1
|
Dougherty PJ, Carling MD. Go west, young bunting: recent climate change drives rapid movement of a Great Plains hybrid zone. Evolution 2024; 78:1774-1789. [PMID: 39212586 PMCID: PMC11519009 DOI: 10.1093/evolut/qpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Describing how hybrid zones respond to anthropogenic influence can illuminate how the environment regulates both species distributions and reproductive isolation between species. In this study, we analyzed specimens collected from the Passerina cyanea×P. amoena hybrid zone between 2004 and 2007 and between 2019 and 2021 to explore changes in genetic structure over time. This comparison follows a previous study that identified a significant westward shift of the Passerina hybrid zone during the latter half of the twentieth century. A second temporal comparison of hybrid zone genetic structure presents unique potential to describe finer-scale dynamics and to identify potential mechanisms of observed changes more accurately. After concluding that the westward movement of the Passerina hybrid zone has accelerated in recent decades, we investigated potential drivers of this trend by modeling the influence of bioclimatic and landcover variables on genetic structure. We also incorporated eBird data to determine how the distributions of P. cyanea and P. amoena have responded to recent climate and landcover changes. We found that the distribution of P. cyanea in the northern Great Plains has shifted west to track a moving climatic niche, supporting anthropogenic climate change as a key mediator of introgression in this system.
Collapse
Affiliation(s)
- Paul J Dougherty
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| | - Matthew D Carling
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| |
Collapse
|
2
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Huang JF, Darwell CT, Peng YQ. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species. PLANT DIVERSITY 2024; 46:181-193. [PMID: 38807912 PMCID: PMC11128846 DOI: 10.1016/j.pld.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 05/30/2024]
Abstract
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow. Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
Collapse
Affiliation(s)
- Jian-Feng Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Clive T. Darwell
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
4
|
Arce-Valdés LR, Sánchez-Guillén RA. The evolutionary outcomes of climate-change-induced hybridization in insect populations. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100966. [PMID: 36089267 DOI: 10.1016/j.cois.2022.100966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid range shifts are one of the most frequent responses to climate change in insect populations. Climate-induced range shifts can lead to the breakdown of isolation barriers, and thus, to an increase in hybridization and introgression. Long-term evolutionary consequences such as the formation of hybrid zones, introgression, speciation, and extinction have been predicted as a result of climate-induced hybridization. Our review shows that there has been an increase in the number of published cases of climate-induced hybridization in insects, and that the formation of hybrid zones and introgression seems to be, at the moment, the most frequent outcomes. Although introgression is considered positive, since it increases species' genetic diversity, in the long term, it could lead to negative outcomes such as species fusion or genetic swamping.
Collapse
Affiliation(s)
- Luis R Arce-Valdés
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico
| | - Rosa A Sánchez-Guillén
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico.
| |
Collapse
|
5
|
Tonzo V, Papadopoulou A, Ortego J. Genomic footprints of an old affair: Single nucleotide polymorphism data reveal historical hybridization and the subsequent evolution of reproductive barriers in two recently diverged grasshoppers with partly overlapping distributions. Mol Ecol 2020; 29:2254-2268. [DOI: 10.1111/mec.15475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
6
|
Menon M, Landguth E, Leal‐Saenz A, Bagley JC, Schoettle AW, Wehenkel C, Flores‐Renteria L, Cushman SA, Waring KM, Eckert AJ. Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evol Appl 2020; 13:195-209. [PMID: 31892952 PMCID: PMC6935588 DOI: 10.1111/eva.12795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well-developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization-mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio-temporal changes in the central location of a hybrid zone between two recently diverged species of pines: Pinus strobiformis and P. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual-based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.
Collapse
Affiliation(s)
- Mitra Menon
- Integrative Life SciencesVirginia Commonwealth UniversityRichmondVirginia
| | - Erin Landguth
- School of Public and Community Health SciencesUniversity of MontanaMissoulaMontana
| | - Alejandro Leal‐Saenz
- Programa Institucional de Doctorado en Ciencias Agropecuarias y ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
| | - Justin C. Bagley
- Department of BiologyVirginia Commonwealth UniversityRichmondVirginia
| | - Anna W. Schoettle
- Rocky Mountain Research StationUSDA Forest ServiceFort CollinsColorado
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la MaderaUniversidad Juarez del Estado de DurangoDurangoMexico
| | | | | | | | - Andrew J. Eckert
- Department of BiologyVirginia Commonwealth UniversityRichmondVirginia
| |
Collapse
|
7
|
|
8
|
Larson EL, Brassil MM, Maslan J, Juárez D, Lilagan F, Tipton H, Schweitzer A, Skillman J, Monsen-Collar KJ, Peterson MA. The effects of heterospecific mating frequency on the strength of cryptic reproductive barriers. J Evol Biol 2019; 32:900-912. [PMID: 31162735 DOI: 10.1111/jeb.13495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023]
Abstract
Heterospecific mating frequency is critical to hybrid zone dynamics and can directly impact the strength of reproductive barriers and patterns of introgression. The effectiveness of post-mating prezygotic (PMPZ) reproductive barriers, which include reduced fecundity via heterospecific matings and conspecific sperm precedence, may depend on the number, identity and order of mates. Studies of PMPZ barriers suggest that they may be important in many systems, but whether these barriers are effective at realistic heterospecific mating frequencies has not been tested. Here, we evaluate the strength of cryptic reproductive isolation in two leaf beetles (Chrysochus auratus and C. cobaltinus) in the context of a range of heterospecific mating frequencies observed in natural populations. We found both species benefited from multiple matings, but the benefits were greater in C. cobaltinus and extended to heterospecific matings. We found that PMPZ barriers greatly limited hybrid production by C. auratus females with moderate heterospecific mating frequencies, but that their effectiveness diminished at higher heterospecific mating frequencies. In contrast, there was no evidence for PMPZ barriers in C. cobaltinus females at any heterospecific mating frequency. We show that integrating realistic estimates of cryptic isolation with information on relative abundance and heterospecific mating frequency in the field substantially improves our understanding of the strong directional bias in F1 production previously documented in the Chrysochus hybrid zone. Our results demonstrate that heterospecific mating frequency is critical to understanding the impact of cryptic post-copulatory barriers on hybrid zone structure and dynamics, and that future studies of such barriers should incorporate field-relevant heterospecific mating frequencies.
Collapse
Affiliation(s)
- Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado, USA.,Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Margaret M Brassil
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Jonathan Maslan
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Danielle Juárez
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Flordeliza Lilagan
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Hallie Tipton
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Andrew Schweitzer
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | - Joe Skillman
- Biology Department, Western Washington University, Bellingham, Washington, USA
| | | | - Merrill A Peterson
- Biology Department, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
9
|
Billerman SM, Cicero C, Bowie RCK, Carling MD. Phenotypic and genetic introgression across a moving woodpecker hybrid zone. Mol Ecol 2019; 28:1692-1708. [DOI: 10.1111/mec.15043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/22/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Shawn M. Billerman
- Department of Zoology and Physiology University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
| | - Carla Cicero
- Museum of Vertebrate Zoology University of California Berkeley California
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology University of California Berkeley California
- Department of Integrative Biology University of California Berkeley California
| | - Matthew D. Carling
- Department of Zoology and Physiology University of Wyoming Laramie Wyoming
- Program in Ecology University of Wyoming Laramie Wyoming
| |
Collapse
|
10
|
Ma X, Hu W, Smilauer P, Yin M, Wolinska J. Daphnia galeata
and D. dentifera
are geographically and ecologically separated whereas their hybrids occur in intermediate habitats: A survey of 44 Chinese lakes. Mol Ecol 2019; 28:785-802. [DOI: 10.1111/mec.14991] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/21/2018] [Accepted: 12/14/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaolin Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Wei Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Petr Smilauer
- Department of Ecosystem Biology, Faculty of Science; University of South Bohemia; Ceske Budejovice Czech Republic
| | - Mingbo Yin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science; Fudan University; Shanghai China
| | - Justyna Wolinska
- Department of Ecosystem Research; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Berlin Germany
- Department of Biology, Chemistry, Institute of Biology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
11
|
Hunter EA, Matocq MD, Murphy PJ, Shoemaker KT. Differential Effects of Climate on Survival Rates Drive Hybrid Zone Movement. Curr Biol 2017; 27:3898-3903.e4. [DOI: 10.1016/j.cub.2017.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 11/09/2017] [Indexed: 11/29/2022]
|
12
|
Lemmon EM, Juenger TE. Geographic variation in hybridization across a reinforcement contact zone of chorus frogs ( Pseudacris). Ecol Evol 2017; 7:9485-9502. [PMID: 29187984 PMCID: PMC5696400 DOI: 10.1002/ece3.3443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/02/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Reinforcement contact zones, which are secondary contact zones where species are diverging in reproductive behaviors due to selection against hybridization, represent natural laboratories for studying speciation‐in‐action. Here, we examined replicate localities across the entire reinforcement contact zone between North American chorus frogs Pseudacris feriarum and P. nigrita to investigate geographic variation in hybridization frequencies and to assess whether reinforcement may have contributed to increased genetic divergence within species. Previous work indicated these species have undergone reproductive character displacement (RCD) in male acoustic signals and female preferences due to reinforcement. We also examined acoustic signal variation across the contact zone to assess whether signal characteristics reliably predict hybrid index and to elucidate whether the degree of RCD predicts hybridization rate. Using microsatellites, mitochondrial sequences, and acoustic signal information from >1,000 individuals across >50 localities and ten sympatric focal regions, we demonstrate: (1) hybridization occurs and (2) varies substantially across the geographic range of the contact zone, (3) hybridization is asymmetric and in the direction predicted from observed patterns of asymmetric RCD, (4) in one species, genetic distance is higher between conspecific localities where one or both have been reinforced than between nonreinforced localities, after controlling for geographic distance, (5) acoustic signal characters strongly predict hybrid index, and (6) the degree of RCD does not strongly predict admixture levels. By showing that hybridization occurs in all sympatric localities, this study provides the fifth and final line of evidence that reproductive character displacement is due to reinforcement in the chorus frog contact zone. Furthermore, this work suggests that the dual action of cascade reinforcement and partial geographic isolation is promoting genetic diversification within one of the reinforced species.
Collapse
Affiliation(s)
| | - Thomas E Juenger
- Department of Integrative Biology University of Texas, Austin Austin TX USA
| |
Collapse
|
13
|
Engebretsen KN, Barrow LN, Rittmeyer EN, Brown JM, Moriarty Lemmon E. Quantifying the spatiotemporal dynamics in a chorus frog (Pseudacris) hybrid zone over 30 years. Ecol Evol 2016; 6:5013-31. [PMID: 27547330 PMCID: PMC4979724 DOI: 10.1002/ece3.2232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Although theory suggests that hybrid zones can move or change structure over time, studies supported by direct empirical evidence for these changes are relatively limited. We present a spatiotemporal genetic study of a hybrid zone between Pseudacris nigrita and P. fouquettei across the Pearl River between Louisiana and Mississippi. This hybrid zone was initially characterized in 1980 as a narrow and steep “tension zone,” in which hybrid populations were inferior to parentals and were maintained through a balance between selection and dispersal. We reanalyzed historical tissue samples and compared them to samples of recently collected individuals using microsatellites. Clinal analyses indicate that the cline has not shifted in roughly 30 years but has widened significantly. Anthropogenic and natural changes may have affected selective pressure or dispersal, and our results suggest that the zone may no longer best be described as a tension zone. To the best of our knowledge, this study provides the first evidence of significant widening of a hybrid cline but stasis of its center. Continued empirical study of dynamic hybrid zones will provide insight into the forces shaping their structure and the evolutionary potential they possess for the elimination or generation of species.
Collapse
Affiliation(s)
- Kristin N Engebretsen
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| | - Lisa N Barrow
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| | - Eric N Rittmeyer
- Department of Biological Sciences Museum of Natural Science Louisiana State University 202 Life Sciences Building Baton Rouge Louisiana 70803; Research School of Biology The Australian National University Gould Building 116 Canberra ACT 2601 Australia
| | - Jeremy M Brown
- Department of Biological Sciences Museum of Natural Science Louisiana State University 202 Life Sciences Building Baton Rouge Louisiana 70803
| | - Emily Moriarty Lemmon
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee Florida 32306
| |
Collapse
|
14
|
Glotzbecker GJ, Walters DM, Blum MJ. Rapid movement and instability of an invasive hybrid swarm. Evol Appl 2016; 9:741-55. [PMID: 27330551 PMCID: PMC4908461 DOI: 10.1111/eva.12371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 02/08/2016] [Indexed: 12/15/2022] Open
Abstract
Unstable hybrid swarms that arise following the introduction of non‐native species can overwhelm native congeners, yet the stability of invasive hybrid swarms has not been well documented over time. Here, we examine genetic variation and clinal stability across a recently formed hybrid swarm involving native blacktail shiner (Cyprinella venusta) and non‐native red shiner (C. lutrensis) in the Upper Coosa River basin, which is widely considered to be a global hot spot of aquatic biodiversity. Examination of phenotypic, multilocus genotypic, and mitochondrial haplotype variability between 2005 and 2011 revealed that the proportion of hybrids has increased over time, with more than a third of all sampled individuals exhibiting admixture in the final year of sampling. Comparisons of clines over time indicated that the hybrid swarm has been rapidly progressing upstream, but at a declining and slower pace than rates estimated from historical collection records. Clinal comparisons also showed that the hybrid swarm has been expanding and contracting over time. Additionally, we documented the presence of red shiner and hybrids farther downstream than prior studies have detected, which suggests that congeners in the Coosa River basin, including all remaining populations of the threatened blue shiner (Cyprinella caerulea), are at greater risk than previously thought.
Collapse
Affiliation(s)
| | - David M Walters
- U.S. Geological Survey Fort Collins Science Center Fort Collins CO USA
| | - Michael J Blum
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLAUSA; Tulane - Xavier Center for Bioenvironmental ResearchTulane UniversityNew OrleansLAUSA
| |
Collapse
|
15
|
Pfennig KS. Reinforcement as an initiator of population divergence and speciation. Curr Zool 2016; 62:145-154. [PMID: 29491902 PMCID: PMC5804236 DOI: 10.1093/cz/zow033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/29/2015] [Indexed: 02/02/2023] Open
Abstract
When hybridization results in reduced fitness, natural selection is expected to favor the evolution of traits that minimize the likelihood of hybridizing in the first place. This process, termed reinforcement (or, more generally, reproductive character displacement), thereby contributes to the evolution of enhanced reproductive isolation between hybridizing groups. By enhancing reproductive isolation in this way, reinforcement plays an important role in the final stages of speciation. However, reinforcement can also contribute to the early stages of speciation. Specifically, because selection to avoid hybridization occurs only in sympatric populations, the unfolding of reinforcement can lead to the evolution of traits in sympatric populations that reduce reproduction between conspecifics in sympatry versus those in allopatry. Thus, reinforcement between species can lead to reproductive isolation—and possibly speciation—between populations in sympatry versus those in allopatry or among different sympatric populations. Here, I describe how this process can occur, the conditions under which it is most likely to occur, and the empirical data needed to evaluate the hypothesis that reinforcement can initiate speciation.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
16
|
|
17
|
McQuillan MA, Rice AM. Differential effects of climate and species interactions on range limits at a hybrid zone: potential direct and indirect impacts of climate change. Ecol Evol 2015; 5:5120-37. [PMID: 26640687 PMCID: PMC4662315 DOI: 10.1002/ece3.1774] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/08/2015] [Accepted: 09/17/2015] [Indexed: 01/20/2023] Open
Abstract
The relative contributions of climate versus interspecific interactions in shaping species distributions have important implications for closely related species at contact zones. When hybridization occurs within a contact zone, these factors regulate hybrid zone location and movement. While a hybrid zone's position may depend on both climate and interactions between the hybridizing species, little is known about how these factors interact to affect hybrid zone dynamics. Here, we utilize SDM (species distribution modeling) both to characterize the factors affecting the current location of a moving North American avian hybrid zone and to predict potential direct and indirect effects of climate change on future distributions. We focus on two passerine species that hybridize where their ranges meet, the Black‐capped (Poecile atricapillus) and Carolina (P. carolinensis) chickadee. Our contemporary climate models predict the occurrence of climatically suitable habitat extending beyond the hybrid zone for P. atricapillus only, suggesting that interspecific interactions primarily regulate this range boundary in P. atricapillus, while climatic factors regulate P. carolinensis. Year 2050 climate models predict a drastic northward shift in suitable habitat for P. carolinensis. Because of the greater importance of interspecific interactions for regulating the southern range limit of P. atricapillus, these climate‐mediated shifts in the distribution of P. carolinensis may indirectly lead to a range retraction in P. atricapillus. Together, our results highlight the ways climate change can both directly and indirectly affect species distributions and hybrid zone location. In addition, our study lends support to the longstanding hypothesis that abiotic factors regulate species' poleward range limits, while biotic factors shape equatorial range limits.
Collapse
Affiliation(s)
- Michael A McQuillan
- Department of Biological Sciences Lehigh University 111 Research Drive Bethlehem Pennsylvania 18015
| | - Amber M Rice
- Department of Biological Sciences Lehigh University 111 Research Drive Bethlehem Pennsylvania 18015
| |
Collapse
|
18
|
Sánchez-Guillén RA, Córdoba-Aguilar A, Hansson B, Ott J, Wellenreuther M. Evolutionary consequences of climate-induced range shifts in insects. Biol Rev Camb Philos Soc 2015; 91:1050-1064. [PMID: 26150047 DOI: 10.1111/brv.12204] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 01/30/2023]
Abstract
Range shifts can rapidly create new areas of geographic overlap between formerly allopatric taxa and evidence is accumulating that this can affect species persistence. We review the emerging literature on the short- and long-term consequences of these geographic range shifts. Specifically, we focus on the evolutionary consequences of novel species interactions in newly created sympatric areas by describing the potential (i) short-term processes acting on reproductive barriers between species and (ii) long-term consequences of range shifts on the stability of hybrid zones, introgression and ultimately speciation and extinction rates. Subsequently, we (iii) review the empirical literature on insects to evaluate which processes have been studied, and (iv) outline some areas that deserve increased attention in the future, namely the genomics of hybridisation and introgression, our ability to forecast range shifts and the impending threat from insect vectors and pests on biodiversity, human health and crop production. Our review shows that species interactions in de novo sympatric areas can be manifold, sometimes increasing and sometimes decreasing species diversity. A key issue that emerges is that climate-induced hybridisations in insects are much more widespread than anticipated and that rising temperatures and increased anthropogenic disturbances are accelerating the process of species mixing. The existing evidence only shows the tip of the iceberg and we are likely to see many more cases of species mixing following range shifts in the near future.
Collapse
Affiliation(s)
- Rosa A Sánchez-Guillén
- Department of Biology, Lund University, Lund, 223 62, Sweden. .,Departamento de Ecología Evolutiva, Instituto of Ecología, Universidad Nacional Autónoma de México, 70 275, Mexico D.F., Mexico.
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto of Ecología, Universidad Nacional Autónoma de México, 70 275, Mexico D.F., Mexico
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, 223 62, Sweden
| | - Jürgen Ott
- L.U.P.O. GmbH, 67705, Trippstadt, Germany
| | - Maren Wellenreuther
- Department of Biology, Lund University, Lund, 223 62, Sweden.,Plant and Food Research, Nelson, 7043, New Zealand
| |
Collapse
|
19
|
Pfennig KS, Rice AM. Reinforcement generates reproductive isolation between neighbouring conspecific populations of spadefoot toads. Proc Biol Sci 2015; 281:20140949. [PMID: 24990680 DOI: 10.1098/rspb.2014.0949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reproductive character displacement is the adaptive evolution of traits that minimize deleterious reproductive interactions between species. When arising from selection to avoid hybridization, this process is referred to as reinforcement. Reproductive character displacement generates divergence not only between interacting species, but also between conspecific populations that are sympatric with heterospecifics versus those that are allopatric. Consequently, such conspecific populations can become reproductively isolated. We compared female mate preferences in, and evaluated gene flow between, neighbouring populations of spadefoot toads that did and did not occur with heterospecifics (mixed- and pure-species populations, respectively). We found that in mixed-species populations females significantly preferred conspecifics. Such females also tended to prefer a conspecific call character that was dissimilar from heterospecifics. By contrast, females from pure-species populations did not discriminate conspecific from heterospecific calls. They also preferred a more exaggerated conspecific call character that resembles heterospecific males. Moreover, gene flow was significantly reduced between mixed- and pure-species population types. Thus, character displacement (and, more specifically, reinforcement) may initiate reproductive isolation between conspecific populations that differ in interactions with heterospecifics.
Collapse
Affiliation(s)
- Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Amber M Rice
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
20
|
Taylor SA, Larson EL, Harrison RG. Hybrid zones: windows on climate change. Trends Ecol Evol 2015; 30:398-406. [PMID: 25982153 DOI: 10.1016/j.tree.2015.04.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/16/2022]
Abstract
Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor responses of species to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semipermeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change.
Collapse
Affiliation(s)
- Scott A Taylor
- Cornell Lab of Ornithology, Fuller Evolutionary Biology Program, Ithaca, NY 14850, USA; Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY 14853, USA.
| | - Erica L Larson
- University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA
| | - Richard G Harrison
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY 14853, USA
| |
Collapse
|
21
|
Rosser N, Dasmahapatra KK, Mallet J. Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. Evolution 2014; 68:3470-84. [PMID: 25311415 DOI: 10.1111/evo.12539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 09/29/2014] [Indexed: 11/28/2022]
Abstract
Multilocus clines between Müllerian mimetic races of Heliconius butterflies provide a classic example of the maintenance of hybrid zones and their importance in speciation. Concordant hybrid zones in the mimics Heliconius erato and H. melpomene in northern Peru were carefully documented in the 1980s, and this prior work now permits a historical analysis of the movement or stasis of the zones. Previous work predicted that these zones might be moving toward the Andes due to selective asymmetry. Extensive deforestation and climate change might also be expected to affect the positions and widths of the hybrid zones. We show that the positions and shapes of these hybrid zones have instead remained remarkably stable between 1985 and 2012. The stability of this interaction strongly implicates continued selection, rather than neutral mixing following secondary contact. The stability of cline widths and strong linkage disequilibria (gametic correlation coefficients Rmax = 0.35-0.56 among unlinked loci) over 25 years suggest that mimetic selection pressures on each color pattern locus have remained approximately constant (s ≈ 0.13-0.40 per locus in both species). Exceptionally high levels of precipitation at the edge of the easternmost Andes may act as a population density trough for butterflies, trapping the hybrid zones at the foot of the mountains, and preventing movement. As such, our results falsify one prediction of the Pleistocene Refugium theory: That the ranges of divergent species or subspecies should be centered on regions characterized by maxima of rainfall, with hybrid zones falling in more arid regions between them.
Collapse
Affiliation(s)
- Neil Rosser
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom; Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom.
| | | | | |
Collapse
|
22
|
Urbanelli S, Porretta D, Mastrantonio V, Bellini R, Pieraccini G, Romoli R, Crasta G, Nascetti G. Hybridization, natural selection, and evolution of reproductive isolation: a 25-years survey of an artificial sympatric area between two mosquito sibling species of the Aedes mariae complex. Evolution 2014; 68:3030-8. [PMID: 25041755 DOI: 10.1111/evo.12490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 06/15/2014] [Indexed: 11/28/2022]
Abstract
Natural selection can act against maladaptive hybridization between co-occurring divergent populations leading to evolution of reproductive isolation among them. A critical unanswered question about this process that provides a basis for the theory of speciation by reinforcement, is whether natural selection can cause hybridization rates to evolve to zero. Here, we investigated this issue in two sibling mosquitoes species, Aedes mariae and Aedes zammitii, that show postmating reproductive isolation (F1 males sterile) and partial premating isolation (different height of mating swarms) that could be reinforced by natural selection against hybridization. In 1986, we created an artificial sympatric area between the two species and sampled about 20,000 individuals over the following 25 years. Between 1986 and 2011, the composition of mating swarms and the hybridization rate between the two species were investigated across time in the sympatric area. Our results showed that A. mariae and A. zammitii have not completed reproductive isolation since their first contact in the artificial sympatric area. We have discussed the relative role of factors such as time of contact, gene flow, strength of natural selection, and biological mechanisms causing prezygotic isolation to explain the observed results.
Collapse
Affiliation(s)
- Sandra Urbanelli
- Department of Environmental Biology, University of Rome "La Sapienza", Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chunco AJ. Hybridization in a warmer world. Ecol Evol 2014; 4:2019-31. [PMID: 24963394 PMCID: PMC4063493 DOI: 10.1002/ece3.1052] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Climate change is profoundly affecting the evolutionary trajectory of individual species and ecological communities, in part through the creation of novel species assemblages. How climate change will influence competitive interactions has been an active area of research. Far less attention, however, has been given to altered reproductive interactions. Yet, reproductive interactions between formerly isolated species are inevitable as populations shift geographically and temporally as a result of climate change, potentially resulting in introgression, speciation, or even extinction. The susceptibility of hybridization rates to anthropogenic disturbance was first recognized in the 1930s. To date, work on anthropogenically mediated hybridization has focused primarily on either physical habitat disturbance or species invasion. Here, I review recent literature on hybridization to identify how ecological responses to climate change will increase the likelihood of hybridization via the dissolution of species barriers maintained by habitat, time, or behavior. Using this literature, I identify several cases where novel hybrid zones have recently formed, likely as a result of changing climate. Future research should focus on identifying areas and taxonomic groups where reproductive species interactions are most likely to be influenced by climate change. Furthermore, a better understanding of the evolutionary consequences of climate-mediated secondary contact is urgently needed. Paradoxically, hybridization is both a major conservation concern and an important source of novel genetic and phenotypic variation. Hybridization may therefore both contribute to increasing rates of extinction and stimulate the creation of novel phenotypes that will speed adaptation to novel climates. Predicting which result will occur following secondary contact will be an important contribution to conservation for many species.
Collapse
Affiliation(s)
- Amanda J Chunco
- Department of Environmental Studies, Elon University CB 2015, Elon, North Carolina 27244
| |
Collapse
|
24
|
Bull JK, Sunnucks P. Strong genetic structuring without assortative mating or reduced hybrid survival in an onychophoran in the Tallaganda State Forest region, Australia. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- James K. Bull
- School of Biological Sciences; Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| | - Paul Sunnucks
- School of Biological Sciences; Monash University; Clayton Campus Melbourne Vic. 3800 Australia
| |
Collapse
|
25
|
Engler JO, Rödder D, Elle O, Hochkirch A, Secondi J. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones. J Evol Biol 2013; 26:2487-96. [PMID: 24016292 DOI: 10.1111/jeb.12244] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.
Collapse
Affiliation(s)
- J O Engler
- Biogeography Department, Trier University, Trier, Germany; Zoological Research Museum Alexander Koenig, Bonn, Germany
| | | | | | | | | |
Collapse
|
26
|
Smith KL, Hale JM, Gay L, Kearney M, Austin JJ, Parris KM, Melville J. SPATIO-TEMPORAL CHANGES IN THE STRUCTURE OF AN AUSTRALIAN FROG HYBRID ZONE: A 40-YEAR PERSPECTIVE. Evolution 2013; 67:3442-54. [DOI: 10.1111/evo.12140] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/24/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Katie L. Smith
- Sciences Department; Museum Victoria; Melbourne VIC 3001 Australia
- Department of Zoology; University of Melbourne; VIC 3010 Australia
- Department of Botany; University of Melbourne; VIC 3010 Australia
| | - Joshua M. Hale
- Sciences Department; Museum Victoria; Melbourne VIC 3001 Australia
- Department of Zoology; University of Melbourne; VIC 3010 Australia
- Department of Botany; University of Melbourne; VIC 3010 Australia
| | - Laurène Gay
- Diversity and Adaptation of Mediterranean Species; UMR AGAP 1334, 2 place Pierre Viala; 34060 Montpellier France
| | - Michael Kearney
- Department of Zoology; University of Melbourne; VIC 3010 Australia
| | - Jeremy J. Austin
- Sciences Department; Museum Victoria; Melbourne VIC 3001 Australia
- Australian Centre for Ancient DNA, School of Earth and Environmental Sciences; University of Adelaide, North Terrace; Adelaide SA 5005 Australia
| | | | - Jane Melville
- Sciences Department; Museum Victoria; Melbourne VIC 3001 Australia
| |
Collapse
|
27
|
Natalis LC, Wesselingh RA. PARENTAL FREQUENCIES AND SPATIAL CONFIGURATION SHAPE BUMBLEBEE BEHAVIOR AND FLORAL ISOLATION IN HYBRIDIZINGRHINANTHUS. Evolution 2013; 67:1692-705. [DOI: 10.1111/evo.12044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/14/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Laurent C. Natalis
- Biodiversity Research Centre, Earth and Life Institute; Université catholique de Louvain; Croix du Sud 4-5 Box L7.07.04 B-1348 Louvain-la-Neuve Belgium
| | - Renate A. Wesselingh
- Biodiversity Research Centre, Earth and Life Institute; Université catholique de Louvain; Croix du Sud 4-5 Box L7.07.04 B-1348 Louvain-la-Neuve Belgium
| |
Collapse
|
28
|
Benson JF, Patterson BR, Wheeldon TJ. Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in aCanishybrid zone. Mol Ecol 2012; 21:5934-54. [DOI: 10.1111/mec.12045] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 08/16/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022]
Affiliation(s)
- John F. Benson
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada K9J 7B8
| | - Brent R. Patterson
- Wildlife Research and Development Section; Ontario Ministry of Natural Resources; Peterborough ON Canada K9J 7B8
| | - Tyler J. Wheeldon
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada K9J 7B8
| |
Collapse
|
29
|
FEDORKA KM, WINTERHALTER WE, SHAW KL, BROGAN WR, MOUSSEAU TA. The role of gene flow asymmetry along an environmental gradient in constraining local adaptation and range expansion. J Evol Biol 2012; 25:1676-85. [DOI: 10.1111/j.1420-9101.2012.02552.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Carson EW, Tobler M, Minckley WL, Ainsworth RJ, Dowling TE. Relationships between spatio-temporal environmental and genetic variation reveal an important influence of exogenous selection in a pupfish hybrid zone. Mol Ecol 2012; 21:1209-22. [PMID: 22269008 DOI: 10.1111/j.1365-294x.2011.05433.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of exogenous selection in a natural hybrid zone between the pupfishes Cyprinodon atrorus and Cyprinodon bifasciatus was tested via spatio-temporal analyses of environmental and genetic change over winter, spring and summer for three consecutive years. A critical influence of exogenous selection on hybrid zone regulation was demonstrated by a significant relationship between environmental (salinity and temperature) and genetic (three diagnostic nuDNA loci) variation over space and time (seasons) in the Rio Churince system, Cuatro Ciénegas, Mexico. At sites environmentally more similar to parental habitats, the genetic composition of hybrids was stable and similar to the resident parental species, whereas complex admixtures of parental and hybrid genotypic classes characterized intermediate environments, as did the greatest change in allelic and genotypic frequencies across seasons. Within hybrids across the entire Rio Churince system, seasonal changes in allelic and genotypic frequencies were consistent with results from previous reciprocal transplant experiments, which showed C. bifasciatus to suffer high mortality (75%) when exposed to the habitat of C. atrorus in winter (extreme temperature lows and variability) and summer (abrupt salinity change and extreme temperature highs and variability). Although unconfirmed, the distributional limits of C. atrorus and C. atrorus-like hybrids appear to be governed by similar constraints (predation or competition). The argument favouring evolutionary significance of hybridization in animals is bolstered by the results of this study, which links the importance of exogenous selection in a contemporary hybrid zone between C. atrorus and C. bifasciatus to previous demonstration of the long-term evolutionary significance of environmental variation and introgression on the phenotypic diversification Cuatro Ciénegas Cyprinodon.
Collapse
Affiliation(s)
- Evan W Carson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA.
| | | | | | | | | |
Collapse
|
31
|
Khimoun A, Burrus M, Andalo C, Liu ZL, Vicédo-Cazettes C, Thébaud C, Pujol B. Locally asymmetric introgressions between subspecies suggest circular range expansion at the Antirrhinum majus global scale. J Evol Biol 2011; 24:1433-41. [PMID: 21545420 DOI: 10.1111/j.1420-9101.2011.02276.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Assessing processes of geographic expansion in contact zones is a crucial step towards an accurate prediction of the evolution of species genetic diversity. The geographic distribution of cytonuclear discordance often reflects genetic introgression patterns across a species geographic range. Antirrhinum majus pseudomajus and A. m. striatum are two interfertile subspecies that occupy nonoverlapping areas but enter in contact in many locations at the margin of their geographic distribution. We found that genetic introgression between both subspecies was asymmetric at the local scale and geographically oriented in opposite directions at both ends of their contact zone perimeter in the Pyrenees. Our results suggest that the geographic expansion of A. majus subspecies was circular around the perimeter of their contact zone and pinpoint the need to integrate different spatial scales to unravel complex patterns of species geographic expansion.
Collapse
Affiliation(s)
- A Khimoun
- Université de Toulouse; UPS; EDB (Laboratoire Évolution et Diversité Biologique); UMR5174; Toulouse Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hewitt GM. Quaternary phylogeography: the roots of hybrid zones. Genetica 2011; 139:617-38. [DOI: 10.1007/s10709-011-9547-3] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/03/2011] [Indexed: 10/18/2022]
|
33
|
CARLING MATTHEWD, ZUCKERBERG BENJAMIN. Spatio-temporal changes in the genetic structure of the Passerina bunting hybrid zone. Mol Ecol 2011; 20:1166-75. [DOI: 10.1111/j.1365-294x.2010.04987.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Chatfield MWH, Kozak KH, Fitzpatrick BM, Tucker PK. Patterns of differential introgression in a salamander hybrid zone: inferences from genetic data and ecological niche modelling. Mol Ecol 2010; 19:4265-82. [PMID: 20819165 DOI: 10.1111/j.1365-294x.2010.04796.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hybrid zones have yielded considerable insight into many evolutionary processes, including speciation and the maintenance of species boundaries. Presented here are analyses from a hybrid zone that occurs among three salamanders -Plethodon jordani, Plethodon metcalfi and Plethodon teyahalee- from the southern Appalachian Mountains. Using a novel statistical approach for analysis of non-clinal, multispecies hybrid zones, we examined spatial patterns of variation at four markers: single-nucleotide polymorphisms (SNPs) located in the mtDNA ND2 gene and the nuclear DNA ILF3 gene, and the morphological markers of red cheek pigmentation and white flecks. Concordance of the ILF3 marker and both morphological markers across four transects is observed. In three of the four transects, however, the pattern of mtDNA is discordant from all other markers, with a higher representation of P. metcalfi mtDNA in the northern and lower elevation localities than is expected given the ILF3 marker and morphology. To explore whether climate plays a role in the position of the hybrid zone, we created ecological niche models for P. jordani and P. metcalfi. Modelling results suggest that hybrid zone position is not determined by steep gradients in climatic suitability for either species. Instead, the hybrid zone lies in a climatically homogenous region that is broadly suitable for both P. jordani and P. metcalfi. We discuss various selective (natural selection associated with climate) and behavioural processes (sex-biased dispersal, asymmetric reproductive isolation) that might explain the discordance in the extent to which mtDNA and nuclear DNA and colour-pattern traits have moved across this hybrid zone.
Collapse
Affiliation(s)
- M W H Chatfield
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079 USABell Museum of Natural History and Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St Paul, MN 55108 USADepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610 USA
| | | | | | | |
Collapse
|
35
|
SENN HV, BARTON NH, GOODMAN SJ, SWANSON GM, ABERNETHY KA, PEMBERTON JM. Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland. Mol Ecol 2010; 19:910-24. [DOI: 10.1111/j.1365-294x.2009.04497.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Olvido AE, Fernandes PR, Mousseau TA. Relative effects of juvenile and adult environmental factors on mate attraction and recognition in the cricket, Allonemobius socius. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:90. [PMID: 20673114 PMCID: PMC3383413 DOI: 10.1673/031.010.9001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 06/11/2009] [Indexed: 05/29/2023]
Abstract
Finding a mate is a fundamental aspect of sexual reproduction. To this end, specific-mate recognition systems (SMRS) have evolved that facilitate copulation between producers of the mating signal and their opposite-sex responders. Environmental variation, however, may compromise the efficiency with which SMRS operate. In this study, the degree to which seasonal climate experienced during juvenile and adult life-cycle stages affects the SMRS of a cricket, Allonemobius socius (Scudder) (Orthoptera: Gryllidae) was assessed. Results from two-choice behavioral trials suggest that adult ambient temperature, along with population and family origins, mediate variation in male mating call, and to a lesser extent directional response of females for those calls. Restricted maximum-likelihood estimates of heritability for male mating call components and for female response to mating call appeared statistically nonsignificant. However, appreciable "maternal genetic effects" suggest that maternal egg provisioning and other indirect maternal determinants of the embryonic environment significantly contributed to variation in male mating call and female response to mating calls. Thus, environmental factors can generate substantial variation in A. socius mating call, and, more importantly, their marginal effect on female responses to either fast-chirp or long-chirp mating calls suggest negative fitness consequences to males producing alternative types of calls. Future studies of sexual selection and SMRS evolution, particularly those focused on hybrid zone dynamics, should take explicit account of the loose concordance between signal producers and responders suggested by the current findings.
Collapse
Affiliation(s)
- Alexander E. Olvido
- Division of Science, Gainesville State College (Oconee campus), 1201 Bishop Farms Parkway, Watkinsville, Georgia, 30677, USA
- Department of Biological Sciences, University of South Carolina — Columbia, Columbia, South Carolina, 29208, USA
| | - Pearl R. Fernandes
- Division of Science, Mathematics and Engineering, University of South Carolina Sumter, Sumter, South Carolina, 29150, USA
| | - Timothy A. Mousseau
- Department of Biological Sciences, University of South Carolina — Columbia, Columbia, South Carolina, 29208, USA
| |
Collapse
|
37
|
Abstract
The spatial genetic composition of hybrid zones exhibits a range of possible patterns, with many characterized by patchy distributions. While several hypothetical explanations exist for the maintenance of these "mosaic" hybrid zones, they remain virtually unexplored theoretically. Using computer simulations we investigate the roles of dispersal and assortative mating in the formation and persistence of hybrid zone structure. To quantify mosaic structure we develop a likelihood method, which we apply to simulation and empirical data. We find that long distance dispersal can lead to a patchy distribution that assortative mating can then reinforce, ultimately producing a mosaic capable of persisting over evolutionarily significant periods of time. By reducing the mating success of rare males, assortative mating creates a positive within-patch frequency-dependent selective pressure. Selection against heterozygotes can similarly create a rare-type disadvantage and we show that it can also preserve structure. We find that mosaic structure is maintained across a range of assumptions regarding the form and strength of assortative mating. Interestingly, we find that higher levels of mosaic structure are sometimes observed for intermediate assortment strengths. The high incidence of assortment documented in hybrid zones suggests that it may play a key role in stabilizing their form and structure.
Collapse
Affiliation(s)
- Leithen K M'Gonigle
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | |
Collapse
|
38
|
Huestis DL, Oppert B, Marshall JL. Geographic distributions of Idh-1 alleles in a cricket are linked to differential enzyme kinetic performance across thermal environments. BMC Evol Biol 2009; 9:113. [PMID: 19460149 PMCID: PMC2688510 DOI: 10.1186/1471-2148-9-113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 05/21/2009] [Indexed: 11/12/2022] Open
Abstract
Background Geographic clines within species are often interpreted as evidence of adaptation to varying environmental conditions. However, clines can also result from genetic drift, and these competing hypotheses must therefore be tested empirically. The striped ground cricket, Allonemobius socius, is widely-distributed in the eastern United States, and clines have been documented in both life-history traits and genetic alleles. One clinally-distributed locus, isocitrate dehydrogenase (Idh-1), has been shown previously to exhibit significant correlations between allele frequencies and environmental conditions (temperature and rainfall). Further, an empirical study revealed a significant genotype-by-environmental interaction (GxE) between Idh-1 genotype and temperature which affected fitness. Here, we use enzyme kinetics to further explore GxE between Idh-1 genotype and temperature, and test the predictions of kinetic activity expected under drift or selection. Results We found significant GxE between temperature and three enzyme kinetic parameters, providing further evidence that the natural distributions of Idh-1 allele frequencies in A. socius are maintained by natural selection. Differences in enzyme kinetic activity across temperatures also mirror many of the geographic patterns observed in allele frequencies. Conclusion This study further supports the hypothesis that the natural distribution of Idh-1 alleles in A. socius is driven by natural selection on differential enzymatic performance. This example is one of several which clearly document a functional basis for both the maintenance of common alleles and observed clines in allele frequencies, and provides further evidence for the non-neutrality of some allozyme alleles.
Collapse
Affiliation(s)
- Diana L Huestis
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | |
Collapse
|
39
|
Gay L, Crochet PA, Bell DA, Lenormand T. COMPARING CLINES ON MOLECULAR AND PHENOTYPIC TRAITS IN HYBRID ZONES: A WINDOW ON TENSION ZONE MODELS. Evolution 2008; 62:2789-806. [PMID: 18752618 DOI: 10.1111/j.1558-5646.2008.00491.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurène Gay
- CEFE-CNRS, UMR 5175, 1919 route de Mende, F-34293 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
40
|
ROSS CHARLESL, BENEDIX JR JAMESH, GARCIA CHRISTOPHER, LAMBETH KALLI, PERRY RACHEL, SELWYN VANESSA, HOWARD DANIELJ. Scale-independent criteria and scale-dependent agents determining the structure of a ground cricket mosaic hybrid zone (Allonemobius socius - Allonemobius fasciatus). Biol J Linn Soc Lond 2008. [DOI: 10.1111/j.1095-8312.2008.01018.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Swenson NG. The past and future influence of geographic information systems on hybrid zone, phylogeographic and speciation research. J Evol Biol 2008; 21:421-34. [PMID: 18205783 DOI: 10.1111/j.1420-9101.2007.01487.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the past two decades geographers have developed an increasingly sophisticated technology termed a geographic information system (GIS). A GIS has the ability to store, map and analyse spatial data. The powerful analytical capabilities of a GIS could serve to enhance our understanding of the spatial component of the evolutionary process. In particular, phylogeographers, hybrid zone and speciation researchers could benefit enormously from incorporating this sophisticated technology from the discipline of geography, as they have done so readily from other disciplines (e.g. genetics). Indeed, an increasing number of researchers in these fields are beginning to include GIS analyses into their research programmes. Some of this integration has taken the form of analysing the spatial relationship between populations and hybrid zones. Several other researchers have also begun to incorporate GIS into their work through the use of GIS-based niche models. These models estimate a multidimensional niche for a species using known geo-referenced populations and digital climate maps. Here, I review the recent integration of GIS and GIS-based predictive niche models into the above evolutionary sub-disciplines. I also describe evolutionary analyses that could be further enhanced through the implementation of GIS.
Collapse
Affiliation(s)
- N G Swenson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
42
|
|
43
|
Affiliation(s)
- Karin S Pfennig
- Department of Biology, Campus Box 3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Marshall JL. Rapid evolution of spermathecal duct length in the Allonemobius socius complex of crickets: species, population and Wolbachia effects. PLoS One 2007; 2:e720. [PMID: 17684565 PMCID: PMC1934930 DOI: 10.1371/journal.pone.0000720] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 07/05/2007] [Indexed: 11/18/2022] Open
Abstract
The three species in the Allonemobius socius complex of crickets have recently diverged and radiated across North America. Interestingly, the only barriers to gene flow between these species in zones of secondary contact appear to be associated with fertilization traits - e.g., conspecific sperm precedence and the ability of males to induce females to lay eggs. Other traits, such as the length of female's reproductive tract, may also influence fertilization success and be associated with species boundaries. However, the underlying variation in this duct has not been assessed across populations and species. Moreover, the effects of reproductive parasites like Wolbachia on these morphological features have yet to be addressed, even though its infections are concentrated in reproductive tissues. I evaluated both the natural variation in and the effects of Wolbachia infection on spermathecal duct length among several populations of two species in the Allonemobius socius complex. My results suggest the following: (1) spermathecal duct length varies between species and is associated with species boundaries, (2) there is considerable variation among populations within species, (3) there is a Wolbachia infection-by-population interaction effect on the length of the spermathecal duct, and (4) experimental curing of Wolbachia recovers the uninfected morphology. These findings suggest the following hypotheses: (1) spermathecal duct length, like other fertilization traits in Allonemobius, is evolving rapidly and influences reproductive isolation and (2) Wolbachia-induced modifications of this duct could influence the dynamics of male-female coevolution. Further experiments are needed, however, to explicitly test these latter two hypotheses.
Collapse
Affiliation(s)
- Jeremy L Marshall
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America.
| |
Collapse
|
45
|
Abstract
Hybrid zones are 'natural laboratories' for studying the origin, maintenance and demise of species. Theory predicts that hybrid zones can move in space and time, with significant consequences for both evolutionary and conservation biology, though such movement is often perceived as rare. Here, a review of empirical studies of moving hybrid zones in animals and plants shows 23 examples with observational evidence for movement, and a further 16 where patterns of introgression in molecular markers could be interpreted as signatures of movement. The strengths and weaknesses of methods used for detecting hybrid zone movement are discussed, including long-term replicated sampling, historical surveys, museum/herbarium collections, patterns of relictual populations and introgression of genetic markers into an advancing taxon. Factors governing hybrid zone movement are assessed in the light of the empirical studies, including environmental selection, competition, asymmetric hybridization, dominance drive, hybrid fitness, human activity and climate change. Hybrid zone movement means that untested assumptions of stability in evolutionary studies on hybrid zone can lead to mistaken conclusions. Movement also means that conservation effort aimed at protecting against introgression could unwittingly favour an invading taxon. Moving hybrid zones are of wide interest as examples of evolution in action and possible indicators of environmental change. More long-term experimental studies are needed that incorporate reciprocal transplants, hybridization experiments and surveys of molecular markers and population densities on a range of scales.
Collapse
|
46
|
Danley PD, Mullen SP, Liu F, Nene V, Quackenbush J, Shaw KL. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 2007; 8:109. [PMID: 17459168 PMCID: PMC1878485 DOI: 10.1186/1471-2164-8-109] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 04/25/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. RESULTS We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page CONCLUSION Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution.
Collapse
Affiliation(s)
- Patrick D Danley
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Sean P Mullen
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Fenglong Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Vishvanath Nene
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Kerry L Shaw
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Britch SC, Swartout EJ, Hampton DD, Draney ML, Chu J, Marshall JL, Howard DJ. Genetic architecture of conspecific sperm precedence in Allonemobius fasciatus and A. socius. Genetics 2007; 176:1209-22. [PMID: 17435237 PMCID: PMC1894585 DOI: 10.1534/genetics.106.064949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of barriers to gene exchange is centrally important to speciation. We used the crickets Allonemobius fasciatus and A. socius to investigate the genetic architecture of conspecific sperm precedence (CSP), a postinsemination prezygotic reproductive barrier. With amplified fragment-length polymorphism (AFLP) markers and controlled crosses we constructed linkage maps and estimated positions of QTL associated with CSP. The majority of QTL have low to moderate effects, although a few QTL exist in A. socius with large effects, and the numbers of QTL are comparable to numbers of genes accounting for species differences in other studies. The QTL are spread across many unlinked markers, yet QTL placed with linked markers are on a small number of linkage groups that could reflect the role of the large Allonemobius sex chromosome in prezygotic isolation. Although many QTL had positive effects on conspecific sperm utilization several QTL also exerted negative effects, which could be explained by intraspecific sexual conflict, sperm competition, or epistasis of introgressed genes on novel backgrounds. One unexpected outcome was that A. socius CSP alleles have a stronger effect than those from A. fasciatus in hybrid females, causing hybrids to behave like A. socius with regard to sperm utilization. Implications of this asymmetry in the Allonemobius hybrid zone are discussed.
Collapse
Affiliation(s)
- Seth C Britch
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Affiliation(s)
- Maria R Servedio
- Department of Biology at the University of North Carolina, North Carolina, USA.
| |
Collapse
|
50
|
Streiff R, Veyrier R, Audiot P, Meusnier S, Brouat C. Introgression in natural populations of bioindicators: a case study of Carabus splendens and Carabus punctatoauratus. Mol Ecol 2006; 14:3775-86. [PMID: 16202095 DOI: 10.1111/j.1365-294x.2005.02714.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The evolutionary importance of hybridization in wild plants and animals has become increasingly widely recognized in the last decade. In practical terms, hybridization provides an exceptionally tough set of problems for conservation biologists. We illustrate this in a case study of two Carabidae species widely used to evaluate the impact of human activities on biodiversity. These two species live in a complex mosaic of sympatry/allopatry and are known to hybridize in controlled conditions. Hybridization has not been quantified in natural populations to date due to the lack of a simple set of phenotypic traits for identifying hybrids. We thus screened for hybrids in natural populations, by multilocus genotyping at nine microsatellite loci. A high level of genetic differentiation between these two taxa was observed, as shown by allelic frequency distributions. Two Bayesian assignment procedures without obligatory pure taxon references were used to infer different classes of hybrids (F(1), F(2) and backcrosses) and mixture proportions between the two species. A low level of hybridization (F(1) genotypes) was observed in natural populations, contrasting with results obtained in controlled conditions. A high level of introgression was, however, detected at three of 12 sites, as revealed by the detection of backcrossed genotypes. This interspecific gene flow was detected in a limited zone of the common geographical range of the two species and was not related to the pattern of sympatry/allopatry. We then considered the origin and repercussions of this introgression, based on intraspecific genetic diversity and geographical structure.
Collapse
Affiliation(s)
- R Streiff
- Centre de Biologie et de Gestion des Populations, Campus International de Baillarguet, 34988 Montferrier sur Lez cedex, France.
| | | | | | | | | |
Collapse
|