1
|
Duché D, Houot L. Similarities and Differences between Colicin and Filamentous Phage Uptake by Bacterial Cells. EcoSal Plus 2019; 8. [PMID: 30681066 PMCID: PMC11573288 DOI: 10.1128/ecosalplus.esp-0030-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
Gram-negative bacteria have evolved a complex envelope to adapt and survive in a broad range of ecological niches. This physical barrier is the first line of defense against noxious compounds and viral particles called bacteriophages. Colicins are a family of bactericidal proteins produced by and toxic to Escherichia coli and closely related bacteria. Filamentous phages have a complex structure, composed of at least five capsid proteins assembled in a long thread-shaped particle, that protects the viral DNA. Despite their difference in size and complexity, group A colicins and filamentous phages both parasitize multiprotein complexes of their sensitive host for entry. They first bind to a receptor located at the surface of the target bacteria before specifically recruiting components of the Tol system to cross the outer membrane and find their way through the periplasm. The Tol system is thought to use the proton motive force of the inner membrane to maintain outer membrane integrity during the life cycle of the cell. This review describes the sequential docking mechanisms of group A colicins and filamentous phages during their uptake by their bacterial host, with a specific focus on the translocation step, promoted by interactions with the Tol system.
Collapse
Affiliation(s)
- Denis Duché
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 13402 Marseille, France
| | - Laetitia Houot
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université- CNRS, 13402 Marseille, France
| |
Collapse
|
2
|
Houot L, Navarro R, Nouailler M, Duché D, Guerlesquin F, Lloubes R. Electrostatic interactions between the CTX phage minor coat protein and the bacterial host receptor TolA drive the pathogenic conversion of Vibrio cholerae. J Biol Chem 2017. [PMID: 28642371 DOI: 10.1074/jbc.m117.786061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic environments and converts to a pathogen upon infection by a filamentous phage, CTXΦ, that transmits the cholera toxin-encoding genes. This toxigenic conversion of V. cholerae has evident implication in both genome plasticity and epidemic risk, but the early stages of the infection have not been thoroughly studied. CTXΦ transit across the bacterial periplasm requires binding between the minor coat protein named pIII and a bacterial inner-membrane receptor, TolA, which is part of the conserved Tol-Pal molecular motor. To gain insight into the TolA-pIII complex, we developed a bacterial two-hybrid approach, named Oxi-BTH, suited for studying the interactions between disulfide bond-folded proteins in the bacterial cytoplasm of an Escherichia coli reporter strain. We found that two of the four disulfide bonds of pIII are required for its interaction with TolA. By combining Oxi-BTH assays, NMR, and genetic studies, we also demonstrate that two intermolecular salt bridges between TolA and pIII provide the driving forces of the complex interaction. Moreover, we show that TolA residue Arg-325 involved in one of the two salt bridges is critical for proper functioning of the Tol-Pal system. Our results imply that to prevent host evasion, CTXΦ uses an infection strategy that targets a highly conserved protein of Gram-negative bacteria essential for the fitness of V. cholerae in its natural environment.
Collapse
Affiliation(s)
- Laetitia Houot
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Romain Navarro
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Matthieu Nouailler
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Denis Duché
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Françoise Guerlesquin
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Roland Lloubes
- From the Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
3
|
Kosciow K, Domin C, Schweiger P, Deppenmeier U. Extracellular targeting of an active endoxylanase by a TolB negative mutant of Gluconobacter oxydans. ACTA ACUST UNITED AC 2016; 43:989-99. [DOI: 10.1007/s10295-016-1770-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/26/2016] [Indexed: 01/28/2023]
Abstract
Abstract
Gluconobacter (G.) oxydans strains have great industrial potential due to their ability to incompletely oxidize a wide range of carbohydrates. But there is one major limitation preventing their full production potential. Hydrolysis of polysaccharides is not possible because extracellular hydrolases are not encoded in the genome of Gluconobacter species. Therefore, as a first step for the generation of exoenzyme producing G. oxydans, a leaky outer membrane mutant was created by deleting the TolB encoding gene gox1687. As a second step the xynA gene encoding an endo-1,4-β-xylanase from Bacillus subtilis was expressed in G. oxydans ΔtolB. More than 70 % of the total XynA activity (0.91 mmol h−1 l culture−1) was detected in the culture supernatant of the TolB mutant and only 10 % of endoxylanase activity was observed in the supernatant of G. oxydans xynA. These results showed that a G. oxydans strain with an increased substrate spectrum that is able to use the renewable polysaccharide xylan as a substrate to produce the prebiotic compounds xylobiose and xylooligosaccharides was generated. This is the first report about the combination of the process of incomplete oxidation with the degradation of renewable organic materials from plants for the production of value-added products.
Collapse
Affiliation(s)
- Konrad Kosciow
- grid.10388.32 0000000122403300 Institute of Microbiology and Biotechnology University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Claudia Domin
- grid.10388.32 0000000122403300 Institute of Microbiology and Biotechnology University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| | - Paul Schweiger
- grid.260126.1 0000000107458995 Biology Department Missouri State University 901 S. National Ave 65897 Springfield MO USA
| | - Uwe Deppenmeier
- grid.10388.32 0000000122403300 Institute of Microbiology and Biotechnology University of Bonn Meckenheimer Allee 168 53115 Bonn Germany
| |
Collapse
|
4
|
Ridley H, Lakey JH. Antibacterial toxin colicin N and phage protein G3p compete with TolB for a binding site on TolA. MICROBIOLOGY-SGM 2014; 161:503-15. [PMID: 25536997 PMCID: PMC4339652 DOI: 10.1099/mic.0.000024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most colicins kill Escherichia coli cells by membrane pore formation or nuclease activity and, superficially, the mechanisms are similar: receptor binding, translocon recruitment, periplasmic receptor binding and membrane insertion. However, in detail, they employ a wide variety of molecular interactions that reveal a high degree of evolutionary diversification. Group A colicins bind to members of the TolQRAB complex in the periplasm and heterotrimeric complexes of colicin–TolA–TolB have been observed for both ColA and ColE9. ColN, the smallest and simplest pore-forming colicin, binds only to TolA and we show here that it uses the binding site normally used by TolB, effectively preventing formation of the larger complex used by other colicins. ColN binding to TolA was by β-strand addition with a KD of 1 µM compared with 40 µM for the TolA–TolB interaction. The β-strand addition and ColN activity could be abolished by single proline point mutations in TolA, which each removed one backbone hydrogen bond. By also blocking TolA–TolB binding these point mutations conferred a complete tol phenotype which destabilized the outer membrane, prevented both ColA and ColE9 activity, and abolished phage protein binding to TolA. These are the only point mutations known to have such pleiotropic effects and showed that the TolA–TolB β-strand addition is essential for Tol function. The formation of this simple binary ColN–TolA complex provided yet more evidence of a distinct translocation route for ColN and may help to explain the unique toxicity of its N-terminal domain.
Collapse
Affiliation(s)
- Helen Ridley
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy H Lakey
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
5
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
6
|
Affiliation(s)
- Karen S. Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
7
|
Abstract
We are investigating how protein bacteriocins import their toxic payload across the Gram-negative cell envelope, both as a means of understanding the translocation process itself and as a means of probing the organization of the cell envelope and the function of the protein machines within it. Our work focuses on the import mechanism of the group A endonuclease (DNase) colicin ColE9 into Escherichia coli, where we combine in vivo observations with structural, biochemical and biophysical approaches to dissect the molecular mechanism of colicin entry. ColE9 assembles a multiprotein ‘translocon’ complex at the E. coli outer membrane that triggers entry of the toxin across the outer membrane and the simultaneous jettisoning of its tightly bound immunity protein, Im9, in a step that is dependent on the protonmotive force. In the present paper, we focus on recent work where we have uncovered how ColE9 assembles its translocon complex, including isolation of the complex, and how this leads to subversion of a signal intrinsic to the Tol–Pal assembly within the periplasm and inner membrane. In this way, the externally located ColE9 is able to ‘connect’ to the inner membrane protonmotive force via a network of protein–protein interactions that spans the entirety of the E. coli cell envelope to drive dissociation of Im9 and initiate entry of the colicin into the cell.
Collapse
|
8
|
Colicin A binds to a novel binding site of TolA in the Escherichia coli periplasm. Biochem Soc Trans 2012; 40:1469-74. [DOI: 10.1042/bst20120239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Colicins are protein antibiotics produced by Escherichia coli to kill closely related non-identical competing species. They have taken advantage of the promiscuity of several proteins in the cell envelope for entry into the bacterial cell. The Tol–Pal system comprises one such ensemble of periplasmic and membrane-associated interacting proteins that links the IM (inner membrane) and OM (outer membrane) and provides the cell with a structural scaffold for cell division and energy transduction. Central to the Tol–Pal system is the TolA hub protein which forms protein–protein interactions with all other members and also with extrinsic proteins such as colicins A, E1, E2–E9 and N, and the coat proteins of the Ff family of filamentous bacteriophages. In the present paper, we review the role of TolA in the translocation of colicin A through the recently determined crystal structure of the complex of TolA with a translocation domain peptide of ColA (TA53–107), we demonstrate that TA53–107 binds to TolA at a novel binding site and compare the interactions of TolA with other colicins that use the Tol–Pal system for cell entry substantiating further the role of TolA as a periplasmic hub protein.
Collapse
|
9
|
Zhou K, Michiels CW, Aertsen A. Variation of intragenic tandem repeat tract of tolA modulates Escherichia coli stress tolerance. PLoS One 2012; 7:e47766. [PMID: 23094082 PMCID: PMC3477136 DOI: 10.1371/journal.pone.0047766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
In recent work we discovered that the intragenic tandem repeat (TR) region of the tolA gene is highly variable among different Escherichia coli strains. The aim of this study was therefore to investigate the biological function and dynamics of TR variation in E. coli tolA. The biological impact of TR variation was examined by comparing the ability of a set of synthetic tolA variants with in frame repeat copies varying from 2 to 39 to rescue the altered susceptibility of an E. coli ΔtolA mutant to deoxycholic acid, sodium dodecyl sulfate, hyperosmolarity, and infection with filamentous bacteriophage. Interestingly, although each of the TolA variants was able to at least partly rescue the ΔtolA mutant, the extent was clearly dependent on both the repeat number and the type of stress imposed, indicating the existence of opposing selective forces with regard to the optimal TR copy number. Subsequently, TR dynamics in a clonal population were assayed, and we could demonstrate that TR contractions are RecA dependent and enhanced in a DNA repair deficient uvrD background, and can occur at a frequency of 6.9×10−5.
Collapse
Affiliation(s)
- Kai Zhou
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Chris W. Michiels
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
10
|
Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, Moore GR, James R, Penfold CN. Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. J Biol Chem 2012; 287:19048-57. [PMID: 22493500 PMCID: PMC3365938 DOI: 10.1074/jbc.m112.342246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA53–107). The interface region of the TA53–107-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375–Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58–Lys-368, Tyr-90–Lys-379, Phe-94–Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA53–107 binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.
Collapse
Affiliation(s)
- Chan Li
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
It is more than 80 years since Gratia first described 'a remarkable antagonism between two strains of Escherichia coli'. Shown subsequently to be due to the action of proteins (or peptides) produced by one bacterium to kill closely related species with which it might be cohabiting, such bacteriocins have since been shown to be commonplace in the internecine warfare between bacteria. Bacteriocins have been studied primarily from the twin perspectives of how they shape microbial communities and how they penetrate bacteria to kill them. Here, we review the modes of action of a family of bacteriocins that cleave nucleic acid substrates in E. coli, known collectively as nuclease colicins, and the specific immunity (inhibitor) proteins that colicin-producing organisms make in order to avoid committing suicide. In a process akin to targeting in mitochondria, nuclease colicins engage in a variety of cellular associations in order to translocate their cytotoxic domains through the cell envelope to the cytoplasm. As well as informing on the process itself, the study of nuclease colicin import has also illuminated functional aspects of the host proteins they parasitize. We also review recent studies where nuclease colicins and their immunity proteins have been used as model systems for addressing fundamental problems in protein folding and protein-protein interactions, areas of biophysics that are intimately linked to the role of colicins in bacterial competition and to the import process itself.
Collapse
|
12
|
Ng CL, Lang K, Meenan NAG, Sharma A, Kelley AC, Kleanthous C, Ramakrishnan V. Structural basis for 16S ribosomal RNA cleavage by the cytotoxic domain of colicin E3. Nat Struct Mol Biol 2010; 17:1241-1246. [PMID: 20852642 PMCID: PMC3755339 DOI: 10.1038/nsmb.1896] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/26/2010] [Indexed: 11/08/2022]
Abstract
The toxin colicin E3 targets the 30S subunit of bacterial ribosomes and cleaves a phosphodiester bond in the decoding center. We present the crystal structure of the 70S ribosome in complex with the cytotoxic domain of colicin E3 (E3-rRNase). The structure reveals how the rRNase domain of colicin binds to the A site of the decoding center in the 70S ribosome and cleaves the 16S ribosomal RNA (rRNA) between A1493 and G1494. The cleavage mechanism involves the concerted action of conserved residues Glu62 and His58 of the cytotoxic domain of colicin E3. These residues activate the 16S rRNA for 2' OH-induced hydrolysis. Conformational changes observed for E3-rRNase, 16S rRNA and helix 69 of 23S rRNA suggest that a dynamic binding platform is required for colicin E3 binding and function.
Collapse
MESH Headings
- Amino Acid Sequence
- Catalysis
- Colicins/chemistry
- Colicins/metabolism
- Conserved Sequence
- Crystallography, X-Ray
- Escherichia coli/metabolism
- Macromolecular Substances
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Structure-Activity Relationship
- Thermus thermophilus/metabolism
Collapse
Affiliation(s)
- C Leong Ng
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Kathrin Lang
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | - Amit Sharma
- Department of Biology (Area 10), University of York, York, UK
| | - Ann C Kelley
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
13
|
Interaction of the colicin K bactericidal toxin with components of its import machinery in the periplasm of Escherichia coli. J Bacteriol 2010; 192:5934-42. [PMID: 20870776 DOI: 10.1128/jb.00936-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are bacterial antibiotic toxins produced by Escherichia coli cells and are active against E. coli and closely related strains. To penetrate the target cell, colicins bind to an outer membrane receptor at the cell surface and then translocate their N-terminal domain through the outer membrane and the periplasm. Once fully translocated, the N-terminal domain triggers entry of the catalytic C-terminal domain by an unknown process. Colicin K uses the Tsx nucleoside-specific receptor for binding at the cell surface, the OmpA protein for translocation through the outer membrane, and the TolABQR proteins for the transit through the periplasm. Here, we initiated studies to understand how the colicin K N-terminal domain (KT) interacts with the components of its transit machine in the periplasm. We first produced KT fused to a signal sequence for periplasm targeting. Upon production of KT in wild-type strains, cells became partly resistant to Tol-dependent colicins and sensitive to detergent, released periplasmic proteins, and outer membrane vesicles, suggesting that KT interacts with and titrates components of its import machine. Using a combination of in vivo coimmunoprecipitations and in vitro pulldown experiments, we demonstrated that KT interacts with the TolA, TolB, and TolR proteins. For the first time, we also identified an interaction between the TolQ protein and a colicin translocation domain.
Collapse
|
14
|
Jakes KS, Finkelstein A. The colicin Ia receptor, Cir, is also the translocator for colicin Ia. Mol Microbiol 2009; 75:567-78. [PMID: 19919671 DOI: 10.1111/j.1365-2958.2009.06966.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Colicin Ia, a channel-forming bactericidal protein, uses the outer membrane protein, Cir, as its primary receptor. To kill Escherichia coli, it must cross this membrane. The crystal structure of Ia receptor-binding domain bound to Cir, a 22-stranded plugged beta-barrel protein, suggests that the plug does not move. Therefore, another pathway is needed for the colicin to cross the outer membrane, but no 'second receptor' has ever been identified for TonB-dependent colicins, such as Ia. We show that if the receptor-binding domain of colicin Ia is replaced by that of colicin E3, this chimera effectively kills cells, provided they have the E3 receptor (BtuB), Cir, and TonB. This is consistent with wild-type Ia using one Cir as its primary receptor (BtuB in the chimera) and a second Cir as the translocation pathway for its N-terminal translocation (T) domain and its channel-forming C-terminal domain. Deletion of colicin Ia's receptor-binding domain results in a protein that kills E. coli, albeit less effectively, provided they have Cir and TonB. We show that purified T domain competes with Ia and protects E. coli from being killed by it. Thus, in addition to binding to colicin Ia's receptor-binding domain, Cir also binds weakly to its translocation domain.
Collapse
Affiliation(s)
- Karen S Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
15
|
Bonsor DA, Hecht O, Vankemmelbeke M, Sharma A, Krachler AM, Housden NG, Lilly KJ, James R, Moore GR, Kleanthous C. Allosteric beta-propeller signalling in TolB and its manipulation by translocating colicins. EMBO J 2009; 28:2846-57. [PMID: 19696740 PMCID: PMC2750012 DOI: 10.1038/emboj.2009.224] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 07/13/2009] [Indexed: 01/09/2023] Open
Abstract
The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM translocation. Protein-protein interactions with the TolB beta-propeller govern two conformational states that are adopted by the distal N-terminal 12 residues of TolB that bind TolA in the inner membrane. ColE9 promotes disorder of this 'TolA box' and recruitment of TolA. In contrast to ColE9, binding of the OM lipoprotein Pal to the same site induces conformational changes that sequester the TolA box to the TolB surface in which it exhibits little or no TolA binding. Our data suggest that Pal is an OFF switch for the Tol assembly, whereas colicins promote an ON state even though mimicking Pal. Comparison of the TolB mechanism to that of vertebrate guanine nucleotide exchange factor RCC1 suggests that allosteric signalling may be more prevalent in beta-propeller proteins than currently realized.
Collapse
Affiliation(s)
| | - Oliver Hecht
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Mireille Vankemmelbeke
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Amit Sharma
- Department of Biology, University of York, York, UK
| | | | | | | | - Richard James
- School of Molecular Medical Sciences, Institute of Infection, Inflammation and Immunity, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK
| | - Colin Kleanthous
- Department of Biology, University of York, York, UK,Department of Biology (Area 10), University of York, Heslington, PO Box 373, York, YO10 5YW, UK. Tel.: +44 0 1904 328820; Fax: +44 0 1904 328825; E-mail:
| |
Collapse
|
16
|
Zhang Y, Li C, Vankemmelbeke MN, Bardelang P, Paoli M, Penfold CN, James R. The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. Mol Microbiol 2009; 75:623-36. [PMID: 19627502 PMCID: PMC2821528 DOI: 10.1111/j.1365-2958.2009.06808.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Interaction of the TolB box of Group A colicins with the TolB protein in the periplasm of Escherichia coli cells promotes transport of the cytotoxic domain of the colicin across the cell envelope. The crystal structure of a complex between a 107-residue peptide (TA1–107) of the translocation domain of colicin A (ColA) and TolB identified the TolB box as a 12-residue peptide that folded into a distorted hairpin within a central canyon of the β-propeller domain of TolB. Comparison of this structure with that of the colicin E9 (ColE9) TolB box–TolB complex, together with site-directed mutagenesis of the ColA TolB box residues, revealed important differences in the interaction of the two TolB boxes with an overlapping binding site on TolB. Substitution of the TolB box residues of ColA with those of ColE9 conferred the ability to competitively recruit TolB from Pal but reduced the biological activity of the mutant ColA. This datum explains (i) the difference in binding affinities of ColA and ColE9 with TolB, and (ii) the inability of ColA, unlike ColE9, to competitively recruit TolB from Pal, allowing an understanding of how these two colicins interact in a different way with a common translocation portal in E. coli cells.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Infection, Immunity and Inflammation, School of Molecular Medical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett 2009; 298:1-11. [PMID: 19519769 DOI: 10.1111/j.1574-6968.2009.01659.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol-Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.
Collapse
Affiliation(s)
- Renata Godlewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
18
|
Colicins exploit native disorder to gain cell entry: a hitchhiker's guide to translocation. Biochem Soc Trans 2008; 36:1409-13. [DOI: 10.1042/bst0361409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The translocation of protein toxins into a cell relies on a myriad of protein–protein interactions. One such group of toxins are enzymatic E colicins, protein antibiotics produced by Escherichia coli in times of stress. These proteins subvert ordinary nutrient uptake mechanisms to enter the cell and unleash nuclease activity. We, and others, have previously shown that uptake of ColE9 (colicin E9) is dependent on engagement of the OM (outer membrane) receptors BtuB and OmpF as well as recruitment of the periplasmic protein TolB, forming a large supramolecular complex. Intriguingly, colicins bind TolB using a natively disordered region to mimic the interaction of TolB with Pal (peptidoglycan-associated lipoprotein). This is thought to trigger OM instability and prime the system for translocation. Here, we review key interactions in the assembly of this ‘colicin translocon’ and discuss the key role disorder plays in achieving uptake.
Collapse
|
19
|
Lancaster LE, Savelsbergh A, Kleanthous C, Wintermeyer W, Rodnina MV. Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol Microbiol 2008; 69:390-401. [PMID: 18485067 PMCID: PMC2615495 DOI: 10.1111/j.1365-2958.2008.06283.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytotoxin colicin E3 targets the 30S subunit of bacterial ribosomes and specifically cleaves 16S rRNA at the decoding centre, thereby inhibiting translation. Although the cleavage site is well known, it is not clear which step of translation is inhibited. We studied the effects of colicin E3 cleavage on ribosome functions by analysing individual steps of protein synthesis. We find that the cleavage affects predominantly the elongation step. The inhibitory effect of colicin E3 cleavage originates from the accumulation of sequential impaired decoding events, each of which results in low occupancy of the A site and, consequently, decreasing yield of elongating peptide. The accumulation leads to an almost complete halt of translation after reading of a few codons. The cleavage of 16S rRNA does not impair monitoring of codon-anticodon complexes or GTPase activation during elongation-factor Tu-dependent binding of aminoacyl-tRNA, but decreases the stability of the codon-recognition complex and slows down aminoacyl-tRNA accommodation in the A site. The tRNA-mRNA translocation is faster on colicin E3-cleaved than on intact ribosomes and is less sensitive to inhibition by the antibiotic viomycin.
Collapse
Affiliation(s)
- Lorna E Lancaster
- Institute of Molecular Biology, University of Witten/Herdecke, 58448 Witten, Germany
| | | | | | | | | |
Collapse
|
20
|
Weitzel AC, Larsen RA. Differential complementation of ÎtolA Escherichia coliby aYersinia enterocoliticaTolA homologue. FEMS Microbiol Lett 2008; 282:81-8. [DOI: 10.1111/j.1574-6968.2008.01115.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. Colicin biology. Microbiol Mol Biol Rev 2007; 71:158-229. [PMID: 17347522 PMCID: PMC1847374 DOI: 10.1128/mmbr.00036-06] [Citation(s) in RCA: 804] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.
Collapse
Affiliation(s)
- Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Posadas DM, Martín FA, Sabio y García JV, Spera JM, Delpino MV, Baldi P, Campos E, Cravero SL, Zorreguieta A. The TolC homologue of Brucella suis is involved in resistance to antimicrobial compounds and virulence. Infect Immun 2007; 75:379-389. [PMID: 17088356 PMCID: PMC1828412 DOI: 10.1128/iai.01349-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/02/2006] [Accepted: 10/25/2006] [Indexed: 01/18/2023] Open
Abstract
Brucella spp., like other pathogens, must cope with the environment of diverse host niches during the infection process. In doing this, pathogens evolved different type of transport systems to help them survive and disseminate within the host. Members of the TolC family have been shown to be involved in the export of chemically diverse molecules ranging from large protein toxins to small toxic compounds. The role of proteins from the TolC family in Brucella and other alpha-2-proteobacteria has been explored little. The gene encoding the unique member of the TolC family from Brucella suis (BepC) was cloned and expressed in an Escherichia coli mutant disrupted in the gene encoding TolC, which has the peculiarity of being involved in diverse transport functions. BepC fully complemented the resistance to drugs such as chloramphenicol and acriflavine but was incapable of restoring hemolysin secretion in the tolC mutant of E. coli. An insertional mutation in the bepC gene strongly affected the resistance phenotype of B. suis to bile salts and toxic chemicals such as ethidium bromide and rhodamine and significantly decreased the resistance to antibiotics such as erythromycin, ampicillin, tetracycline, and norfloxacin. Moreover, the B. suis bepC mutant was attenuated in the mouse model of infection. Taken together, these results suggest that BepC-dependent efflux processes of toxic compounds contribute to B. suis survival inside the host.
Collapse
Affiliation(s)
- Diana M Posadas
- Fundación Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Stork M, Otto BR, Crosa JH. A novel protein, TtpC, is a required component of the TonB2 complex for specific iron transport in the pathogens Vibrio anguillarum and Vibrio cholerae. J Bacteriol 2006; 189:1803-15. [PMID: 17189363 PMCID: PMC1855762 DOI: 10.1128/jb.00451-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibactin transport and is transcribed as part of an operon that consists of orf2, exbB2, exbD2, and tonB2. This cluster was identified by a polar transposon insertion in orf2 that resulted in a strain deficient for ferric-anguibactin transport. Only the entire cluster (orf2, exbB2, exbD2 and tonB2) could complement for ferric-anguibactin transport, while just the exbB2, exbD2, and tonB2 genes were unable to restore transport. This suggests an essential role for this Orf2, designated TtpC, in TonB2-mediated transport in V. anguillarum. A similar gene cluster exists in V. cholerae, i.e., with the homologues of ttpC-exbB2-exbD2-tonB2, and we demonstrate that TtpC from V. cholerae also plays a role in the TonB2-mediated transport of enterobactin in this human pathogen. Furthermore, we also show that in V. anguillarum the TtpC protein is found as part of a complex that might also contain the TonB2, ExbB2, and ExbD2 proteins. This novel component of the TonB2 system found in V. anguillarum and V. cholerae is perhaps a general feature in bacteria harboring the Vibrio-like TonB2 system.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | |
Collapse
|
24
|
Loftus SR, Walker D, Maté MJ, Bonsor DA, James R, Moore GR, Kleanthous C. Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. Proc Natl Acad Sci U S A 2006; 103:12353-8. [PMID: 16894158 PMCID: PMC1567883 DOI: 10.1073/pnas.0603433103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Indexed: 11/18/2022] Open
Abstract
The natively disordered N-terminal 83-aa translocation (T) domain of E group nuclease colicins recruits OmpF to a colicin-receptor complex in the outer membrane (OM) as well as TolB in the periplasm of Escherichia coli, the latter triggering translocation of the toxin across the OM. We have identified the 16-residue TolB binding epitope in the natively disordered T-domain of the nuclease colicin E9 (ColE9) and solved the crystal structure of the complex. ColE9 folds into a distorted hairpin within a canyon of the six-bladed beta-propeller of TolB, using two tryptophans to bolt the toxin to the canyon floor and numerous intramolecular hydrogen bonds to stabilize the bound conformation. This mode of binding enables colicin side chains to hydrogen-bond TolB residues in and around the channel that runs through the beta-propeller and that constitutes the binding site of peptidoglycan-associated lipoprotein (Pal). Pal is a globular binding partner of TolB, and their association is known to be important for OM integrity. The structure is therefore consistent with translocation models wherein the colicin disrupts the TolB-Pal complex causing local instability of the OM as a prelude to toxin import. Intriguingly, Ca(2+) ions, which bind within the beta-propeller channel and switch the surface electrostatics from negative to positive, are needed for the negatively charged T-domain to bind TolB with an affinity equivalent to that of Pal and competitively displace it. Our study demonstrates that natively disordered proteins can compete with globular proteins for binding to folded scaffolds but that this can require cofactors such as metal ions to offset unfavorable interactions.
Collapse
Affiliation(s)
- Steven R. Loftus
- *Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | - Daniel Walker
- *Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | - Maria J. Maté
- *Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | - Daniel A. Bonsor
- *Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | - Richard James
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom; and
| | - Geoffrey R. Moore
- School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Colin Kleanthous
- *Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| |
Collapse
|
25
|
Cheng YS, Shi Z, Doudeva LG, Yang WZ, Chak KF, Yuan HS. High-resolution Crystal Structure of a Truncated ColE7 Translocation Domain: Implications for Colicin Transport Across Membranes. J Mol Biol 2006; 356:22-31. [PMID: 16360169 DOI: 10.1016/j.jmb.2005.11.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 11/07/2005] [Accepted: 11/17/2005] [Indexed: 11/21/2022]
Abstract
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import.
Collapse
Affiliation(s)
- Yi-Sheng Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
26
|
Pommier S, Gavioli M, Cascales E, Lloubès R. Tol-dependent macromolecule import through the Escherichia coli cell envelope requires the presence of an exposed TolA binding motif. J Bacteriol 2005; 187:7526-34. [PMID: 16237036 PMCID: PMC1272985 DOI: 10.1128/jb.187.21.7526-7534.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tol-Pal proteins of the cell envelope of Escherichia coli are required for maintaining outer membrane integrity. This system forms protein complexes in which TolA plays a central role by providing a bridge between the inner and outer membranes via its interaction with the Pal lipoprotein. The Tol proteins are parasitized by filamentous bacteriophages and group A colicins. The N-terminal domain of the Ff phage g3p protein and the translocation domains of colicins interact directly with TolA during the processes of import through the cell envelope. Recently, a four-amino-acid sequence in Pal has been shown to be involved in Pal's interaction with TolA. A similar motif is also present in the sequence of two TolA partners, g3p and colicin A. Here, a mutational study was conducted to define the function of these motifs in the binding activity and import process of TolA. The various domains were produced and exported to the bacterial periplasm, and their cellular effects were analyzed. Cells producing the g3p domain were tolerant to colicins and filamentous phages and had destabilized outer membranes, while g3p deleted of three residues in the motif was affected in TolA binding and had no effect on cell integrity or colicin or phage import. A conserved Tyr residue in the colicin A translocation domain was involved in TolA binding and colicin A import. Furthermore, in vivo and in vitro coprecipitation analyses demonstrated that colicin A and g3p N-terminal domains compete for binding to TolA.
Collapse
Affiliation(s)
- Stéphanie Pommier
- Institut de Biologie Structurale et de Microbiologie, CNRS, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
27
|
Hands SL, Holland LE, Vankemmelbeke M, Fraser L, Macdonald CJ, Moore GR, James R, Penfold CN. Interactions of TolB with the translocation domain of colicin E9 require an extended TolB box. J Bacteriol 2005; 187:6733-41. [PMID: 16166536 PMCID: PMC1251578 DOI: 10.1128/jb.187.19.6733-6741.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism by which enzymatic E colicins such as colicin E3 (ColE3) and ColE9 cross the outer membrane, periplasm, and cytoplasmic membrane to reach the cytoplasm and thus kill Escherichia coli cells is unique in prokaryotic biology but is poorly understood. This requires an interaction between TolB in the periplasm and three essential residues, D35, S37, and W39, of a pentapeptide sequence called the TolB box located in the N-terminal translocation domain of the enzymatic E colicins. Here we used site-directed mutagenesis to demonstrate that the TolB box sequence in ColE9 is actually larger than the pentapeptide and extends from residues 34 to 46. The affinity of the TolB box mutants for TolB was determined by surface plasmon resonance to confirm that the loss of biological activity in all except one (N44A) of the extended TolB box mutants correlates with a reduced affinity of binding to TolB. We used a PCR mutagenesis protocol to isolate residues that restored activity to the inactive ColE9 D35A, S37A, and W39A mutants. A serine residue at position 35, a threonine residue at position 37, and phenylalanine or tyrosine residues at position 39 restored biological activity of the mutant ColE9. The average area predicted to be buried upon folding (AABUF) was correlated with the activity of the variants at positions 35, 37, and 39 of the TolB box. All active variants had AABUF profiles that were similar to the wild-type residues at those positions and provided information on the size, stereochemistry, and potential folding pattern of the residues of the TolB Box.
Collapse
Affiliation(s)
- Sarah L Hands
- Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dubuisson JF, Vianney A, Hugouvieux-Cotte-Pattat N, Lazzaroni JC. Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. MICROBIOLOGY (READING, ENGLAND) 2005; 151:3337-3347. [PMID: 16207916 DOI: 10.1099/mic.0.28237-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tol-pal genes are necessary for maintaining the outer-membrane integrity of Gram-negative bacteria. These genes were first described in Escherichia coli, and more recently in several other species. They are involved in the pathogenesis of E. coli, Haemophilus ducreyi, Vibrio cholerae and Salmonella enterica. The role of the tol-pal genes in bacterial pathogenesis was investigated in the phytopathogenic enterobacterium Erwinia chrysanthemi, assuming that this organism might be a good model for such a study. The whole Er. chrysanthemi tol-pal region was characterized. Tol-Pal proteins, except TolA, showed high identity scores with their E. coli homologues. Er. chrysanthemi mutants were constructed by introducing a uidA-kan cassette in the ybgC, tolQ, tolA, tolB, pal and ybgF genes. All the mutants were hypersensitive to bile salts. Mutations in tolQ, tolA, tolB and pal were deleterious for the bacteria, which required high concentrations of sugars or osmoprotectants for their viability. Consistent with this observation, they were greatly impaired in their cell morphology and division, which was evidenced by observations of cell filaments, spherical forms, membrane blebbing and mislocalized bacterial septa. Moreover, tol-pal mutants showed a reduced virulence in a potato tuber model and on chicory leaves. This could be explained by a combination of impaired phenotypes in the tol-pal mutants, such as reduced growth and motility and a decreased production of pectate lyases, the major virulence factor of Er. chrysanthemi.
Collapse
Affiliation(s)
- Jean-François Dubuisson
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Anne Vianney
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Nicole Hugouvieux-Cotte-Pattat
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| | - Jean Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR 5122 CNRS-INSA-UCBL, Université Claude Bernard Lyon I, bât. André Lwoff, 69622 Villeurbanne Cedex, France
| |
Collapse
|
29
|
Cavard D. Role of Cal, the colicin A lysis protein, in two steps of colicin A release and in the interaction with colicin A–porin complexes. Microbiology (Reading) 2004; 150:3867-3875. [PMID: 15528671 DOI: 10.1099/mic.0.27160-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Release of colicin A was studied inEscherichia colicells that differed in expressing thecolicinAlysis protein (Cal). Pools of released and unreleased colicin A were harvested throughout colicin A induction. The amount of colicin A in each pool varied with the time of induction, allowing the definition of two sequential steps in colicin A release, one of which was dependent on Cal. Each step of colicin A release was differently affected in cells containing Cal mutants in which the N-terminal cysteine residue was substituted by either proline or threonine, preventing them from being acylated and matured. These Cal mutants were only observed indegPcells, indicating that the DegP protease cleaved the unacylated precursor of Cal. Cal was found in the insoluble fraction of the pools of released and unreleased colicin A together with the hetero-oligomers of colicin A and porins (colicins Au). The biogenesis of colicins Au was studied in temperature-sensitivesecAandsecYstrains and found to be Sec-independent, indicating that they are formed by newly synthesized colicin A binding to mature porins already incorporated in the outer membrane. Cal is a lipoprotein similar to VirB7, a constituent of the type IV secretion system. It would interact with colicins Au to constitute the colicin A export machinery.
Collapse
Affiliation(s)
- Danièle Cavard
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| |
Collapse
|
30
|
Penfold CN, Healy B, Housden NG, Boetzel R, Vankemmelbeke M, Moore GR, Kleanthous C, James R. Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells. J Bacteriol 2004; 186:4520-7. [PMID: 15231784 PMCID: PMC438598 DOI: 10.1128/jb.186.14.4520-4527.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil BtuB receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB.
Collapse
Affiliation(s)
- Christopher N Penfold
- School of Molecular Medical Sciences and Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Henry T, Pommier S, Journet L, Bernadac A, Gorvel JP, Lloubès R. Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Res Microbiol 2004; 155:437-46. [PMID: 15249060 DOI: 10.1016/j.resmic.2004.04.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 02/10/2004] [Indexed: 11/24/2022]
Abstract
Outer membrane vesicle formation occurs during Gram-negative bacterial growth. However, natural production of large amounts of outer membrane vesicles has only been described in a few bacterial genera. The purified vesicles of some bacterial pathogens have shown potential applications in vaccinology and in antibiotic therapy. This study focused on the development of a gene expression system able to induce production of large amounts of outer membrane vesicles. The Tol-Pal system of Escherichia coli, required to maintain outer membrane integrity, is composed of five cell envelope proteins, TolA, TolB, TolQ, TolR and Pal. Tol proteins are parasitized by filamentous bacteriophages and by colicins. The phage infection process and colicin import require, respectively, the N-terminal domain of the minor coat g3p protein and the translocation domain of colicins, with both domains interacting with Tol proteins. In this study, we show that the periplasmic production of either Tol, g3p or colicin domains was able to specifically destabilize the E. coli or Shigella flexneri cell envelope and to induce production of high amounts of vesicles. This technique was further found to work efficiently in Salmonella enterica serovar Typhimurium.
Collapse
Affiliation(s)
- Thomas Henry
- Centre d'Immunologie de Marseille-Luminy, Parc scientifique de Luminy, case 906, 13288 Marseille 9, France
| | | | | | | | | | | |
Collapse
|
32
|
Lin YH, Liao CC, Liang PH, Yuan HS, Chak KF. Involvement of colicin in the limited protection of the colicin producing cells against bacteriophage. Biochem Biophys Res Commun 2004; 318:81-7. [PMID: 15110756 DOI: 10.1016/j.bbrc.2004.03.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Indexed: 11/25/2022]
Abstract
The restriction/modification system is considered to be the most common machinery of microorganisms for protection against bacteriophage infection. However, we found that mitomycin C induced Escherichia coli containing ColE7-K317 can confer limited protection against bacteriophage M13K07 and lambda infection. Our study showed that degree of protection is correlated with the expression level of the ColE7 operon, indicating that colicin E7 alone or the colicin E7-immunity protein complex is directly involved in this protection mechanism. It was also noted that the degree of protection is greater against the single-strand DNA bacteriophage M13K07 than the double-strand bacteriophage(lambda). Coincidently, the K(A) value of ColE7-Im either interacting with single-strand DNA (2.94x10(5)M(-1)) or double-strand DNA (1.75x10(5)M(-1)) reveals that the binding affinity of ColE7-Im with ssDNA is 1.68-fold stronger than that of the protein complex interacting with dsDNA. Interaction between colicin and the DNA may play a central role in this limited protection of the colicin-producing cell against bacteriophages. Based on these observations, we suggest that the colicin exporting pathway may interact to some extent with the bacteriophage infection pathway leading to a limited selective advantage for and limited protection of colicin-producing cells against different bacteriophages.
Collapse
Affiliation(s)
- Yu-Hui Lin
- Institute of Biochemistry, University System of Taiwan-National Yang Ming University, Shih-Pai, Taipei 11221, Taiwan, ROC
| | | | | | | | | |
Collapse
|
33
|
Dubuisson JF, Vianney A, Lazzaroni JC. Mutational analysis of the TolA C-terminal domain of Escherichia coli and genetic evidence for an interaction between TolA and TolB. J Bacteriol 2002; 184:4620-5. [PMID: 12142433 PMCID: PMC135247 DOI: 10.1128/jb.184.16.4620-4625.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.
Collapse
Affiliation(s)
- Jean François Dubuisson
- Unité de Microbiologie et Génétique, UMR5122 (CNRS-INSA-Université Lyon1), F-69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
34
|
Collins ES, Whittaker SBM, Tozawa K, MacDonald C, Boetzel R, Penfold CN, Reilly A, Clayden NJ, Osborne MJ, Hemmings AM, Kleanthous C, James R, Moore GR. Structural dynamics of the membrane translocation domain of colicin E9 and its interaction with TolB. J Mol Biol 2002; 318:787-804. [PMID: 12054823 DOI: 10.1016/s0022-2836(02)00036-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.
Collapse
Affiliation(s)
- Emily S Collins
- School of Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lazzaroni JC, Dubuisson JF, Vianney A. The Tol proteins of Escherichia coli and their involvement in the translocation of group A colicins. Biochimie 2002; 84:391-7. [PMID: 12423782 DOI: 10.1016/s0300-9084(02)01419-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tol proteins are involved in outer membrane stability of Gram-negative bacteria. The TolQRA proteins form a complex in the inner membrane while TolB and Pal interact near the outer membrane. These two complexes are transiently connected by an energy-dependent interaction between Pal and TolA. The Tol proteins have been parasitized by group A colicins for their translocation through the cell envelope. Recent advances in the structure and energetics of the Tol system, as well as the interactions between the N-terminal translocation domain of colicins and the Tol proteins are presented.
Collapse
Affiliation(s)
- Jean-Claude Lazzaroni
- Unité de Microbiologie et Génétique, UMR5122 CNRS-INSA, Université Lyon-1, bâtiment André-Lwoff, 10, rue Dubois, 69622 Villeurbanne cedex, France.
| | | | | |
Collapse
|
36
|
Abstract
To kill Escherichia coli, toxic proteins, called colicins, pass through the permeability barrier created by the outer membrane (OM) of the bacterial cell envelope. We consider a variety of different colicins, including A, B, D, E1, E3, Ia, M and N, that penetrate through the porins OmpF, FepA, BtuB, Cir and FhuA, to subsequently interact with a few targets in the periplasm, including TolA, TolB, TolC and TonB. We review the mechanisms, demonstrated and postulated, by which such toxins enter bacterial cells, from the initial binding stage on the cell surface to the internalization reaction through the OM bilayer. Our discussions endeavor to answer two main questions: what is the origin of colicin-binding affinity and specificity, and after adsorption to OM porins, do colicin polypeptides translocate through porin channels, or enter by another, currently unknown pathway?
Collapse
Affiliation(s)
- Zhenghua Cao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Norman, OK 73019, USA
| | | |
Collapse
|
37
|
Abstract
The process by which the endonuclease domain of colicin E9 is translocated across the outer membrane, the periplasmic space and the cytoplasmic membrane to reach the cytoplasm of E. coli cells, resulting in DNA degradation and cell death, is a unique event in prokaryotic biology. Although considerable information is known about the role of the BtuB outer membrane receptor, as well as the mostly periplasmic Tol proteins that are essential for the translocation process, the precise nature of the interactions between colicin E9 and these proteins remains to be elucidated. In this review, we consider our current understanding of the key events in this process, concentrating on recent findings concerning receptor-binding, translocation and the mechanism of cytotoxicity.
Collapse
Affiliation(s)
- Richard James
- Division of microbiology and infectious diseases, University Hospital, University of Nottingham, NG7 2UH, Nottingham, UK.
| | | | | | | |
Collapse
|
38
|
Bouveret E, Journet L, Walburger A, Cascales E, Bénédetti H, Lloubès R. Analysis of the Escherichia coli Tol-Pal and TonB systems by periplasmic production of Tol, TonB, colicin, or phage capsid soluble domains. Biochimie 2002; 84:413-21. [PMID: 12423784 DOI: 10.1016/s0300-9084(02)01423-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this review is to describe an in vivo assay of the interactions taking place in the Tol-Pal or TonB-ExbB-ExbD envelope complexes in the periplasm of Escherichia coli and between them and colicins or g3p protein of filamentous bacteriophages. Domains of colicins or periplasmic soluble domains of Tol or TonB proteins can be artificially addressed to the periplasm of bacteria by fusing them to a signal sequence from an exported protein. These domains interact specifically in the periplasm with the Tol or TonB complexes and disturb their function, which can be directly detected by the appearance of specific tol or tonB phenotypes. This technique can be used to detect new interactions, to characterize them biochemically and to map them or to induce tol or tonB phenotypes to study the functions of these two complexes.
Collapse
|
39
|
Walburger A, Lazdunski C, Corda Y. The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Mol Microbiol 2002; 44:695-708. [PMID: 11994151 DOI: 10.1046/j.1365-2958.2002.02895.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tol/Pal system of Escherichia coli is composed of the YbgC, TolQ, TolA, TolR, TolB, Pal and YbgF proteins. It is involved in maintaining the integrity of the outer membrane, and is required for the uptake of group A colicins and DNA of filamentous bacteriophages. To identify new interactions between the components of the Tol/Pal system and gain insight into the mechanism of colicin import, we performed a yeast two-hybrid screen using the different components of the Tol/Pal system and colicin A. Using this system, we confirmed the already known interactions and identified several new interactions. TolB dimerizes and the periplasmic domain of TolA interacts with YbgF and TolB. Our results indicate that the central domain of TolA (TolAII) is sufficient to interact with YbgF, that the C-terminal domain of TolA (TolAIII) is sufficient to interact with TolB, and that the amino terminal domain of TolB (D1) is sufficient to bind TolAIII. The TolA/TolB interaction was confirmed by cross-linking experiments on purified proteins. Moreover, we show that the interaction between TolA and TolB is required for the uptake of colicin A and for the membrane integrity. These results demonstrate that the TolA/TolB interaction allows the formation of a trans-envelope complex that brings the inner and outer membranes in close proximity.
Collapse
Affiliation(s)
- Anne Walburger
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS 31, Chemin Joseph Aiguier, Marseille, France
| | | | | |
Collapse
|
40
|
Soelaiman S, Jakes K, Wu N, Li C, Shoham M. Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell 2001; 8:1053-62. [PMID: 11741540 DOI: 10.1016/s1097-2765(01)00396-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Colicins kill E. coli by a process that involves binding to a surface receptor, entering the cell, and, finally, intoxicating it. The lethal action of colicin E3 is a specific cleavage in the ribosomal decoding A site. The crystal structure of colicin E3, reported here in a binary complex with its immunity protein (IP), reveals a Y-shaped molecule with the receptor binding domain forming a 100 A long stalk and the two globular heads of the translocation domain (T) and the catalytic domain (C) comprising the two arms. Active site residues are D510, H513, E517, and R545. IP is buried between T and C. Rather than blocking the active site, IP prevents access of the active site to the ribosome.
Collapse
Affiliation(s)
- S Soelaiman
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
41
|
Journet L, Bouveret E, Rigal A, Lloubes R, Lazdunski C, Bénédetti H. Import of colicins across the outer membrane of Escherichia coli involves multiple protein interactions in the periplasm. Mol Microbiol 2001; 42:331-44. [PMID: 11703658 DOI: 10.1046/j.1365-2958.2001.02592.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several proteins of the Tol/Pal system are required for group A colicin import into Escherichia coli. Colicin A interacts with TolA and TolB via distinct regions of its N-terminal domain. Both interactions are required for colicin translocation. Using in vivo and in vitro approaches, we show in this study that colicin A also interacts with a third component of the Tol/Pal system required for colicin import, TolR. This interaction is specific to colicins dependent on TolR for their translocation, strongly suggesting a direct involvement of the interaction in the colicin translocation step. TolR is anchored to the inner membrane by a single transmembrane segment and protrudes into the periplasm. The interaction involves part of the periplasmic domain of TolR and a small region of the colicin A N-terminal domain. This region and the other regions responsible for the interaction with TolA and TolB have been mapped precisely within the colicin A N-terminal domain and appear to be arranged linearly in the colicin sequence. Multiple contacts with periplasmic-exposed Tol proteins are therefore a general principle required for group A colicin translocation.
Collapse
Affiliation(s)
- L Journet
- CNRS, LISM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The pore-forming colicins, the first proteins that were capable of forming voltage-dependent ion channels to be sequenced, have turned out to be both less tractable and more mysterious than imagined; yet they have proved interesting at every step of their short journey from producing cell to vanquished target cell. Starting out as a remarkably extended water-soluble protein, the colicin molecule is designed to interact simultaneously with several components of the complex membrane of the target cell, transform itself into a membrane protein, and become an ion channel with inscrutable properties. Unraveling how it does all this appears to be leading us into the dark recesses of protein/protein and protein/membrane interaction, where lurk fundamental processes reluctantly waiting to be revealed.
Collapse
Affiliation(s)
- J H Lakey
- School of Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, UK
| | | |
Collapse
|
43
|
Germon P, Ray MC, Vianney A, Lazzaroni JC. Energy-dependent conformational change in the TolA protein of Escherichia coli involves its N-terminal domain, TolQ, and TolR. J Bacteriol 2001; 183:4110-4. [PMID: 11418549 PMCID: PMC95298 DOI: 10.1128/jb.183.14.4110-4114.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TolQ, TolR, and TolA inner membrane proteins of Escherichia coli are involved in maintaining the stability of the outer membrane. They share homology with the ExbB, ExbD, and TonB proteins, respectively. The last is involved in energy transduction between the inner and the outer membrane, and its conformation has been shown to depend on the presence of the proton motive force (PMF), ExbB, and ExbD. Using limited proteolysis experiments, we investigated whether the conformation of TolA was also affected by the PMF. We found that dissipation of the PMF by uncouplers led to the formation of a proteinase K digestion fragment of TolA not seen when uncouplers are omitted. This fragment was also detected in Delta tolQ, Delta tolR, and tolA(H22P) mutants but, in contrast to the parental strain, was also seen in the absence of uncouplers. We repeated those experiments in outer membrane mutants such as lpp, pal, and Delta rfa mutants: the behavior of TolA in lpp mutants was similar to that observed with the parental strain. However, the proteinase K-resistant fragment was never detected in the Delta rfa mutant. Altogether, these results suggest that TolA is able to undergo a PMF-dependent change of conformation. This change requires TolQ, TolR, and a functional TolA N-terminal domain. The potential role of this energy-dependent process in the stability of the outer membrane is discussed.
Collapse
Affiliation(s)
- P Germon
- Unité de Microbiologie et Génétique, ERS2009 (CNRS-INSA-Université Lyon 1), F-69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
44
|
Lloubès R, Cascales E, Walburger A, Bouveret E, Lazdunski C, Bernadac A, Journet L. The Tol-Pal proteins of the Escherichia coli cell envelope: an energized system required for outer membrane integrity? Res Microbiol 2001; 152:523-9. [PMID: 11501670 DOI: 10.1016/s0923-2508(01)01226-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The outer membrane of gram-negative bacteria acts as a barrier against harmful lipophilic compounds and larger molecules unable to diffuse freely through the porins. However, outer membrane proteins together with the Tol-Pal and TonB systems have been exploited for the entry of macromolecules such as bacteriocins and phage DNA through the Escherichia coli cell envelope. The TonB system is involved in the active transport of iron siderophores and vitamin B12, while no more precise physiological role of the Tol-Pal system has yet been defined than its requirement for cell envelope integrity. These two systems, containing an energized inner membrane protein interacting with outer membrane proteins, share similarities.
Collapse
Affiliation(s)
- R Lloubès
- Institut de Biologie Structurale et Microbiologie (CNRS), UPR 9027, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Moeck GS, Letellier L. Characterization of in vitro interactions between a truncated TonB protein from Escherichia coli and the outer membrane receptors FhuA and FepA. J Bacteriol 2001; 183:2755-64. [PMID: 11292793 PMCID: PMC99490 DOI: 10.1128/jb.183.9.2755-2764.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 02/02/2001] [Indexed: 11/20/2022] Open
Abstract
High-affinity iron uptake in gram-negative bacteria depends upon TonB, a protein which couples the proton motive force in the cytoplasmic membrane to iron chelate receptors in the outer membrane. To advance studies on TonB structure and function, we expressed a recombinant form of Escherichia coli TonB lacking the N-terminal cytoplasmic membrane anchor. This protein (H(6)-'TonB; M(r), 24,880) was isolated in a soluble fraction of lysed cells and was purified by virtue of a hexahistidine tag located at its N terminus. Sedimentation experiments indicated that the H(6)-'TonB preparation was almost monodisperse and the protein was essentially monomeric. The value found for the Stokes radius (3.8 nm) is in good agreement with the value calculated by size exclusion chromatography. The frictional ratio (2.0) suggested that H(6)-'TonB adopts a highly asymmetrical form with an axial ratio of 15. H(6)-'TonB captured both the ferrichrome-iron receptor FhuA and the ferric enterobactin receptor FepA from detergent-solubilized outer membranes in vitro. Capture was enhanced by preincubation of the receptors with their cognate ligands. Cross-linking assays with the purified proteins in vitro demonstrated that there was preferential interaction between TonB and ligand-loaded FhuA. Purified H(6)-'TonB was found to be stable and thus shows promise for high-resolution structural studies.
Collapse
Affiliation(s)
- G S Moeck
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR CNRS 8619, Université de Paris-Sud, F-91405, Orsay cedex, France
| | | |
Collapse
|
46
|
Gokce I, Raggett EM, Hong Q, Virden R, Cooper A, Lakey JH. The TolA-recognition site of colicin N. ITC, SPR and stopped-flow fluorescence define a crucial 27-residue segment. J Mol Biol 2000; 304:621-32. [PMID: 11099384 DOI: 10.1006/jmbi.2000.4232] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Colicins translocate across the Escherichia coli outer membrane and periplasm by interacting with several receptors. After first binding to the outer membrane surface receptors via their central region, they interact with TolA or TonB proteins via their N-terminal region. Colicin N residues critical to TolA binding have been discovered, but the full extent of any colicin TolA site is unknown. We present, for the first time, a fully mapped TolA binding site for a colicin. It was determined through the use of alanine-scanning mutants, glutathione S-transferase fusion peptides and Biacore/fluorescence binding studies. The minimal TolA binding region is 27 residues and of similar size to the TolA binding region of bacteriophage g3p-D1 protein. Stopped-flow kinetic studies show that the binding to TolA follows slow association kinetics. The role of other E. coli Tol proteins in colicin translocation was also investigated. Isothermal titration microcalorimetry (ITC) and in vivo studies conclusively show that colicin N translocation does not require the presence of TolB. ITC also demonstrated colicin A interaction with TolB, and that colicin A in its native state does not interact with TolAII-III. Colicin N does not bind TolR-II. The TolA protein is shown to be unsuitable for direct immobilisation in Biacore analysis.
Collapse
Affiliation(s)
- I Gokce
- Department of Chemistry Faculty of Science, Gaziomanpasa University, Tokat, Turkey
| | | | | | | | | | | |
Collapse
|
47
|
Penfold CN, Garinot-Schneider C, Hemmings AM, Moore GR, Kleanthous C, James R. A 76-residue polypeptide of colicin E9 confers receptor specificity and inhibits the growth of vitamin B12-dependent Escherichia coli 113/3 cells. Mol Microbiol 2000; 38:639-49. [PMID: 11069686 DOI: 10.1046/j.1365-2958.2000.02160.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.
Collapse
Affiliation(s)
- C N Penfold
- Colicin Research Group, Schools of Biological and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
48
|
Lazdunski C, Bouveret E, Rigal A, Journet L, Lloubès R, Bénédetti H. Colicin import into Escherichia coli cells requires the proximity of the inner and outer membranes and other factors. Int J Med Microbiol 2000; 290:337-44. [PMID: 11111908 DOI: 10.1016/s1438-4221(00)80037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Affiliation(s)
- C Lazdunski
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie, CNRS, Marseille, France.
| | | | | | | | | | | |
Collapse
|
49
|
Simonet V, Malléa M, Pagès JM. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 2000; 44:311-5. [PMID: 10639355 PMCID: PMC89676 DOI: 10.1128/aac.44.2.311-315.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli OmpF porin is a nonspecific channel involved in the membrane translocation of small hydrophilic molecules and especially in the passage of beta-lactam antibiotics. In order to understand the dynamic of charged-compound uptake through bacterial porins, specific charges located in the E. coli OmpF channel were mutated. Substitutions G119D and G119E, inserting a protruding acidic side chain into the pore, decreased cephalosporin and colicin susceptibilities. Cefepime diffusion was drastically altered by these mutations. Conversely, substitutions R132A and R132D, changing a residue located in the positively charged cluster, increased the rate of cephalosporin uptake without modifying colicin sensitivity. Modelling approaches suggest that G119E generates a transverse hydrogen bond dividing the pore, while the two R132 substitutions stretch the channel size. These charge alterations located in the constriction area have differential effects on cephalosporin diffusion and substantially modify the profile of antibiotic susceptibility.
Collapse
Affiliation(s)
- V Simonet
- CJF 9606, Faculté de Médecine, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
50
|
Carr S, Penfold CN, Bamford V, James R, Hemmings AM. The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. Structure 2000; 8:57-66. [PMID: 10673426 DOI: 10.1016/s0969-2126(00)00079-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND E colicin proteins have three functional domains, each of which is implicated in one of the stages of killing Escherichia coli cells: receptor binding, translocation and cytotoxicity. The central (R) domain is responsible for receptor-binding activity whereas the N-terminal (T) domain mediates translocation, the process by which the C-terminal cytotoxic domain is transported from the receptor to the site of its cytotoxicity. The translocation of enzymatic E colicins like colicin E9 is dependent upon TolB but the details of the process are not known. RESULTS We have demonstrated a protein-protein interaction between the T domain of colicin E9 and TolB, an essential component of the tol-dependent translocation system in E. coli, using the yeast two-hybrid system. The crystal structure of TolB, a procaryotic tryptophan-aspartate (WD) repeat protein, reveals an N-terminal alpha + beta domain based on a five-stranded mixed beta sheet and a C-terminal six-bladed beta-propeller domain. CONCLUSIONS The results suggest that the TolB-box residues of the T domain of colicin E9 interact with the beta-propeller domain of TolB. The protein-protein interactions of other beta-propeller-containing proteins, the yeast yPrp4 protein and G proteins, are mediated by the loops or outer sheets of the propeller blades. The determination of the three-dimensional structure of the T domain-TolB complex and the isolation of mutations in TolB that abolish the interaction with the T domain will reveal fine details of the protein-protein interaction of TolB and the T domain of E colicins.
Collapse
Affiliation(s)
- S Carr
- Colicin Research Group, School of Biological Sciences, School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | | | | | |
Collapse
|