1
|
Guerra-García A, Trněný O, Brus J, Renzi JP, Kumar S, Bariotakis M, Coyne CJ, Chitikineni A, Bett KE, Varshney R, Pirintsos S, Berger J, von Wettberg EJB, Smýkal P. Genetic structure and ecological niche space of lentil's closest wild relative, Lens orientalis (Boiss.) Schmalh. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:232-244. [PMID: 38230798 DOI: 10.1111/plb.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Crops arose from wild ancestors and to understand their domestication it is essential to compare the cultivated species with their crop wild relatives. These represent an important source of further crop improvement, in particular in relation to climate change. Although there are about 58,000 Lens accessions held in genebanks, only 1% are wild. We examined the geographic distribution and genetic diversity of the lentil's immediate progenitor L. orientalis. We used Genotyping by Sequencing (GBS) to identify and characterize differentiation among accessions held at germplasm collections. We then determined whether genetically distinct clusters of accessions had been collected from climatically distinct locations. Of the 195 genotyped accessions, 124 were genuine L. orientalis with four identified genetic groups. Although an environmental distance matrix was significantly correlated with geographic distance in a Mantel test, the four identified genetic clusters were not found to occupy significantly different environmental space. Maxent modelling gave a distinct predicted distribution pattern centred in the Fertile Crescent, with intermediate probabilities of occurrence in parts of Turkey, Greece, Cyprus, Morocco, and the south of the Iberian Peninsula with NW Africa. Future projections did not show any dramatic alterations in the distribution according to the climate change scenarios tested. We have found considerable diversity in L. orientalis, some of which track climatic variability. The results of the study showed the genetic diversity of wild lentil and indicate the importance of ongoing collections and in situ conservation for our future capacity to harness the genetic variation of the lentil progenitor.
Collapse
Affiliation(s)
- A Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - O Trněný
- Agriculture Research Ltd, Troubsko, Czech Republic
| | - J Brus
- Department of Geoinformatics, Palacký University, Olomouc, Czech Republic
| | - J P Renzi
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
| | - S Kumar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - M Bariotakis
- Department of Biology, University of Crete, Heraklion, Greece
- Botanical Garden, Rethymnon, Greece
| | - C J Coyne
- Western Regional Plant Introduction Station, USDA-ARS, Pullman, WA, USA
| | - A Chitikineni
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - K E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - R Varshney
- International Crop Research Institute for the semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Murdoch University, Murdoch, WA, Australia
| | - S Pirintsos
- Department of Biology, University of Crete, Heraklion, Greece
| | - J Berger
- CSIRO Plant Industry, Wembley, WA, Australia
| | - E J B von Wettberg
- Department of Plant and Soil Sciences, Gund Institute for the Environment, University of Vermont, Burlington, VT, USA
| | - P Smýkal
- Department of Botany, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
2
|
Li Y, Kaur S, Pembleton LW, Valipour-Kahrood H, Rosewarne GM, Daetwyler HD. Strategies of preserving genetic diversity while maximizing genetic response from implementing genomic selection in pulse breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1813-1828. [PMID: 35316351 PMCID: PMC9205836 DOI: 10.1007/s00122-022-04071-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Genomic selection maximizes genetic gain by recycling parents to germplasm pool earlier and preserves genetic diversity by restricting the number of fixed alleles and the relationship in pulse breeding programs. Using a stochastic computer simulation, we investigated the benefit of optimization strategies in the context of genomic selection (GS) for pulse breeding programs. We simulated GS for moderately complex to highly complex traits such as disease resistance, grain weight and grain yield in multiple environments with a high level of genotype-by-environment interaction for grain yield. GS led to higher genetic gain per unit of time and higher genetic diversity loss than phenotypic selection by shortening the breeding cycle time. The genetic gain obtained from selecting the segregating parents early in the breeding cycle (at F1 or F2 stages) was substantially higher than selecting at later stages even though prediction accuracy was moderate. Increasing the number of F1 intercross (F1i) families and keeping the total number of progeny of F1i families constant, we observed a decrease in genetic gain and increase in genetic diversity, whereas increasing the number of progeny per F1i family while keeping a constant number of F1i families increased the rate of genetic gain and had higher genetic diversity loss per unit of time. Adding 50 F2 family phenotypes to the training population increased the accuracy of genomic breeding values (GEBVs) and genetic gain per year and decreased the rate of genetic diversity loss. Genetic diversity could be preserved by applying a strategy that restricted both the percentage of alleles fixed and the average relationship of the group of selected parents to preserve long-term genetic improvement in the pulse breeding program.
Collapse
Affiliation(s)
- Yongjun Li
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | - Luke W Pembleton
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | | | - Garry M Rosewarne
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
3
|
Guerra-García A, Gioia T, von Wettberg E, Logozzo G, Papa R, Bitocchi E, Bett KE. Intelligent Characterization of Lentil Genetic Resources: Evolutionary History, Genetic Diversity of Germplasm, and the Need for Well-Represented Collections. Curr Protoc 2021; 1:e134. [PMID: 34004055 DOI: 10.1002/cpz1.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic characterization of crops allows us to elucidate their evolutionary and domestication history, the genetic basis of important traits, and the use of variation present in landraces and wild relatives to enhance resilience. In this context, we aim to provide an overview of the main genetic resources developed for lentil and their main outcomes, and to suggest protocols for continued work on this important crop. Lens culinaris is the third-most-important cool-season grain and its use is increasing as a quick-cooking, nutritious, plant-based source of protein. L. culinaris was domesticated in the Fertile Crescent, and six additional wild taxa (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) are recognized. Numerous genetic diversity studies have shown that wild relatives present high levels of genetic variation and provide a reservoir of alleles that can be used for breeding programs. Furthermore, the integration of genetics/genomics and breeding techniques has resulted in identification of quantitative trait loci and genes related to attributes of interest. Genetic maps, massive genotyping, marker-assisted selection, and genomic selection are some of the genetic resources generated and applied in lentil. In addition, despite its size (∼4 Gbp) and complexity, the L. culinaris genome has been assembled, allowing a deeper understanding of its architecture. Still, major knowledge gaps exist in lentil, and a deeper understanding and characterization of germplasm resources, including wild relatives, is critical to lentil breeding and improvement. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Recording of lentil seed descriptors Basic Protocol 2: Lentil seed imaging Basic Protocol 3: Lentil seed increase Basic Protocol 4: Recording of primary lentil seed INCREASE descriptors.
Collapse
Affiliation(s)
- Azalea Guerra-García
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tania Gioia
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Eric von Wettberg
- Department of Plant and Soil Sciences and Gund Institute for the Environment, University of Vermont, Burlington, Vermont
| | - Giuseppina Logozzo
- School of Agriculture, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Kirstin E Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Dissanayake R, Braich S, Cogan NOI, Smith K, Kaur S. Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Front Genet 2020; 11:546. [PMID: 32587602 PMCID: PMC7298104 DOI: 10.3389/fgene.2020.00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Intensive breeding of cultivated lentil has resulted in a relatively narrow genetic base, which limits the options to increase crop productivity through selection. Assessment of genetic diversity in the wild gene pool of lentil, as well as characterization of useful and novel alleles/genes that can be introgressed into elite germplasm, presents new opportunities and pathways for germplasm enhancement, followed by successful crop improvement. In the current study, a lentil collection consisting of 467 wild and cultivated accessions that originated from 10 diverse geographical regions was assessed, to understand genetic relationships among different lentil species/subspecies. A total of 422,101 high-confidence SNP markers were identified against the reference lentil genome (cv. CDC Redberry). Phylogenetic analysis clustered the germplasm collection into four groups, namely, Lens culinaris/Lens orientalis, Lens lamottei/Lens odemensis, Lens ervoides, and Lens nigricans. A weak correlation was observed between geographical origin and genetic relationship, except for some accessions of L. culinaris and L. ervoides. Genetic distance matrices revealed a comparable level of variation within the gene pools of L. culinaris (Nei’s coefficient 0.01468–0.71163), L. ervoides (Nei’s coefficient 0.01807–0.71877), and L. nigricans (Nei’s coefficient 0.02188–1.2219). In order to understand any genic differences at species/subspecies level, allele frequencies were calculated from a subset of 263 lentil accessions. Among all cultivated and wild lentil species, L. nigricans exhibited the greatest allelic differentiation across the genome compared to all other species/subspecies. Major differences were observed on six genomic regions with the largest being on Chromosome 1 (c. 1 Mbp). These results indicate that L. nigricans is the most distantly related to L. culinaris and additional structural variations are likely to be identified from genome sequencing studies. This would provide further insights into evolutionary relationships between cultivated and wild lentil germplasm, for germplasm improvement and introgression.
Collapse
Affiliation(s)
- Ruwani Dissanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shivraj Braich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, Hamilton, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
5
|
Taylor NG, Kell SP, Holubec V, Parra-Quijano M, Chobot K, Maxted N. A systematic conservation strategy for crop wild relatives in the Czech Republic. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Shelagh P. Kell
- School of Biosciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| | - Vojtěch Holubec
- Gene Bank; Crop Research Institute; Drnovská; 507/73 161 06 Praha 6 - Ruzyně Czech Republic
| | - Mauricio Parra-Quijano
- The International Treaty on Plant Genetic Resources for Food and Agriculture; FAO; Via delle Terme di Caracalla 00153 Rome Italy
| | - Karel Chobot
- Nature Conservation Agency of the Czech Republic; Kaplanova 1 CZ-140 00 Prague 4 Czech Republic
| | - Nigel Maxted
- School of Biosciences; University of Birmingham; Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
6
|
Lombardi M, Materne M, Cogan NOI, Rodda M, Daetwyler HD, Slater AT, Forster JW, Kaur S. Assessment of genetic variation within a global collection of lentil (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 2014; 15:150. [PMID: 25540077 PMCID: PMC4300608 DOI: 10.1186/s12863-014-0150-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022] Open
Abstract
Background Lentil is a self-pollinated annual diploid (2n = 2× = 14) crop with a restricted history of genetic improvement through breeding, particularly when compared to cereal crops. This limited breeding has probably contributed to the narrow genetic base of local cultivars, and a corresponding potential to continue yield increases and stability. Therefore, knowledge of genetic variation and relationships between populations is important for understanding of available genetic variability and its potential for use in breeding programs. Single nucleotide polymorphism (SNP) markers provide a method for rapid automated genotyping and subsequent data analysis over large numbers of samples, allowing assessment of genetic relationships between genotypes. Results In order to investigate levels of genetic diversity within lentil germplasm, 505 cultivars and landraces were genotyped with 384 genome-wide distributed SNP markers, of which 266 (69.2%) obtained successful amplification and detected polymorphisms. Gene diversity and PIC values varied between 0.108-0.5 and 0.102-0.375, with averages of 0.419 and 0.328, respectively. On the basis of clarity and interest to lentil breeders, the genetic structure of the germplasm collection was analysed separately for cultivars and landraces. A neighbour-joining (NJ) dendrogram was constructed for commercial cultivars, in which lentil cultivars were sorted into three major groups (G-I, G-II and G-III). These results were further supported by principal coordinate analysis (PCoA) and STRUCTURE, from which three clear clusters were defined based on differences in geographical location. In the case of landraces, a weak correlation between geographical origin and genetic relationships was observed. The landraces from the Mediterranean region, predominantly Greece and Turkey, revealed very high levels of genetic diversity. Conclusions Lentil cultivars revealed clear clustering based on geographical origin, but much more limited correlation between geographic origin and genetic diversity was observed for landraces. These results suggest that selection of divergent parental genotypes for breeding should be made actively on the basis of systematic assessment of genetic distance between genotypes, rather than passively based on geographical distance. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0150-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Lombardi
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Michael Materne
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Noel O I Cogan
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Matthew Rodda
- Department of Environment and Primary Industries, Biosciences Research Division, Grains Innovation Park, Horsham, 3401, Victoria, Australia.
| | - Hans D Daetwyler
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - Anthony T Slater
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| | - John W Forster
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia. .,La Trobe University, Bundoora, Melbourne, 3086, Victoria, Australia.
| | - Sukhjiwan Kaur
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, La Trobe University, 5 Ring Road, Bundoora, Melbourne, 3083, Victoria, Australia.
| |
Collapse
|
7
|
Fuller DQ, Willcox G, Allaby RG. Early agricultural pathways: moving outside the 'core area' hypothesis in Southwest Asia. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:617-33. [PMID: 22058404 DOI: 10.1093/jxb/err307] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The origins of agriculture in the Near East has been associated with a 'core area', located in south-eastern Turkey, in which all major crops were brought into domestication within the same local domestication system operated by a single cultural group. Such an origin leads to a scenario of rapid invention of agriculture by a select cultural group and typically monophyletic origins for most crops. Surprisingly, support for a core area has never been directly tested with archaeological evidence. Over the past decade a large amount of new archaeological and genetic evidence has been discovered which brings new light on the origins of agriculture. In this review, this new evidence was brought together in order to evaluate whether a core region of origin is supported. Evidence shows that origins began earlier than previously assumed, and included 'false starts' and dead ends that involved many more species than the typical eight founder crops associated with the core area. The rates at which domestication syndrome traits became fixed were generally slow, rather than rapid, and occurred over a geographically wide range that included the North and South Levant as well as the core area. Finally, a survey of the estimated ages of archaeological sites and the onset of domestication indicates that the domestication process was ongoing in parallel outside of the core area earlier than within it. Overall, evidence suggests a scenario in which crops were domesticated slowly in different locations around the Near East rather than emanating from a core area.
Collapse
Affiliation(s)
- Dorian Q Fuller
- Institute of Archaeology, University College London, 31-34 Gordon Square, London WC1H 0PY, UK
| | | | | |
Collapse
|
8
|
|
9
|
YANG J, ZHANG S, LIU J, ZHAI W, WANG R. Genetic diversity of the endangered species Rosa rugosaThunb. in China and implications for conservation strategies. JOURNAL OF SYSTEMATICS AND EVOLUTION 2009; 47:515-524. [DOI: 10.1111/j.1759-6831.2009.00049.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Abstract Rosa rugosaThunb. is one of the dominant and important shrub species in estuary dunes and shingle beaches of northern China. However, its area of distribution, the number of populations, and the size of each population have decreased rapidly in the past two decades because of habitat degradation and loss. Random amplified polymorphic DNA markers were used to determine the genetic diversity of four remaining large natural populations ofR. rugosaand to discuss an effective conservation strategy for this endangered species in China. High genetic variations were detected inR. rugosapopulations in China. The mean percentage of polymorphic loci (P%) within four local populations was 57.99%, with theP% of the total population being 75.30%. Mean Shannon's information index (H0) was 0.2826, whereas totalH0was 0.3513. The genetic differentiation among populations was 0.1878, which indicates that most genetic diversity occurs within populations. Population Tumenjiang (TMJ) showed the highest genetic diversity (P%= 66.27%;H0= 0.3117) and contained two exclusive bands. Population Changshandao (CSD) showed higher genetic diversity (P%= 59.04%;H0= 0.3065). Populations TMJ and CSD contained 95.33% and 99.33%, respectively, of loci with moderate to high frequency (P>0.05) of the total population. These results indicate that populations TMJ and CSD should be given priority for in situ conservation and regarded as seed or propagule sources for ex situ conservation. The results of the present study also suggest thatR. rugosain China has become endangered as a result of human actions rather than genetic depression of populations; thus, human interference should be absolutely forbidden inR. rugosahabitats.
Collapse
|
10
|
Zong X, Redden RJ, Liu Q, Wang S, Guan J, Liu J, Xu Y, Liu X, Gu J, Yan L, Ades P, Ford R. Analysis of a diverse global Pisum sp. collection and comparison to a Chinese local P. sativum collection with microsatellite markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:193-204. [PMID: 18815768 DOI: 10.1007/s00122-008-0887-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/02/2008] [Indexed: 05/10/2023]
Abstract
Twenty-one informative microsatellite loci were used to assess and compare the genetic diversity among Pisum genotypes sourced from within and outside China. The Chinese germplasm comprised 1243 P. sativum genotypes from 28 provinces and this was compared to 774 P. sativum genotypes that represented a globally diverse germplasm collection, as well as 103 genotypes from related Pisum species. The Chinese P. sativum germplasm was found to contain genotypes genetically distinct from the global gene pool sourced outside China. The Chinese spring type genotypes were separate from the global gene pool and from the other main Chinese gene pool of winter types. The distinct Chinese spring gene pool comprised genotypes from Inner Mongolia and Sha'anxi provinces, with those from Sha'anxi showing the greatest diversity. The other main gene pool within China included both spring types from other northern provinces and winter types from central and southern China, plus some accessions from Inner Mongolia and Sha'anxi. A core collection of Chinese landraces chosen to represent molecular diversity was compared both to the wider Chinese collection and to a geographically diverse core collection of Chinese landraces. The average gene diversity and allelic richness per locus of both the micro-satellite based core and the wider collection were similar, and greater than the geographically diverse core. The genetic diversity of P. sativum within China appears to be quite different to that detected in the global gene pool, including the presence of several rare alleles, and may be a useful source of allelic variation for both major gene and quantitative traits.
Collapse
Affiliation(s)
- Xuxiao Zong
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Maxted N, Dulloo E, V Ford-Lloyd B, Iriondo JM, Jarvis A. Gap analysis: a tool for complementary genetic conservation assessment. DIVERS DISTRIB 2008. [DOI: 10.1111/j.1472-4642.2008.00512.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Galasso I. Distribution of highly repeated DNA sequences in species of the genus Lens Miller. Genome 2004; 46:1118-24. [PMID: 14663530 DOI: 10.1139/g03-077] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple-target fluorescence in situ hybridization (FISH) was applied on mitotic chromosomes of seven Lens taxa using two highly repetitive sequences (pLc30 and pLc7) isolated from the cultivated lentil and the multigene families for the 18S-5.8S-25S (pTa71) and 5S rRNA (pTa794) from wheat simultaneously as probes. The number and location of pLc30 and pLc7 sites on chromosomes varied markedly among the species, whereas the hybridization pattern of 5S rDNA and 18S-5.8S-25S rDNA was less variable. In general, each species showed a typical FISH karyotype and few differences were observed among accessions belonging to the same species, except for the accessions of Lens odemensis. The most similar FISH karyotype to the cultivated lentil is that of Lens culinaris subsp. orientalis, whereas Lens nigricans and Lens tomentosus are the two species that showed the most divergent FISH patterns compared with all taxa for number and location of pLc30 and 18S-5.8S-25S rDNA sites.
Collapse
MESH Headings
- Chromosomes, Plant/genetics
- DNA, Plant/genetics
- DNA, Ribosomal/genetics
- Fabaceae/genetics
- In Situ Hybridization, Fluorescence
- Karyotyping
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 5.8S/genetics
- RNA, Ribosomal, 5S/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Species Specificity
Collapse
|
13
|
|
14
|
Sarker A, El Moneim AA, Maxted N. Grasspea and Chicklings (Lathyrus L.). PLANT GENETIC RESOURCES OF LEGUMES IN THE MEDITERRANEAN 2001. [DOI: 10.1007/978-94-015-9823-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|