1
|
Hydrogenosomes of Anaerobic Fungi: An Alternative Way to Adapt to Anaerobic Environments. HYDROGENOSOMES AND MITOSOMES: MITOCHONDRIA OF ANAEROBIC EUKARYOTES 2019. [DOI: 10.1007/978-3-030-17941-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
2
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
|
4
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 2008; 1125:308-21. [PMID: 18378601 DOI: 10.1196/annals.1419.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaerobic fungi, first described in 1975 by Orpin, live in close contact with bacteria and other microorganisms in the rumen and caecum of herbivorous animals, where they digest ingested plant food. Seventeen distinct anaerobic fungi belonging to five different genera have been described. They have been found in at least 50 different herbivorous animals. Anaerobic fungi do not possess mitochondria, but instead have hydrogenosomes, which form hydrogen and carbon dioxide from pyruvate and malate during fermentation of carbohydrates. In addition, they are very oxygen- and temperature-sensitive, and their DNA has an unusually high AT content of from 72 to 87 mol%. My initial reason for studying anaerobic fungi was because they solubilize lignocellulose and produce all enzymes needed to efficiently hydrolyze cellulose and hemicelluloses. Although some of these enzymes are found free in the medium, most of them are associated with cellulosomal and polycellulosomal complexes, in which the enzymes are attached through fungal dockerins to scaffolding proteins; this is similar to what has been found for cellulosomes from anaerobic bacteria. Although cellulosomes from anaerobic fungi share many properties with cellulosomes of anaerobic cellulolytic bacteria and have comparable structures, their structures differ in their amino acid sequences. I discuss some features of the cellulosome of the anaerobic fungus Orpinomyces sp. PC-2 and some possible uses of its enzymes in industrial settings.
Collapse
Affiliation(s)
- Lars G Ljungdahl
- Department of Biochemistry and Molecular Biology, Fred C. Davison Life Sciences Complex, University of Georgia, Athens, GA 30602-7229, USA.
| |
Collapse
|
6
|
Steenbakkers PJM, Irving JA, Harhangi HR, Swinkels WJC, Akhmanova A, Dijkerman R, Jetten MSM, van der Drift C, Whisstock JC, Op den Camp HJM. A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. ACTA ACUST UNITED AC 2008; 112:999-1006. [PMID: 18539447 DOI: 10.1016/j.mycres.2008.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/08/2008] [Accepted: 01/24/2008] [Indexed: 11/17/2022]
Abstract
A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30% identity and 50% similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70% of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.
Collapse
Affiliation(s)
- Peter J M Steenbakkers
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hackstein JHP, Tjaden J, Huynen M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 2006; 50:225-45. [PMID: 16897087 DOI: 10.1007/s00294-006-0088-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/29/2006] [Accepted: 07/02/2006] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6525, ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
8
|
Abstract
Large-scale comparative genomics in harness with proteomics has substantiated fundamental features of eukaryote cellular evolution. The evolutionary trajectory of modern eukaryotes is distinct from that of prokaryotes. Data from many sources give no direct evidence that eukaryotes evolved by genome fusion between archaea and bacteria. Comparative genomics shows that, under certain ecological settings, sequence loss and cellular simplification are common modes of evolution. Subcellular architecture of eukaryote cells is in part a physical-chemical consequence of molecular crowding; subcellular compartmentation with specialized proteomes is required for the efficient functioning of proteins.
Collapse
Affiliation(s)
- C G Kurland
- Department of Microbial Ecology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
9
|
Nicholson MJ, Theodorou MK, Brookman JL. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome. MICROBIOLOGY-SGM 2005; 151:121-133. [PMID: 15632432 DOI: 10.1099/mic.0.27353-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.
Collapse
Affiliation(s)
- Matthew J Nicholson
- School of Biological Sciences, University of Manchester, 1.800 Stopford Building, Oxford Road, Manchester M13 9PT, UK
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Michael K Theodorou
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| | - Jayne L Brookman
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion SY23 3EB, UK
| |
Collapse
|
10
|
Hackstein JHP, Yarlett N. Hydrogenosomes and symbiosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 41:117-42. [PMID: 16623392 DOI: 10.1007/3-540-28221-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL 6525 ED Nijmegen, The Netherlands.
| | | |
Collapse
|
11
|
|
12
|
Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, den Ridder JJJ, Op den Camp HJM, van Dijken JP, Pronk JT. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 2004; 4:69-78. [PMID: 14554198 DOI: 10.1016/s1567-1356(03)00141-7] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 degrees C, were 0.3-1.1 micromol min(-1) (mg protein)(-1), with a Km for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively.
Collapse
Affiliation(s)
- Marko Kuyper
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 2004; 51:1389-99. [PMID: 14982632 DOI: 10.1046/j.1365-2958.2003.03912.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of pyruvate, which is in marked contrast to the hydrogenosomal metabolism of the anaerobic parabasalian flagellates Trichomonas vaginalis and Tritrichomonas foetus, because these organisms decarboxylate pyruvate with the aid of pyruvate:ferredoxin oxidoreductase (PFO). Here, we show that the chytrids Piromyces sp. E2 and Neocallimastix sp. L2 also possess an alcohol dehydrogenase E (ADHE) that makes them unique among hydrogenosome-bearing anaerobes. We demonstrate that Piromyces sp. E2 routes the final steps of its carbohydrate catabolism via PFL and ADHE: in axenic culture under standard conditions and in the presence of 0.3% fructose, 35% of the carbohydrates were degraded in the cytosol to the end-products ethanol, formate, lactate and succinate, whereas 65% were degraded via the hydrogenosomes to acetate and formate. These observations require a refinement of the previously published metabolic schemes. In particular, the importance of the hydrogenase in this type of hydrogenosome has to be revisited.
Collapse
Affiliation(s)
- Brigitte Boxma
- Department of Evolutionary Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Harhangi HR, Akhmanova A, Steenbakkers PJM, Jetten MSM, van der Drift C, Op den Camp HJM. Genomic DNA analysis of genes encoding (hemi-)cellulolytic enzymes of the anaerobic fungus Piromyces sp. E2. Gene 2003; 314:73-80. [PMID: 14527719 DOI: 10.1016/s0378-1119(03)00705-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anaerobic fungi contain more than one copy of genes encoding (hemi-)cellulases in their genome. The arrangement of these genes on the chromosomes was not known. A genomic DNA (gDNA) library of Piromyces sp. E2 was screened with different probes specific for (hemi-)cellulolytic enzymes. This screening resulted in three gDNA clones with genes encoding glycoside hydrolase enzymes of families 1 (beta-glucosidase), 6 (exoglucanase) and 26 (mannanase). Each clone contained two or more genes of the same family. Comparison of the gene copies on a clone revealed that they were highly homologous, and in addition, 54-75% of the substitutions was synonymous. One of the mannanase genes contained an intron. PCR with selected primers resulted in a gDNA clone with a new representative (cel9B) of glycoside hydrolase family 9 (endoglucanase). Comparison with cel9A revealed that cel9B had 67% homology on the nucleotide level. Furthermore, three introns were present. All results of this paper taken together provided evidence for duplications of (hemi-)cellulolytic genes, which resulted in clusters of almost identical genes arranged head-to-tail on the genome. In contrast to other eukaryotes, this phenomenon appears frequently in anaerobic fungi.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Harhangi HR, Freelove ACJ, Ubhayasekera W, van Dinther M, Steenbakkers PJM, Akhmanova A, van der Drift C, Jetten MSM, Mowbray SL, Gilbert HJ, Op den Camp HJM. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:30-9. [PMID: 12850270 DOI: 10.1016/s0167-4781(03)00112-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic fungi possess high cellulolytic activities, which are organised in high molecular mass (HMM) complexes. Besides catalytic modules, the cellulolytic enzyme components of these complexes contain non-catalytic modules, known as dockerins, that play a key role in complex assembly. Screening of a genomic and a cDNA library of two Piromyces species resulted in the isolation of two clones containing inserts of 5.5 kb (Piromyces sp. E2) and 1.5 kb (Piromyces equi). Both clones contained the complete coding region of a glycoside hydrolase (GH) from family 6, consisting of a 20 amino acid signal peptide, a 76 (sp. E2)/81 (P. equi) amino acid stretch comprising two fungal non-catalytic docking domains (NCDDs), a 24 (sp. E2)/16 (P. equi) amino acid linker, and a 369 amino acid catalytic module. Homology modelling of the catalytic module strongly suggests that the Piromyces enzymes will be processive cellobiohydrolases. The catalytic residues and all nearby residues are conserved. The reaction is thus expected to proceed via a classical single-displacement (inverting) mechanism that is characteristic of this family of GHs. The enzyme, defined as Cel6A, encoded by the full-length Piromyces E2 sequence was expressed in Escherichia coli. The recombinant protein expressed had a molecular mass of 55 kDa and showed activity against Avicel, supporting the observed relationship of the sequence to those of known cellobiohydrolases. Affinity-purified cellulosomes of Piromyces sp. E2 were analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis. A major band was detected with the molecular weight of Cel6A. A tryptic fingerprint of this protein confirmed its identity.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Emelyanov VV. Mitochondrial connection to the origin of the eukaryotic cell. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1599-618. [PMID: 12694174 DOI: 10.1046/j.1432-1033.2003.03499.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic evidence is presented that primitively amitochondriate eukaryotes containing the nucleus, cytoskeleton, and endomembrane system may have never existed. Instead, the primary host for the mitochondrial progenitor may have been a chimeric prokaryote, created by fusion between an archaebacterium and a eubacterium, in which eubacterial energy metabolism (glycolysis and fermentation) was retained. A Rickettsia-like intracellular symbiont, suggested to be the last common ancestor of the family Rickettsiaceae and mitochondria, may have penetrated such a host (pro-eukaryote), surrounded by a single membrane, due to tightly membrane-associated phospholipase activity, as do present-day rickettsiae. The relatively rapid evolutionary conversion of the invader into an organelle may have occurred in a safe milieu via numerous, often dramatic, changes involving both partners, which resulted in successful coupling of the host glycolysis and the symbiont respiration. Establishment of a potent energy-generating organelle made it possible, through rapid dramatic changes, to develop genuine eukaryotic elements. Such sequential, or converging, global events could fill the gap between prokaryotes and eukaryotes known as major evolutionary discontinuity.
Collapse
|
17
|
Steenbakkers PJM, Harhangi HR, Bosscher MW, van der Hooft MMC, Keltjens JT, van der Drift C, Vogels GD, op den Camp HJM. beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem J 2003; 370:963-70. [PMID: 12485115 PMCID: PMC1223235 DOI: 10.1042/bj20021767] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2002] [Revised: 12/13/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The cellulosomes of anaerobic fungi convert crystalline cellulose solely into glucose, in contrast with bacterial cellulosomes which produce cellobiose. Previously, a beta-glucosidase was identified in the cellulosome of Piromyces sp. strain E2 by zymogram analysis, which represented approx. 25% of the extracellular beta-glucosidase activity. To identify the component in the fungal cellulosome responsible for the beta-glucosidase activity, immunoscreening with anti-cellulosome antibodies was used to isolate the corresponding gene. A 2737 bp immunoclone was isolated from a cDNA library. The clone encoded an extracellular protein containing a eukaryotic family 3 glycoside hydrolase domain homologue and was therefore named cel3A. The C-terminal end of the encoded Cel3A protein consisted of an auxiliary domain and three fungal dockerins, typical for cellulosome components. The Cel3A catalytic domain was expressed in Escherichia coli BL21 and purified. Biochemical analyses of the recombinant protein showed that the Cel3A catalytic domain was specific for beta-glucosidic bonds and functioned as an exoglucohydrolase on soluble substrates as well as cellulose. Comparison of the apparent K (m) and K (i) values of heterologous Cel3A and the fungal cellulosome for p -nitrophenyl-beta-D-glucopyranoside and D-glucono-1,5-delta-lactone respectively indicated that cel3A encodes the beta-glucosidase activity of the Piromyces sp. strain E2 cellulosome.
Collapse
Affiliation(s)
- Peter J M Steenbakkers
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Steenbakkers PJM, Ubhayasekera W, Goossen HJAM, van Lierop EMHM, van der Drift C, Vogels GD, Mowbray SL, Op den Camp HJM. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Biochem J 2002; 365:193-204. [PMID: 12071852 PMCID: PMC1222669 DOI: 10.1042/bj20011866] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cellulosome produced by Piromyces sp. strain E2 during growth on filter paper was purified by using an optimized cellulose-affinity method consisting of steps of EDTA washing of the cellulose-bound protein followed by elution with water. Three dominant proteins were identified in the cellulosome preparation, with molecular masses of 55, 80 and 90 kDa. Treatment of cellulose-bound cellulosome with a number of denaturing agents was also tested. Incubation with 0.5% (w/v) SDS or 8 M urea released most cellulosomal proteins, while leaving the greater fraction of the 80, 90 and 170 kDa components. To investigate the major 90 kDa cellulosome protein further, the corresponding gene, cel9A, was isolated, using immunoscreening and N-terminal sequencing. Inspection of the cel9A genomic organization revealed the presence of four introns, allowing the construction of a consensus for introns in anaerobic fungi. The 2800 bp cDNA clone contained an open reading frame of 2334 bp encoding a 757-residue extracellular protein. Cel9A includes a 445-residue glycoside hydrolase family 9 catalytic domain, and so is the first fungal representative of this large family. Both modelling of the catalytic domain as well as the activity measured with low level expression in Escherichia coli indicated that Cel9A is an endoglucanase. The catalytic domain is succeeded by a putative beta-sheet module of 160 amino acids with unknown function, followed by a threonine-rich linker and three fungal docking domains. Homology modelling of the Cel9A dockerins suggested that the cysteine residues present are all involved in disulphide bridges. The results presented here are used to discuss evolution of glycoside hydrolase family 9 enzymes.
Collapse
Affiliation(s)
- Peter J M Steenbakkers
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M, Verbeek F, Tielens AGM, Haferkamp I, Neuhaus HE, Vogels G, Veenhuis M, Hackstein JHP. Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 2002; 44:1441-54. [PMID: 12067335 DOI: 10.1046/j.1365-2958.2002.02959.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A mitochondrial-type ADP/ATP carrier (AAC) has been identified in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2. Biochemical and immunocytochemical studies revealed that this ADP/ATP carrier is an integral component of hydrogenosomal membranes. Expression of the corresponding cDNA in Escherichia coli confers the ability on the bacterial host to incorporate ADP at significantly higher rates than ATP--similar to isolated mitochondria of yeast and animals. Phylogenetic analysis of this AAC gene (hdgaac) confirmed with high statistical support that the hydrogenosomal ADP/ATP carrier of Neocallimastix sp. L2 belongs to the family of veritable mitochondrial-type AACs. Hydrogenosome-bearing anaerobic ciliates possess clearly distinct mitochondrial-type AACs, whereas the potential hydrogenosomal carrier Hmp31 of the anaerobic flagellate Trichomonas vaginalis and its homologue from Trichomonas gallinae do not belong to this family of proteins. Also, phylogenetic analysis of genes encoding mitochondrial-type chaperonin 60 proteins (HSP 60) supports the conclusion that the hydrogenosomes of anaerobic chytrids and anaerobic ciliates had independent origins, although both of them arose from mitochondria.
Collapse
Affiliation(s)
- Frank Voncken
- Department of Evolutionary Microbiology, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Harhangi HR, Steenbakkers PJM, Akhmanova A, Jetten MSM, van der Drift C, Op den Camp HJM. A highly expressed family 1 beta-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:293-303. [PMID: 11997095 DOI: 10.1016/s0167-4781(01)00380-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anaerobic fungi have very high cellulolytic activities and thus degrade cellulose very efficiently. In cellulose hydrolysis, beta-glucosidases play an important role in prevention of product inhibition because they convert oligosaccharides to glucose. A beta-glucosidase gene (cel1A) was isolated from a cDNA library of the anaerobic fungus Piromyces sp. E2. Sequence analysis revealed that the gene encodes a modular protein with a calculated mass of 75800 Da and a pI of 5.05. A secretion signal was followed by a negatively charged domain with unknown function. This domain was coupled with a short linker to a catalytic domain that showed high homology with glycosyl hydrolases belonging to family 1. Southern blot analysis revealed the multiplicity of the gene in the genome. Northern analysis showed that growth on fructose resulted in a high expression of cel1A. The cel1A gene was successfully expressed in Pichia pastoris. The purified heterologously expressed protein was shown to be encoded by the cel1A gene by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of a tryptic digest. Purified heterologous Cel1A was active towards several artificial and natural substrates with beta-1-4 linked glucose molecules with a remarkably high activity on cellodextrins. The enzyme was strongly inhibited by D-glucono-1,5-delta-lactone (K(i)=22 microM), but inhibition by glucose was much less (K(i)=9.5 mM). pH and temperature optimum were 6 and 39 degrees C, respectively. The enzyme was fairly stable, retaining more than 75% of its activity when incubated at 37 degrees C for 5 weeks. Transglycosylation activity could be demonstrated by MALDI-TOF MS analysis of products formed during degradation of cellopentaose.
Collapse
Affiliation(s)
- Harry R Harhangi
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP. A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 2002; 284:103-12. [PMID: 11891051 DOI: 10.1016/s0378-1119(02)00388-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presence of a [Fe]-hydrogenase in the hydrogenosomes of the anaerobic chytridiomycete fungus Neocallimastix sp. L2 has been demonstrated by immunocytochemistry, subcellular fractionation, Western-blotting and measurements of hydrogenase activity in the presence of various concentrations of carbon monoxide (CO). Since the hydrogenosomal hydrogenase activity can be inhibited nearly completely by low concentrations of CO, it is likely that the [Fe]-hydrogenase is responsible for at least 90% of the hydrogen production in isolated hydrogenosomes. Most likely, this hydrogenase is encoded by the gene hydL2 that exhibits all the motifs that are characteristic of [Fe]-hydrogenases. The open reading frame starts with an N-terminal extension of 38 amino acids that has the potential to function as a hydrogenosomal targeting signal. The downstream sequences encode an enzyme of a calculated molecular mass of 66.4 kDa that perfectly matches the molecular mass of the mature hydrogenase in the hydrogenosome. Phylogenetic analysis revealed that the hydrogenase of Neocallimastix sp. L2. clusters together with similar ('long-type') [Fe]-hydrogenases from Trichomonas vaginalis, Nyctotherus ovalis, Desulfovibrio vulgaris and Thermotoga maritima. Phylogenetic analysis based on the H-cluster - the only module of [Fe]-hydrogenases that is shared by all types of [Fe]-hydrogenases and hydrogenase-like proteins - revealed a monophyly of all hydrogenase-like proteins of the aerobic eukaryotes. Our analysis suggests that the evolution of the various [Fe]-hydrogenases and hydrogenase-like proteins occurred by a differential loss of Fe-S clusters in the N-terminal part of the [Fe]-hydrogenase.
Collapse
Affiliation(s)
- Frank G J Voncken
- Department of Evolutionary Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, NL-6525 ED, The, Nijmegen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
da Fonseca CA, Jesuino RS, Felipe MS, Cunha DA, Brito WA, Soares CM. Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. Microbes Infect 2001; 3:535-42. [PMID: 11418327 DOI: 10.1016/s1286-4579(01)01409-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Paracoccidioides brasiliensis is a fungal pathogen of humans. To identify antigens from P. brasiliensis we fractionated a crude preparation of proteins from the fungus and detected the IgG reactive proteins by immunoblot assays of yeast cellular extracts with sera of patients with paracoccidioidomycosis (PCM). We identified and characterized six new antigens by amino acid sequencing and homology search analyses with other proteins deposited in a database. The newly characterized antigens were highly homologous to catalase, fructose-1,6-biphosphate aldolase (aldolase), glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase and triosephosphate isomerase from several sources. The characterized antigens presented preferential synthesis in yeast cells, the host fungus phase.
Collapse
Affiliation(s)
- C A da Fonseca
- Laboratório de Biologia Molecular, ICBII, UFG, Universidade Federal de Goiás, 74001-970, Go, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Dumas R, Biou V, Halgand F, Douce R, Duggleby RG. Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res 2001; 34:399-408. [PMID: 11352718 DOI: 10.1021/ar000082w] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.
Collapse
Affiliation(s)
- R Dumas
- Laboratoire Mixte CNRS/INRA/Aventis, Aventis CropScience, 14-20 rue Pierre Baizet, 69263 Lyon, France.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.
Collapse
Affiliation(s)
- C G Kurland
- Department of Molecular Evolution, Evolutionary Biology Centre, University of Uppsala, Uppsala SE 752 36, Lund University, Lund SE 223 62, Sweden.
| | | |
Collapse
|
25
|
Abstract
By combining analyses of G + C content and patterns of codon usage and constructing phylogenetic trees, we describe the gene transfer of an endoglucanase (celA) from the rumen bacteria Fibrobacter succinogenes to the rumen fungi Orpinomyces joyonii. The strong similarity between different glycosyl hydrolases of rumen fungi and bacteria suggests that most, if not all, of the glycosyl hydrolases of rumen fungi that play an important role in the degradation of cellulose and other plant polysaccharides were acquired by horizontal gene transfer events. This acquisition allows fungi to establish a habitat within a new environmental niche: the rumen of the herbivorous mammals for which cellulose and plant hemicellulose constitute the main raw nutritive substrate.
Collapse
Affiliation(s)
- S Garcia-Vallvé
- Department of Biochemistry and Biotechnology, Rovira i Virgili University, Catalonia, Spain
| | | | | |
Collapse
|
26
|
Hackstein JH, Akhmanova A, Boxma B, Harhangi HR, Voncken FG. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol 1999; 7:441-7. [PMID: 10542423 DOI: 10.1016/s0966-842x(99)01613-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Like mitochondria, hydrogenosomes compartmentalize crucial steps of eukaryotic energy metabolism; however, this compartmentalization differs substantially between mitochondriate aerobes and hydrogenosome-containing anaerobes. Because hydrogenosomes have arisen independently in different lineages of eukaryotic microorganisms, comparative analysis of the various types of hydrogenosomes can provide insights into the functional and evolutionary aspects of compartmentalized energy metabolism in unicellular eukaryotes.
Collapse
Affiliation(s)
- J H Hackstein
- Dept. of Microbiology and Evolutionary Biology, University of Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Resolving the order of events that occurred during the transition from prokaryotic to eukaryotic cells remains one of the greatest problems in cell evolution. One view, the Archezoa hypothesis, proposes that the endosymbiotic origin of mitochondria occurred relatively late in eukaryotic evolution and that several mitochondrion-lacking protist groups diverged before the establishment of the organelle. Phylogenies based on small subunit ribosomal RNA and several protein-coding genes supported this proposal, placing amitochondriate protists such as diplomonads, parabasalids, and Microsporidia as the earliest diverging eukaryotic lineages. However, trees of other molecules, such as tubulins, heat shock protein 70, TATA box-binding protein, and the largest subunit of RNA polymerase II, indicate that Microsporidia are not deeply branching eukaryotes but instead are close relatives of the Fungi. Furthermore, recent discoveries of mitochondrion-derived genes in the nuclear genomes of entamoebae, Microsporidia, parabasalids, and diplomonads suggest that these organisms likely descend from mitochondrion-bearing ancestors. Although several protist lineages formally remain as candidates for Archezoa, most evidence suggests that the mitochondrial endosymbiosis took place prior to the divergence of all extant eukaryotes. In addition, discoveries of proteobacterial-like nuclear genes coding for cytoplasmic proteins indicate that the mitochondrial symbiont may have contributed more to the eukaryotic lineage than previously thought. As genome sequence data from parabasalids and diplomonads accumulate, it is becoming clear that the last common ancestor of these protist taxa and other extant eukaryotic groups already possessed many of the complex features found in most eukaryotes but lacking in prokaryotes. However, our confidence in the deeply branching position of diplomonads and parabasalids among eukaryotes is weakened by conflicting phylogenies and potential sources of artifact. Our current picture of early eukaryotic evolution is in a state of flux.
Collapse
|
28
|
Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JH. A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 1999; 32:1103-14. [PMID: 10361311 DOI: 10.1046/j.1365-2958.1999.01434.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chytrid fungi Piromyces sp. E2 and Neocallimastix sp. L2 are obligatory amitochondriate anaerobes that possess hydrogenosomes. Hydrogenosomes are highly specialized organelles engaged in anaerobic carbon metabolism; they generate molecular hydrogen and ATP. Here, we show for the first time that chytrid hydrogenosomes use pyruvate formate-lyase (PFL) and not pyruvate:ferredoxin oxidoreductase (PFO) for pyruvate catabolism, unlike all other hydrogenosomes studied to date. Chytrid PFLs are encoded by a multigene family and are abundantly expressed in Piromyces sp. E2 and Neocallimastix sp. L2. Western blotting after cellular fractionation, proteinase K protection assays and determinations of enzyme activities reveal that PFL is present in the hydrogenosomes of Piromyces sp. E2. The main route of the hydrogenosomal carbon metabolism involves PFL; the formation of equimolar amounts of formate and acetate by isolated hydrogenosomes excludes a significant contribution by PFO. Our data support the assumption that chytrid hydrogenosomes are unique and argue for a polyphyletic origin of these organelles.
Collapse
Affiliation(s)
- A Akhmanova
- Department of Microbiology and Evolutionary Biology, Faculty of Science, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|