of 3H-trioleate and 14C-cholesterol-labeled chylomicrons (CM), and the activity of the PH lipases: LpL and hepatic lipase (HL). All were determined in Sprague-Dawley (SD) and NAR female, male, and ovariectomized (OVX) rats. RESULTS TG levels were significantly greater in female NAR in comparison to all other groups. Ovariectomy of NAR significantly ameliorated hypertriglyceridemia. VLDL TG secretion was significantly greater in intact female NAR compared with all other groups. There were no other differences in VLDL TG secretion among the other groups. The clearance of CM was greatest in female SD rats, and OVX had no effect. NAR cleared CM less well than did SD rats (P < 0.001), but among NAR, clearance was greatest in OVX NAR and male NAR (P < 0. 002). Both PH LpL activity and HL activity were lowest in female NAR (P < 0.05). Ovariectomy partially corrected the defect in HL (P < 0. 05). CONCLUSION TG levels in female NAR are in part a result of increased VLDL-TG secretion, an effect mediated by estrogen. The presence of an estrogen-mediated catabolic defect that was alleviated by OVX was also observed. This catabolic defect is likely a result of an estrogen-mediated decrease both in LpL and HL expressed only in the presence of analbuminemia.
Collapse
Affiliation(s)
- G C Shearer
- Division of Nephrology, Department of Medicine UC Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
29
|
Takagi A, Ikeda Y, Tachi K, Shinozuka T, Yamamoto A. Identification of compound heterozygous mutations (G188E/W382X) of lipoprotein lipase gene in a Japanese infant with hyperchylomicronemia: the G188E mutation was newly identified in Japanese. Clin Chim Acta 1999; 285:143-54. [PMID: 10481930 DOI: 10.1016/s0009-8981(99)00116-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We herein report a case of a 5-month-old Japanese female (patient AN) with fasting hyperchylomicronemia due to a primary lipoprotein lipase (LPL) deficiency. Patient AN was compound heterozygous for a missense mutation (GG818G-->GAG/Gly188-->Glu; G188E) in exon 5 and a nonsense mutation (TGG1401-->TGA/Trp382-->Stop; W382X) in exon 8 of the LPL gene. This resulted in less than 10% of the control levels for both the LPL activity and immunoreactive LPL mass in the postheparin plasma. A G188E mutation was thus identified for the first time in a Japanese, and the haplotype of this G188E allele was different from that of the G188E alleles identified in other ethnic groups. This additional mutation might be useful for early diagnosis of LPL gene aberrations in Japanese patients with fasting hyperchylomicronemia.
Collapse
Affiliation(s)
- A Takagi
- Department of Pharmacology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
30
|
Kimura H, Ohkaru Y, Katoh K, Ishii H, Sunahara N, Takagi A, Ikeda Y. Development and evaluation of a direct sandwich enzyme-linked immunosorbent assay for the quantification of lipoprotein lipase mass in human plasma. Clin Biochem 1999; 32:15-23. [PMID: 10074887 DOI: 10.1016/s0009-9120(98)00081-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study was to develop and evaluate a direct sandwich enzyme-linked immunosorbent assay (ELISA) for quantification of the lipoprotein lipase (LPL) immunoreactive mass in human plasma using monoclonal antibodies (MAbs) directed against LPL purified from human postheparin plasma (PHP) [corrected]. METHODS AND RESULTS The direct sandwich-ELISA was performed using a combination of two distinct types of MAbs that recognize different epitopes on the LPL molecule. The immunoreactive mass of human LPL was specifically measured using a horseradish peroxidase-labeled anti-human LPL MAb [1(1)D2B2] as an enzyme-linked MAb, and an anti-human LPL MAb [2(10)F8F9] coated on a polystyrene microtiter plate as a solid-phase MAb. Purified human PHP-LPL was used as a standard material. The detection range of the sandwich-ELISA was 3.6-460 ng of LPL protein per mL of plasma. The intra- and interassay coefficients of variation were less than 5.9% and 3.3%, respectively. The validity of this method was additionally assured by the recovery test, which resulted in the variation only between 97.5% and 105.1%, and also by the interference test, which resulted in noninterference of LPL assay with a high concentration of triglyceride, hemoglobin, bilirubin, uric acid, or creatinine. To assess the reliability of the LPL mass values obtained with the direct sandwich-ELISA, they were compared with LPL mass values determined by the one-step sandwich-EIA (MARKIT-F LPL EIA kit) previously established by us. This comparison showed a highly significant correlation (r = +0.990) between the two sets of values. The LPL mass concentrations in PHP from 33 healthy subjects were 267 +/- 53 and 257 +/- 59 ng/mL (mean +/- SD), respectively. CONCLUSION The present direct sandwich-ELISA is useful for rapidly identifying certain abnormalities of LPL in PHP samples from patients with hypertriglyceridemia [corrected].
Collapse
Affiliation(s)
- H Kimura
- The Division of Laboratory Products, Dainippon Pharmaceutical Co., Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Women's Health LiteratureWatch & Commentary. J Womens Health (Larchmt) 1998. [DOI: 10.1089/jwh.1998.7.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|