1
|
Manning RJ, Tschurtschenthaler M, Sabitzer S, Witte A. Manipulation of viral protein production using the PCNA of halovirus фCh1 via alternative start codon usage. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
2
|
Liu Y, Demina TA, Roux S, Aiewsakun P, Kazlauskas D, Simmonds P, Prangishvili D, Oksanen HM, Krupovic M. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol 2021; 19:e3001442. [PMID: 34752450 PMCID: PMC8651126 DOI: 10.1371/journal.pbio.3001442] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
The archaeal tailed viruses (arTV), evolutionarily related to tailed double-stranded DNA (dsDNA) bacteriophages of the class Caudoviricetes, represent the most common isolates infecting halophilic archaea. Only a handful of these viruses have been genomically characterized, limiting our appreciation of their ecological impacts and evolution. Here, we present 37 new genomes of haloarchaeal tailed virus isolates, more than doubling the current number of sequenced arTVs. Analysis of all 63 available complete genomes of arTVs, which we propose to classify into 14 new families and 3 orders, suggests ancient divergence of archaeal and bacterial tailed viruses and points to an extensive sharing of genes involved in DNA metabolism and counterdefense mechanisms, illuminating common strategies of virus-host interactions with tailed bacteriophages. Coupling of the comparative genomics with the host range analysis on a broad panel of haloarchaeal species uncovered 4 distinct groups of viral tail fiber adhesins controlling the host range expansion. The survey of metagenomes using viral hallmark genes suggests that the global architecture of the arTV community is shaped through recurrent transfers between different biomes, including hypersaline, marine, and anoxic environments.
Collapse
Affiliation(s)
- Ying Liu
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| | - Tatiana A. Demina
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Simon Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Pakorn Aiewsakun
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David Prangishvili
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, Archaeal Virology Unit, Paris, France
| |
Collapse
|
3
|
Comparative Genomics of Two New HF1-like Haloviruses. Genes (Basel) 2020; 11:genes11040405. [PMID: 32276506 PMCID: PMC7230728 DOI: 10.3390/genes11040405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Few genomes of the HF1-group of viruses are currently available, and further examples would enhance the understanding of their evolution, improve their gene annotation, and assist in understanding gene function and regulation. Two novel HF1-group haloviruses, Serpecor1 and Hardycor2, were recovered from widely separated hypersaline lakes in Australia. Both are myoviruses with linear dsDNA genomes and infect the haloarchaeon Halorubrum coriense. Both genomes possess long, terminal direct repeat (TDR) sequences (320 bp for Serpecor1 and 306 bp for Hardycor2). The Serpecor1 genome is 74,196 bp in length, 57.0% G+C, and has 126 annotated coding sequences (CDS). Hardycor2 has a genome of 77,342 bp, 55.6% G+C, and 125 annotated CDS. They show high nucleotide sequence similarity to each other (78%) and with HF1 (>75%), and carry similar intergenic repeat (IR) sequences to those originally described in HF1 and HF2. Hardycor2 carries a DNA methyltransferase gene in the same genomic neighborhood as the methyltransferase genes of HF1, HF2 and HRTV-5, but is in the opposite orientation, and the inferred proteins are only distantly related. Comparative genomics allowed us to identify the candidate genes mediating cell attachment. The genomes of Serpecor1 and Hardycor2 encode numerous small proteins carrying one or more CxxC motifs, a signature feature of zinc-finger domain proteins that are known to participate in diverse biomolecular interactions.
Collapse
|
4
|
An Uncultivated Virus Infecting a Nanoarchaeal Parasite in the Hot Springs of Yellowstone National Park. J Virol 2020; 94:JVI.01213-19. [PMID: 31666377 DOI: 10.1128/jvi.01213-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
The Nanoarchaeota are small cells with reduced genomes that are found attached to and dependent on a second archaeal cell for their growth and replication. Initially found in marine hydrothermal environments and subsequently in terrestrial geothermal hot springs, the Nanoarchaeota species that have been described are obligate ectobionts, each with a different host species. However, no viruses had been described that infect the Nanoarchaeota. Here, we identify a virus infecting Nanoarchaeota by the use of a combination of viral metagenomic and bioinformatic approaches. This virus, tentatively named Nanoarchaeota Virus 1 (NAV1), consists of a 35.6-kb circular DNA genome coding for 52 proteins. We further demonstrate that this virus is broadly distributed among Yellowstone National Park hot springs. NAV1 is one of the first examples of a virus infecting a single-celled organism that is itself an ectobiont of another single-celled organism.IMPORTANCE Here, we present evidence of the first virus found to infect Nanoarchaeota, a symbiotic archaean found in acidic hot springs of Yellowstone National Park, USA. Using culture-independent techniques, we provide the genome sequence and identify the archaeal host species of a novel virus, NAV1. NAV1 is the first example of a virus infecting an archaeal species that is itself an obligate symbiont and dependent on a second host organism for growth and cellular replication. On the basis of annotation of the NAV1 genome, we propose that this virus is the founding member of a new viral family, further demonstrating the remarkable genetic diversity of archaeal viruses.
Collapse
|
5
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
6
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
7
|
Complete Genome Sequence of the Model Halovirus PhiH1 (ΦH1). Genes (Basel) 2018; 9:genes9100493. [PMID: 30322017 PMCID: PMC6210493 DOI: 10.3390/genes9100493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
The halophilic myohalovirus Halobacterium virus phiH (ΦH) was first described in 1982 and was isolated from a spontaneously lysed culture of Halobacterium salinarum strain R1. Until 1994, it was used extensively as a model to study the molecular genetics of haloarchaea, but only parts of the viral genome were sequenced during this period. Using Sanger sequencing combined with high-coverage Illumina sequencing, the full genome sequence of the major variant (phiH1) of this halovirus has been determined. The dsDNA genome is 58,072 bp in length and carries 97 protein-coding genes. We have integrated this information with the previously described transcription mapping data. PhiH could be classified into Myoviridae Type1, Cluster 4 based on capsid assembly and structural proteins (VIRFAM). The closest relative was Natrialba virus phiCh1 (φCh1), which shared 63% nucleotide identity and displayed a high level of gene synteny. This close relationship was supported by phylogenetic tree reconstructions. The complete sequence of this historically important virus will allow its inclusion in studies of comparative genomics and virus diversity.
Collapse
|
8
|
The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1. J Virol 2017; 91:JVI.00206-17. [PMID: 28202757 DOI: 10.1128/jvi.00206-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadiiIMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus. Thus, repressor genes in other haloviruses could be identified by sequence homologies to gp79 in the future. Moreover, we describe the use of an inducible promoter of N. magadii Our work provides valuable tools for the identification of other unknown viral genes by our approach as well as for functional studies of proteins by inducible expression.
Collapse
|
9
|
Chen K, Zhao BS, He C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol 2016; 23:74-85. [PMID: 26933737 DOI: 10.1016/j.chembiol.2015.11.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (Ψ), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boxuan Simen Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Atanasova NS, Bamford DH, Oksanen HM. Virus-host interplay in high salt environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:431-444. [PMID: 26929102 DOI: 10.1111/1758-2229.12385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Interaction of viruses and cells has tremendous impact on cellular and viral evolution, nutrient cycling and decay of organic matter. Thus, viruses can indirectly affect complex processes such as climate change and microbial pathogenicity. During recent decades, studies on extreme environments have introduced us to archaeal viruses and viruses infecting extremophilic bacteria or eukaryotes. Hypersaline environments are known to contain strikingly high numbers of viruses (∼10(9) particles per ml). Halophilic archaea, bacteria and eukaryotes inhabiting hypersaline environments have only a few cellular predators, indicating that the role of viruses is highly important in these ecosystems. Viruses thriving in high salt are called haloviruses and to date more than 100 such viruses have been described. Virulent, temperate, and persistent halovirus life cycles have been observed among the known isolates including the recently described SNJ1-SNJ2 temperate virus pair which is the first example of an interplay between two haloviruses in one host cell. In addition to direct virus and cell isolations, metagenomics have provided a wealth of information about virus-host dynamics in hypersaline environments suggesting that halovirus populations and halophilic microorganisms are dynamic over time and spatially distributed around the highly saline environments on the Earth.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
12
|
Ouellette M, Jackson L, Chimileski S, Papke RT. Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006. Front Microbiol 2015; 6:251. [PMID: 25904898 PMCID: PMC4389544 DOI: 10.3389/fmicb.2015.00251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/13/2015] [Indexed: 01/16/2023] Open
Abstract
Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an annotated DNA methyltransferase gene HVO_A0006 was deleted from the genome. Sequence analysis of H26 revealed two motifs which are modified in the genome: C(m4)TAG and GCA(m6)BN6VTGC. Analysis of the ΔHVO_A0006 strain indicated that it exhibited reduced adenine methylation compared to the parental strain and altered the detected adenine motif. However, protein domain architecture analysis and amino acid alignments revealed that HVO_A0006 is homologous only to the N-terminal endonuclease region of Type IIG RM proteins and contains a PD-(D/E)XK nuclease motif, suggesting that HVO_A0006 is a PD-(D/E)XK nuclease family protein. Further bioinformatic analysis of the HVO_A0006 gene demonstrated that the gene is rare among the Halobacteria. It is surrounded by two transposition genes suggesting that HVO_A0006 is a fragment of a Type IIG RM gene, which has likely been acquired through gene transfer, and affects restriction-modification activity by interacting with another RM system component(s). Here, we present the first genome-wide characterization of DNA methylation in an archaeal species and examine the function of a DNA methyltransferase related gene HVO_A0006.
Collapse
Affiliation(s)
- Matthew Ouellette
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Laura Jackson
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
13
|
Senčilo A, Roine E. A Glimpse of the genomic diversity of haloarchaeal tailed viruses. Front Microbiol 2014; 5:84. [PMID: 24659986 PMCID: PMC3950731 DOI: 10.3389/fmicb.2014.00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 11/13/2022] Open
Abstract
Tailed viruses are the most common isolates infecting prokaryotic hosts residing in hypersaline environments. Archaeal tailed viruses represent only a small portion of all characterized tailed viruses of prokaryotes. But even this small dataset revealed that archaeal tailed viruses have many similarities to their counterparts infecting bacteria, the bacteriophages. Shared functional homologs and similar genome organizations suggested that all microbial tailed viruses have common virion architectural and assembly principles. Recent structural studies have provided evidence justifying this thereby grouping archaeal and bacterial tailed viruses into a single lineage. Currently there are 17 haloarchaeal tailed viruses with entirely sequenced genomes. Nine viruses have at least one close relative among the 17 viruses and, according to the similarities, can be divided into three groups. Two other viruses share some homologs and therefore are distantly related, whereas the rest of the viruses are rather divergent (or singletons). Comparative genomics analysis of these viruses offers a glimpse into the genetic diversity and structure of haloarchaeal tailed virus communities.
Collapse
Affiliation(s)
- Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki Helsinki, Finland
| |
Collapse
|
14
|
Dynamic viral populations in hypersaline systems as revealed by metagenomic assembly. Appl Environ Microbiol 2012; 78:6309-20. [PMID: 22773627 DOI: 10.1128/aem.01212-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Viruses of the Bacteria and Archaea play important roles in microbial evolution and ecology, and yet viral dynamics in natural systems remain poorly understood. Here, we created de novo assemblies from 6.4 Gbp of metagenomic sequence from eight community viral concentrate samples, collected from 12 h to 3 years apart from hypersaline Lake Tyrrell (LT), Victoria, Australia. Through extensive manual assembly curation, we reconstructed 7 complete and 28 partial novel genomes of viruses and virus-like entities (VLEs, which could be viruses or plasmids). We tracked these 35 populations across the eight samples and found that they are generally stable on the timescale of days and transient on the timescale of years, with some exceptions. Cross-detection of the 35 LT populations in three previously described haloviral metagenomes was limited to a few genes, and most previously sequenced haloviruses were not detected in our samples, though 3 were detected upon reducing our detection threshold from 90% to 75% nucleotide identity. Similar results were obtained when we applied our methods to haloviral metagenomic data previously reported from San Diego, CA: 10 contigs that we assembled from that system exhibited a variety of detection patterns on a timescale of weeks to 1 month but were generally not detected in LT. Our results suggest that most haloviral populations have a limited or, possibly, a temporally variable global distribution. This study provides high-resolution insight into viral biogeography and dynamics and it places "snapshot" viral metagenomes, collected at a single time and location, in context.
Collapse
|
15
|
Klein R, Rössler N, Iro M, Scholz H, Witte A. Haloarchaeal myovirus φCh1 harbours a phase variation system for the production of protein variants with distinct cell surface adhesion specificities. Mol Microbiol 2011; 83:137-50. [PMID: 22111759 DOI: 10.1111/j.1365-2958.2011.07921.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The φCh1 myovirus, which infects the haloalkaliphilic archaeon Natrialba magadii, contains an invertible region that comprises the convergent open reading frames (ORFs) 34 and 36, which code for the putative tail fibre proteins gp34 and gp36 respectively. The inversion leads to an exchange of the C-termini of these proteins, thereby creating different types of tail fibres. Gene expression experiments revealed that only ORF34 is transcribed, indicating that φCh1 produces tail fibre proteins exclusively from this particular ORF. Only one of the two types of tail fibres encoded by ORF34 is able to bind to Nab. magadii in vitro. This is reflected by the observation that during the early phases of the infection cycle, the lysogenic strain L11 carries its invertible region exclusively in the orientation that produces that specific type of tail fibre. Obviously, Nab. magadii can only be infected by viruses carrying this particular type of tail fibre. By mutational analysis, the binding domain of gp34 was localized to the C-terminal part of the protein, particularly to a galactose-binding domain. The involvement of galactose residues in cell adhesion was supported by the observation that the addition of α-D-galactose to purified gp34 or whole virions prevented their attachment to Nab. magadii.
Collapse
Affiliation(s)
- R Klein
- Children's Cancer Research Institute, Department of Molecular Microbiology, Vienna, Austria
| | | | | | | | | |
Collapse
|
16
|
Tamaki H, Zhang R, Angly FE, Nakamura S, Hong PY, Yasunaga T, Kamagata Y, Liu WT. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ Microbiol 2011; 14:441-52. [PMID: 22040222 DOI: 10.1111/j.1462-2920.2011.02630.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viruses have been detected in the different stages of wastewater treatment plants (WWTPs) at concentrations of 10(8) -10(10) ml(-1) of virus-like particles (VLPs), 10-1000 times higher than in natural aquatic environments, suggesting that WWTPs can be considered as an important reservoir and source of viruses. This study revealed novel diversity and function with the DNA viral communities in the influent, activated sludge, anaerobic digester, and effluent of a domestic WWTP using metagenomics. WWTP was a very specific environment, with less than 5% of the > 936 000 metagenomic sequences obtained (∼70-119 Mbp per sample) similar to sequences present in other environmental viromes. Many viruses found in the WWTP were novel, resulting in only < 5-20% of the reads being phylogenetically or functionally assigned. DNA metabolism was observed as the most abundant function with DNA methylase detected at levels 4.2-fold higher than other published viromes, while carbohydrate and amino acids metabolisms were 3.7- and 4.2-fold less abundant respectively. These specific aspects of the WWTP community functions are likely due to high biomass concentration, turnover rate and microbial activity in WWTPs, and likely include mechanisms that help viruses increase their infectivity. Among ∼500 genotypes estimated in individual WWTP viromes, > 82% were shared. These data suggested that VLPs of most viral types could be present between 1 and 30 days in the process before they were discharged. Viruses in WWTP and the discharged ones can have potential impacts on the functioning of the wastewater treatment system and on the dynamics of microbial community in the surrounding aquatic environments respectively.
Collapse
Affiliation(s)
- Hideyuki Tamaki
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Identification and characterization of gshA, a gene encoding the glutamate-cysteine ligase in the halophilic archaeon Haloferax volcanii. J Bacteriol 2009; 191:5196-204. [PMID: 19525351 DOI: 10.1128/jb.00297-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Halophilic archaea were found to contain in their cytoplasm millimolar concentrations of gamma-glutamylcysteine (gamma GC) instead of glutathione. Previous analysis of the genome sequence of the archaeon Halobacterium sp. strain NRC-1 has indicated the presence of a sequence homologous to sequences known to encode the glutamate-cysteine ligase GshA. We report here the identification of the gshA gene in the extremely halophilic archaeon Haloferax volcanii and show that H. volcanii gshA directs in vivo the synthesis and accumulation of gamma GC. We also show that the H. volcanii gene when expressed in an Escherichia coli strain lacking functional GshA is able to restore synthesis of glutathione.
Collapse
|
18
|
Minárovits J. Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. Acta Microbiol Immunol Hung 2009; 56:1-19. [PMID: 19388554 DOI: 10.1556/amicr.56.2009.1.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is well documented that the double-stranded DNA (dsDNA) genomes of certain viruses and the proviral genomes of retroviruses are regularly targeted by epigenetic regulatory mechanisms (DNA methylation, histone modifications, binding of regulatory proteins) in infected cells. In parallel, proteins encoded by viral genomes may affect the activity of a set of cellular promoters by interacting with the very same epigenetic regulatory machinery. This may result in epigenetic dysregulation and subsequent cellular dysfunctions that may manifest in or contribute to the development of pathological changes (e.g. initiation and progression of malignant neoplasms; immunodeficiency). Bacteria infecting mammals may cause diseases in a similar manner, by causing hypermethylation of key cellular promoters at CpG dinucleotides (promoter silencing, e.g. by Campylobacter rectus in the placenta or by Helicobacter pylori in gastric mucosa). I suggest that in addition to viruses and bacteria, other microparasites (protozoa) as well as macroparasites (helminths, arthropods, fungi) may induce pathological changes by epigenetic reprogramming of host cells they are interacting with. Elucidation of the epigenetic consequences of microbe-host interactions (the emerging new field of patho-epigenetics) may have important therapeutic implications because epigenetic processes can be reverted and elimination of microbes inducing patho-epigenetic changes may prevent disease development.
Collapse
Affiliation(s)
- J Minárovits
- Microbiological Research Group, National Center for Epidemiology, Piheno u. 1, H-1529 Budapest, Hungary.
| |
Collapse
|
19
|
Porter K, Russ BE, Dyall-Smith ML. Virus-host interactions in salt lakes. Curr Opin Microbiol 2007; 10:418-24. [PMID: 17714980 DOI: 10.1016/j.mib.2007.05.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/23/2007] [Accepted: 05/23/2007] [Indexed: 10/22/2022]
Abstract
Natural hypersaline waters are widely distributed around the globe, as both continental surface waters and sea floor lakes, the latter being maintained by the large density difference between the hypersaline and overlying marine water. Owing to the extreme salt concentrations, close to or at saturation (approximately 35%, w/v), such waters might be expected to be devoid of life but, in fact, maintain dense populations of microbes. The majority of these microorganisms are halophilic prokaryotes belonging to the Domain Archaea, 'haloarchaea'. Viruses infecting haloarchaea are a vital part of hypersaline ecosystems, in many circumstances outnumbering cells by 10-100-fold. However, few of these 'haloviruses' have been isolated and even fewer have been characterised in molecular detail. In this review, we explore the methods used by haloviruses to replicate within their hosts and consider the implications of haloviral-haloarchaeal interactions for salt lake ecology.
Collapse
Affiliation(s)
- Kate Porter
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
20
|
Park Y, Kim GD, Choi TJ. Molecular cloning and characterization of the DNA adenine methyltransferase gene in Feldmannia sp. virus. Virus Genes 2007; 34:177-83. [PMID: 17180708 DOI: 10.1007/s11262-006-0059-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/16/2006] [Indexed: 11/26/2022]
Abstract
The genome of Feldmannia sp. virus (FsV), a marine brown alga virus, contains a putative DNA adenine methyltransferase (dam) gene of 1,245 bp that encodes a polypeptide of 45.8 kDa. A BLAST search with the FsV dam gene showed high amino acid identity to two putative methyltransferase genes, ORF B29 of Feldmannia irregularis virus (FirrV, 54%) and ORF129 of Ectocarpus siliculosus virus (EsV, 36%); and a PSI BLAST search revealed similarity to the N(6)-adenine methyltransferases (MTases) of other species. Most conserved motifs of beta-class MTases were observed in the FsV dam gene. However, neither of the highly conserved sequences in motifs I (FxGxG) or IV [(S/N/D)PP(Y/F/W)] perfectly matched those in the FsV dam gene. The highly conserved DPPY consensus sequence in motif IV was NTPW in the FsV dam gene, perfectly matching the sequences in ORF B29 of FirrV and ORF129 of EsV. Therefore, the dam genes in brown algae viruses may belong to a yet undiscovered group. The FsV Dam protein expressed from the cloned FsV dam gene methylated E. coli chromosomal DNA. This is the first report showing that a virus infecting marine filamentous brown algae encodes a functional Dam protein.
Collapse
Affiliation(s)
- Yunjung Park
- Department of Microbiology, Pukyong National University, 599-1, Daeyeon 3-Dong, Busan, South Korea.
| | | | | |
Collapse
|
21
|
Iro M, Klein R, Gálos B, Baranyi U, Rössler N, Witte A. The lysogenic region of virus φCh1: identification of a repressor-operator system and determination of its activity in halophilic Archaea. Extremophiles 2006; 11:383-96. [PMID: 17123129 DOI: 10.1007/s00792-006-0040-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 10/09/2006] [Indexed: 11/25/2022]
Abstract
phiCh1 is a temperate virus infecting the haloalkaliphilic archaeon Natrialba magadii. As for all temperate viruses, a control of the lysogenic state versus the lytic life cycle is essential. Two open reading frames (ORFs) have been identified as putative repressor encoding genes: ORF48 and ORF49. The protein of ORF48 showed sequence similarities to putative repressor molecules. ORF49 was identified by the analysis of a mutant of phiCh1: the lysogenic strain carrying mutant phiCh1-1 showed a different lysis behavior than wild type virus phiCh1, indicating a dysfunction in the regulation of gene expression. Here, we show that the intergenic region between ORF48 and ORF49 comprises a promoter/operator sequence that is a transcriptionally active region in the model system Haloferax volcanii. Transcription from this region can be repressed by the activity of the ORF48 gene product. Gp43/gp44 has an enhancing effect on this regulatory sequence. Evidence is given for a possible binding site of Rep and gp43/gp44 within the coding region of the rep gene.
Collapse
Affiliation(s)
- M Iro
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, Vienna, 1030, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Seville 41080, Spain
| | | |
Collapse
|
23
|
Abstract
Contrary to mammalian DNA, which is thought to contain only 5-methylcytosine (m5C), bacterial DNA contains two additional methylated bases, namely N6-methyladenine (m6A), and N4-methylcytosine (m4C). However, if the main function of m5C and m4C in bacteria is protection against restriction enzymes, the roles of m6A are multiple and include, for example, the regulation of virulence and the control of many bacterial DNA functions such as the replication, repair, expression and transposition of DNA. Interestingly, even if adenine methylation is usually considered a bacterial DNA feature, the presence of m6A has been found in protist and plant DNAs. Furthermore, indirect evidence suggests the presence of m6A in mammal DNA, raising the possibility that this base has remained undetected due to the low sensitivity of the analytical methods used. This highlights the importance of considering m6A as the sixth element of DNA.
Collapse
Affiliation(s)
- David Ratel
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | | | - François Berger
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | - Didier Wion
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
- * Correspondence should be adressed to: Didier Wion
| |
Collapse
|
24
|
28 The Isolation and Study of Viruses of Halophilic Microorganisms. METHODS IN MICROBIOLOGY 2006. [DOI: 10.1016/s0580-9517(08)70031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Alonso A, Pucciarelli MG, Figueroa-Bossi N, García-del Portillo F. Increased excision of the Salmonella prophage ST64B caused by a deficiency in Dam methylase. J Bacteriol 2005; 187:7901-11. [PMID: 16291663 PMCID: PMC1291290 DOI: 10.1128/jb.187.23.7901-7911.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica mutants defective in Dam methylase are strongly attenuated in virulence and release a large amount of proteins to the extracellular medium. The extent to which these two phenotypes are linked is unknown. Using a proteomic approach, we identified Sb6, Sb13, and Sb36 as proteins present in larger amounts in culture supernatants of an S. enterica serovar Typhimurium dam mutant than in those of the wild-type strain. These three proteins are encoded in the Salmonella prophage ST64B. Higher amounts of ST64B phage DNA and tailless viral capsids were also detected in supernatant extracts of the dam mutant, suggesting that Dam methylation negatively regulates the excision of ST64B. Reverse transcription-PCR analysis revealed that the expression of two ST64B genes encoding a putative antirepressor and a phage replication protein increases in the dam mutant. The SOS response also augments the excision of ST64B. Infection assays performed with phage-cured strains demonstrated that ST64B does not carry genes required for virulence in the mouse model. Evidence was also obtained discarding a relationship between the high excision of ST64B and the envelope instability or virulence attenuation phenotype. Taken together, these data indicate that ST64B excises at a high rate in dam mutants due to the loss of repression exerted by Dam on phage genes and induction of the SOS response characteristic of these mutants. The exacerbated excision of ST64B does not however contribute to the incapacity of dam mutants to cause disease.
Collapse
Affiliation(s)
- Ana Alonso
- Departamento Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Xiang X, Chen L, Huang X, Luo Y, She Q, Huang L. Sulfolobus tengchongensis spindle-shaped virus STSV1: virus-host interactions and genomic features. J Virol 2005; 79:8677-86. [PMID: 15994761 PMCID: PMC1168784 DOI: 10.1128/jvi.79.14.8677-8686.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A virus infecting the hyperthermophilic archaeon Sulfolobus tengchongensis has been isolated from a field sample from Tengchong, China, and characterized. The virus, denoted STSV1 (Sulfolobus tengchongensis spindle-shaped virus 1), has the morphology of a spindle (230 by 107 nm) with a tail of variable length (68 nm on average) at one end and is the largest of the known spindle-shaped viruses. After infecting its host, the virus multiplied rapidly to high titers (>10(10) PFU/ml). Replication of the virus retarded host growth but did not cause lysis of the host cells. STSV1 did not integrate into the host chromosome and existed in a carrier state. The STSV1 DNA was modified in an unusual fashion, presumably by virally encoded modification systems. STSV1 harbors a double-stranded DNA genome of 75,294 bp, which shares no significant sequence similarity to those of fuselloviruses. The viral genome contains a total of 74 open reading frames (ORFs), among which 14 have a putative function. Five ORFs encode viral structural proteins, including a putative coat protein of high abundance. The products of the other nine ORFs are probably involved in polysaccharide biosynthesis, nucleotide metabolism, and DNA modification. The viral genome divides into two nearly equal halves of opposite gene orientation. This observation as well as a GC-skew analysis point to the presence of a putative viral origin of replication in the 1.4-kb intergenic region between ORF1 and ORF74. Both morphological and genomic features identify STSV1 as a novel virus infecting the genus Sulfolobus.
Collapse
Affiliation(s)
- Xiaoyu Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Klein R, Baranyi U, Rössler N, Greineder B, Scholz H, Witte A. Natrialba magadii virus phiCh1: first complete nucleotide sequence and functional organization of a virus infecting a haloalkaliphilic archaeon. Mol Microbiol 2002; 45:851-63. [PMID: 12139629 DOI: 10.1046/j.1365-2958.2002.03064.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The double-stranded (ds)DNA virus phiCh1 infects the haloalkaliphilic archaeon Natrialba magadii. The complete DNA sequence of 58 498 bp of the temperate virus was established, and the probable functions of 21 of 98 phiCh1-encoded open reading frames (ORFs) have been assigned. This knowledge has been used to propose functional modules each required for specific functions during virus development. The phiCh1 DNA is terminally redundant and circularly permuted and therefore appears to be packaged by the so-called headful mechanism. The presence of ORFs encoding homologues of proteins involved in plasmid replication as well as experimental evidence indicate a plasmid-mediated replication strategy of the virus. Results from nanosequencing of virion components suggest covalent cross-linking of monomers of at least one of the structural proteins during virus maturation. A comparison of the phiCh1 genome with the partly sequenced genome of Halobacterium salinarum virus phiH revealed a close relationship between the two viruses, although their host organisms live in distinct environments with respect to the different pH values required for growth.
Collapse
Affiliation(s)
- R Klein
- Institute of Microbiology and Genetics, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Tang SL, Nuttall S, Ngui K, Fisher C, Lopez P, Dyall-Smith M. HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 2002; 44:283-96. [PMID: 11967086 DOI: 10.1046/j.1365-2958.2002.02890.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HF2 is a haloarchaeal virus infecting two Halorubrum species (Family Halobacteriaceae). It is lytic, has a head-and-tail morphology and belongs to the Myoviridae (contractile tails). The linear double-stranded DNA genome was sequenced and found to be 77 670 bp in length, with a mol% G+C of 55.8. A total of 121 likely open reading frames (ORFs) were identified, of which 37 overlapped at start and stop codons. The predicted proteins were usually acidic (average pI of 4.8), and less than about 12% of them had homologues in the sequence databases. Four complete tRNA-like sequences (tRNA-Arg, -Asx, -Pro and -Tyr) and an incomplete tRNA-Thr were detected. A transcription map showed that most of the genome was transcribed and that the synthesis of transcripts occurred in a highly organized and reproducible pattern over a 5 h infection cycle. Transcripts often spanned multiple ORFs, suggesting that viral genes were organized into operons. The predicted ORF and observed transcript directions matched well and showed that transcription is mainly directed inwards from the genome termini, meeting at about 45-48 kb, and this was also a turning point in a cumulative GC-skew plot. The low point in cumulative GC-skew, near the left end, was a region rich in short repeats and lacking ORFs, which is likely to be an origin of replication. The HF2 genome is a mosaic of components from widely different sources, demonstrating clearly that viruses of haloarchaea, like their bacteriophage counterparts, are vectors for the exchange and transmission of genetic material between wide taxonomic distances, even across domains.
Collapse
Affiliation(s)
- Sen-Lin Tang
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|