1
|
Duong LD, West JD, Morano KA. Redox regulation of proteostasis. J Biol Chem 2024; 300:107977. [PMID: 39522946 DOI: 10.1016/j.jbc.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network. Here, we highlight recent advances in our understanding of how cells respond to the challenges of protein folding and metabolic alterations that occur during oxidative stress. Immediately after an oxidative insult, cells selectively block the translation of most new proteins and shift molecular chaperones from folding to a holding role to prevent wholesale protein aggregation. At the same time, adaptive responses in gene expression are induced, allowing for increased expression of antioxidant enzymes, enzymes that carry out the reduction of oxidized proteins, and molecular chaperones, all of which serve to mitigate oxidative damage and rebalance proteostasis. Likewise, concomitant activation of protein clearance mechanisms, namely proteasomal degradation and particular autophagic pathways, promotes the degradation of irreparably damaged proteins. As oxidative stress is associated with inflammation, aging, and numerous age-related disorders, the molecular events described herein are therefore major determinants of health and disease.
Collapse
Affiliation(s)
- Long Duy Duong
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio, USA.
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
2
|
Bohle F, Rossi J, Tamanna SS, Jansohn H, Schlosser M, Reinhardt F, Brox A, Bethmann S, Kopriva S, Trentmann O, Jahns P, Deponte M, Schwarzländer M, Trost P, Zaffagnini M, Meyer AJ, Müller-Schüssele SJ. Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge. Redox Biol 2024; 69:103015. [PMID: 38183796 PMCID: PMC10808970 DOI: 10.1016/j.redox.2023.103015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Redox status of protein cysteinyl residues is mediated via glutathione (GSH)/glutaredoxin (GRX) and thioredoxin (TRX)-dependent redox cascades. An oxidative challenge can induce post-translational protein modifications on thiols, such as protein S-glutathionylation. Class I GRX are small thiol-disulfide oxidoreductases that reversibly catalyse S-glutathionylation and protein disulfide formation. TRX and GSH/GRX redox systems can provide partial backup for each other in several subcellular compartments, but not in the plastid stroma where TRX/light-dependent redox regulation of primary metabolism takes place. While the stromal TRX system has been studied at detail, the role of class I GRX on plastid redox processes is still unknown. We generate knockout lines of GRXC5 as the only chloroplast class I GRX of the moss Physcomitrium patens. While we find that PpGRXC5 has high activities in GSH-dependent oxidoreductase assays using hydroxyethyl disulfide or redox-sensitive GFP2 as substrates in vitro, Δgrxc5 plants show no detectable growth defect or stress sensitivity, in contrast to mutants with a less negative stromal EGSH (Δgr1). Using stroma-targeted roGFP2, we show increased protein Cys steady state oxidation and decreased reduction rates after oxidative challenge in Δgrxc5 plants in vivo, indicating kinetic uncoupling of the protein Cys redox state from EGSH. Compared to wildtype, protein Cys disulfide formation rates and S-glutathionylation levels after H2O2 treatment remained unchanged. Lack of class I GRX function in the stroma did not result in impaired carbon fixation. Our observations suggest specific roles for GRXC5 in the efficient transfer of electrons from GSH to target protein Cys as well as negligible cross-talk with metabolic regulation via the TRX system. We propose a model for stromal class I GRX function in efficient catalysis of protein dithiol/disulfide equilibria upon redox steady state alterations affecting stromal EGSH and highlight the importance of identifying in vivo target proteins of GRXC5.
Collapse
Affiliation(s)
- Finja Bohle
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany; Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Jacopo Rossi
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Sadia S Tamanna
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Hannah Jansohn
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Marlene Schlosser
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Frank Reinhardt
- Plant Physiology, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Alexa Brox
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | - Stephanie Bethmann
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50674, Germany
| | - Oliver Trentmann
- Molecular Botany, Department of Biology, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225, Düsseldorf, Germany
| | - Marcel Deponte
- Biochemistry, Department of Chemistry, RPTU Kaiserslautern-Landau, D-67633, Kaiserslautern, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, D-48143, Münster, Germany
| | - Paolo Trost
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Mirko Zaffagnini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126, Bologna, Italy
| | - Andreas J Meyer
- Chemical Signalling, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, D-53113, Bonn, Germany
| | | |
Collapse
|
3
|
Response of Saccharomyces cerevisiae var. diastaticus to nerol: Evaluation of antifungal potential by inhibitory effect and proteome analyses. Food Chem 2023; 403:134323. [DOI: 10.1016/j.foodchem.2022.134323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/18/2022]
|
4
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
5
|
Pillay CS, John N. Can thiol-based redox systems be utilized as parts for synthetic biology applications? Redox Rep 2021; 26:147-159. [PMID: 34378494 PMCID: PMC8366655 DOI: 10.1080/13510002.2021.1966183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.
Collapse
Affiliation(s)
- Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
6
|
Zimmermann J, Oestreicher J, Hess S, Herrmann JM, Deponte M, Morgan B. One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biol 2020; 36:101598. [PMID: 32521506 PMCID: PMC7286987 DOI: 10.1016/j.redox.2020.101598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Glutaredoxins are small proteins of the thioredoxin superfamily that are present throughout life. Most glutaredoxins fall into two major subfamilies. Class I glutaredoxins are glutathione-dependent thiol-disulfide oxidoreductases whilst class II glutaredoxins coordinate Fe–S clusters. Class I glutaredoxins are typically dithiol enzymes with two active-site cysteine residues, however, some enzymatically active monothiol glutaredoxins are also known. Whilst both monothiol and dithiol class I glutaredoxins mediate protein deglutathionylation, it is widely claimed that only dithiol glutaredoxins are competent to reduce protein disulfide bonds. In this study, using a combination of yeast ‘viability rescue’, growth, and redox-sensitive GFP-based assays, we show that two different monothiol class I glutaredoxins can each facilitate the reduction of protein disulfide bonds in ribonucleotide reductase, methionine sulfoxide reductase and roGFP2. Our observations thus challenge the generalization of the dithiol mechanism for glutaredoxin catalysis and raise the question of why most class I glutaredoxins have two active-site cysteine residues.
Collapse
Affiliation(s)
- Jannik Zimmermann
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Julian Oestreicher
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany
| | - Steffen Hess
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Marcel Deponte
- Faculty of Chemistry, Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany.
| | - Bruce Morgan
- Institute of Biochemistry, Zentrum für Human- und Molekularbiologie (ZHMB), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
7
|
Khan Z, Nisar MA, Muzammil S, Zafar S, Zerr I, Rehman A. Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:490. [PMID: 31297613 DOI: 10.1007/s10661-019-7631-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.
Collapse
Affiliation(s)
- Zaman Khan
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
8
|
Loberg MA, Hurtig JE, Graff AH, Allan KM, Buchan JA, Spencer MK, Kelly JE, Clodfelter JE, Morano KA, Lowther WT, West JD. Aromatic Residues at the Dimer-Dimer Interface in the Peroxiredoxin Tsa1 Facilitate Decamer Formation and Biological Function. Chem Res Toxicol 2019; 32:474-483. [PMID: 30701970 DOI: 10.1021/acs.chemrestox.8b00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To prevent the accumulation of reactive oxygen species and limit associated damage to biological macromolecules, cells express a variety of oxidant-detoxifying enzymes, including peroxiredoxins. In Saccharomyces cerevisiae, the peroxiredoxin Tsa1 plays a key role in peroxide clearance and maintenance of genome stability. Five homodimers of Tsa1 can assemble into a toroid-shaped decamer, with the active sites in the enzyme being shared between individual dimers in the decamer. Here, we have examined whether two conserved aromatic residues at the decamer-building interface promote Tsa1 oligomerization, enzymatic activity, and biological function. When substituting either or both of these aromatic residues at the decamer-building interface with either alanine or leucine, we found that the Tsa1 decamer is destabilized, favoring dimeric species instead. These proteins exhibit varying abilities to rescue the phenotypes of oxidant sensitivity and genomic instability in yeast lacking Tsa1 and Tsa2, with the individual leucine substitutions at this interface partially complementing the deletion phenotypes. The ability of Tsa1 decamer interface variants to partially rescue peroxidase function in deletion strains is temperature-dependent and correlates with their relative rate of reactivity with hydrogen peroxide and their ability to interact with thioredoxin. Based on the combined results of in vitro and in vivo assays, our findings indicate that multiple steps in the catalytic cycle of Tsa1 may be impaired by introducing substitutions at its decamer-building interface, suggesting a multifaceted biological basis for its assembly into decamers.
Collapse
Affiliation(s)
- Matthew A Loberg
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jennifer E Hurtig
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States.,Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Aaron H Graff
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kristin M Allan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - John A Buchan
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Matthew K Spencer
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Joseph E Kelly
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| | - Jill E Clodfelter
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - Kevin A Morano
- Department of Microbiology & Molecular Genetics, McGovern Medical School , The University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - W Todd Lowther
- Department of Biochemistry and Center for Structural Biology , Wake Forest School of Medicine , Winston-Salem , North Carolina 27101 , United States
| | - James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry , The College of Wooster , Wooster , Ohio 44691 , United States
| |
Collapse
|
9
|
Laothanachareon T, Tamayo-Ramos JA, Nijsse B, Schaap PJ. Forward Genetics by Genome Sequencing Uncovers the Central Role of the Aspergillus niger goxB Locus in Hydrogen Peroxide Induced Glucose Oxidase Expression. Front Microbiol 2018; 9:2269. [PMID: 30319579 PMCID: PMC6165874 DOI: 10.3389/fmicb.2018.02269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/05/2018] [Indexed: 01/09/2023] Open
Abstract
Aspergillus niger is an industrially important source for gluconic acid and glucose oxidase (GOx), a secreted commercially important flavoprotein which catalyses the oxidation of β-D-glucose by molecular oxygen to D-glucolactone and hydrogen peroxide. Expression of goxC, the GOx encoding gene and the concomitant two step conversion of glucose to gluconic acid requires oxygen and the presence of significant amounts of glucose in the medium and is optimally induced at pH 5.5. The molecular mechanisms underlying regulation of goxC expression are, however, still enigmatic. Genetic studies aimed at understanding GOx induction have indicated the involvement of at least seven complementation groups, for none of which the molecular basis has been resolved. In this study, a mapping-by-sequencing forward genetics approach was used to uncover the molecular role of the goxB locus in goxC expression. Using the Illumina and PacBio sequencing platforms a hybrid high quality draft genome assembly of laboratory strain N402 was obtained and used as a reference for mapping of genomic reads obtained from the derivative NW103:goxB mutant strain. The goxB locus encodes a thioredoxin reductase. A deletion of the encoding gene in the N402 parent strain led to a high constitutive expression level of the GOx and the lactonase encoding genes required for the two-step conversion of glucose in gluconic acid and of the catR gene encoding catalase R. This high constitutive level of expression was observed to be irrespective of the carbon source and oxidative stress applied. A model clarifying the role of GoxB in the regulation of the expression of goxC involving hydrogen peroxide as second messenger is presented.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands.,Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Kritsiligkou P, Rand JD, Weids AJ, Wang X, Kershaw CJ, Grant CM. Endoplasmic reticulum (ER) stress-induced reactive oxygen species (ROS) are detrimental for the fitness of a thioredoxin reductase mutant. J Biol Chem 2018; 293:11984-11995. [PMID: 29871930 DOI: 10.1074/jbc.ra118.001824] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.
Collapse
Affiliation(s)
- Paraskevi Kritsiligkou
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Jonathan D Rand
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Alan J Weids
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ximeng Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris J Kershaw
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
11
|
May HC, Yu JJ, Guentzel MN, Chambers JP, Cap AP, Arulanandam BP. Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System. Front Microbiol 2018; 9:336. [PMID: 29556223 PMCID: PMC5844926 DOI: 10.3389/fmicb.2018.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/12/2018] [Indexed: 01/23/2023] Open
Abstract
As microbial resistance to drugs continues to rise at an alarming rate, finding new ways to combat pathogens is an issue of utmost importance. Development of novel and specific antimicrobial drugs is a time-consuming and expensive process. However, the re-purposing of previously tested and/or approved drugs could be a feasible way to circumvent this long and costly process. In this review, we evaluate the U.S. Food and Drug Administration tested drugs auranofin, ebselen, and PX-12 as antimicrobial agents targeting the thioredoxin system. These drugs have been shown to act on bacterial, fungal, protozoan, and helminth pathogens without significant toxicity to the host. We propose that the thioredoxin system could serve as a useful therapeutic target with broad spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Holly C. May
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - M. N. Guentzel
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P. Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Disease, University of Texas at San Antonio, San Antonio, TX, United States
- Center for Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
12
|
Abstract
SIGNIFICANCE Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron-sulfur clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data. Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic approaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms. CRITICAL ISSUES Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular concentrations of reduced glutathione? How can iron-sulfur cluster biogenesis, oxidative protein folding, or redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend on the organism, cell type, and subcellular compartment but also on different ideologies among researchers. FUTURE DIRECTIONS A rational approach to compare the relevance of glutathione-dependent pathways is to combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, enzymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might require the development of novel tools but is crucial to address potential kinetic competitions and to decipher uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal. 27, 1130-1161.
Collapse
Affiliation(s)
- Marcel Deponte
- Department of Parasitology, Ruprecht-Karls University , Heidelberg, Germany
| |
Collapse
|
13
|
Boronat S, Domènech A, Carmona M, García-Santamarina S, Bañó MC, Ayté J, Hidalgo E. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase. PLoS Genet 2017. [PMID: 28640807 PMCID: PMC5501661 DOI: 10.1371/journal.pgen.1006858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth. The essential enzyme ribonucleotide reductase (RNR), the rate-limiting enzyme of deoxyribonucleotide synthesis, relies on the thioredoxin and glutaredoxin electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels. Here, we show that cytosolic thioredoxin Trx1 is the primary electron donor for RNR in fission yeast, and that trx1 transcript and protein levels are up-regulated at G1-to-S phase transition. Genetic depletion of thioredoxins triggers the DNA replication checkpoint up-regulating RNR synthesis. Furthermore, deletion of the genes coding for thioredoxin reductase and dithiol glutaredoxin is synthetic lethal, and we show that a loss-of-function mutation at the peroxiredoxin Tpx1-coding gene acts as a genetic suppressor. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate of redoxins, the peroxiredoxin Tpx1, has been selected as a lethality suppressor to favor channeling of electrons to the essential RNR.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alba Domènech
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - M. Carmen Bañó
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Valencia, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (EH); (JA)
| |
Collapse
|
14
|
Altıntaş A, Davidsen K, Garde C, Mortensen UH, Brasen JC, Sams T, Workman CT. High-resolution kinetics and modeling of hydrogen peroxide degradation in live cells. Free Radic Biol Med 2016; 101:143-153. [PMID: 27742413 DOI: 10.1016/j.freeradbiomed.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 10/10/2016] [Indexed: 11/20/2022]
Abstract
Although the role of oxidative stress factors and their regulation is well studied, the temporal dynamics of stress recovery is still poorly understood. In particular, measuring the kinetics of stress recovery in the first minutes after acute exposure provides a powerful technique for assessing the role of regulatory proteins or enzymes through the use of mutant backgrounds. This project endeavors to screen the temporal dynamics of intracellular oxidant levels in live cells as a function of gene deletion in the budding yeast, Saccharomyces cerevisiae. Using the detailed time dynamics of extra- and intra-cellular peroxide we have developed a mathematical model that describes two distinct kinetic processes, an initial rapid degradation in the first 10-20min followed by a slower process. Using this model, a qualitative comparison allowed us to assign the dependence of temporal events to genetic factors. Surprisingly, we found that the deletion of transcription factors Yap1p or Skn7p was sufficient to disrupt the establishment of the second degradation phase but not the initial phase. A better fundamental understanding of the role protective factors play in the recovery from oxidative stress may lead to strategies for protecting or sensitizing cell to this stress.
Collapse
Affiliation(s)
- Ali Altıntaş
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Kristian Davidsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Christian Garde
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - J Christian Brasen
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Thomas Sams
- Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
15
|
Nuebel E, Manganas P, Tokatlidis K. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2613-2623. [PMID: 27425144 PMCID: PMC5404111 DOI: 10.1016/j.bbamcr.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
The mitochondrial intermembrane space (IMS) is involved in protein transport, lipid homeostasis and metal ion exchange, while further acting in signalling pathways such as apoptosis. Regulation of these processes involves protein modifications, as well as stress-induced import or release of proteins and other signalling molecules. Even though the IMS is the smallest sub-compartment of mitochondria, its redox state seems to be tightly regulated. However, the way in which this compartment participates in the cross-talk between the multiple organelles and the cytosol is far from understood. Here we focus on newly identified IMS proteins that may represent future challenges in mitochondrial research. We present an overview of the import pathways, the recently discovered new components of the IMS proteome and how these relate to key aspects of cell signalling and progress made in stem cell and cancer research. A brief overview of the classic mitochondrial import pathways is featured Recent studies assigning a number of new proteins to the mitochondrial IMS are discussed Analysis of the expanded IMS proteomes can provide insights into organelle cross-talk and signalling pathways
Collapse
Affiliation(s)
- Esther Nuebel
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Phanee Manganas
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
16
|
Kojer K, Peleh V, Calabrese G, Herrmann JM, Riemer J. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Mol Biol Cell 2014; 26:195-204. [PMID: 25392302 PMCID: PMC4294668 DOI: 10.1091/mbc.e14-10-1422] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Proteins of the mitochondrial intermembrane space are oxidatively folded by the incorporation of structural disulfide bonds. Efficient protein oxidation in this highly reducing compartment is possible only because glutaredoxins, which could translate the glutathione redox potential into that of protein thiols, are present at limiting levels. The mitochondrial intermembrane space (IMS) harbors an oxidizing machinery that drives import and folding of small cysteine-containing proteins without targeting signals. The main component of this pathway is the oxidoreductase Mia40, which introduces disulfides into its substrates. We recently showed that the IMS glutathione pool is maintained as reducing as that of the cytosol. It thus remained unclear how equilibration of protein disulfides with the IMS glutathione pool is prevented in order to allow oxidation-driven protein import. Here we demonstrate the presence of glutaredoxins in the IMS and show that limiting amounts of these glutaredoxins provide a kinetic barrier to prevent the thermodynamically feasible reduction of Mia40 substrates by the IMS glutathione pool. Moreover, they allow Mia40 to exist in a predominantly oxidized state. Consequently, overexpression of glutaredoxin 2 in the IMS results in a more reduced Mia40 redox state and a delay in oxidative folding and mitochondrial import of different Mia40 substrates. Our findings thus indicate that carefully balanced glutaredoxin amounts in the IMS ensure efficient oxidative folding in the reducing environment of this compartment.
Collapse
Affiliation(s)
- Kerstin Kojer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Valentina Peleh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Gaetano Calabrese
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Jan Riemer
- Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
17
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
18
|
Petrova VY, Kujumdzieva AV. Robustness ofSaccharomyces CerevisiaeGenome to Antioxidative Stress. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2010.10817886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Toledano MB, Delaunay-Moisan A, Outten CE, Igbaria A. Functions and cellular compartmentation of the thioredoxin and glutathione pathways in yeast. Antioxid Redox Signal 2013; 18. [PMID: 23198979 PMCID: PMC3771550 DOI: 10.1089/ars.2012.5033] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE The thioredoxin (TRX) and glutathione (GSH) pathways are universally conserved thiol-reductase systems that drive an array of cellular functions involving reversible disulfide formation. Here we consider these pathways in Saccharomyces cerevisiae, focusing on their cell compartment-specific functions, as well as the mechanisms that explain extreme differences of redox states between compartments. RECENT ADVANCES Recent work leads to a model in which the yeast TRX and GSH pathways are not redundant, in contrast to Escherichia coli. The cytosol possesses full sets of both pathways, of which the TRX pathway is dominant, while the GSH pathway acts as back up of the former. The mitochondrial matrix also possesses entire sets of both pathways, in which the GSH pathway has major role in redox control. In both compartments, GSH has also nonredox functions in iron metabolism, essential for viability. The endoplasmic reticulum (ER) and mitochondrial intermembrane space (IMS) are sites of intense thiol oxidation, but except GSH lack thiol-reductase pathways. CRITICAL ISSUES What are the thiol-redox links between compartments? Mitochondria are totally independent, and insulated from the other compartments. The cytosol is also totally independent, but also provides reducing power to the ER and IMS, possibly by ways of reduced and oxidized GSH entering and exiting these compartments. FUTURE DIRECTIONS Identifying the mechanisms regulating fluxes of GSH and oxidized glutathione between cytosol and ER, IMS, and possibly also peroxisomes, vacuole is needed to establish the proposed model of eukaryotic thiol-redox homeostasis, which should facilitate exploration of this system in mammals and plants.
Collapse
Affiliation(s)
- Michel B Toledano
- Laboratoire Stress Oxydants et Cancer, IBITECS, CEA-Saclay, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
20
|
Sánchez-Riego AM, López-Maury L, Florencio FJ. Glutaredoxins are essential for stress adaptation in the cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2013; 4:428. [PMID: 24204369 PMCID: PMC3816324 DOI: 10.3389/fpls.2013.00428] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/10/2013] [Indexed: 05/10/2023]
Abstract
Glutaredoxins are small redox proteins able to reduce disulfides and mixed disulfides between GSH and proteins. Synechocystis sp. PCC 6803 contains three genes coding for glutaredoxins: ssr2061 (grxA) and slr1562 (grxB) code for dithiolic glutaredoxins while slr1846 (grxC) codes for a monothiolic glutaredoxin. We have analyzed the expression of these glutaredoxins in response to different stresses, such as high light, H2O2 and heat shock. Analysis of the mRNA levels showed that grxA is only induced by heat while grxC is repressed by heat shock and is induced by high light and H2O2. In contrast, grxB expression was maintained almost constant under all conditions. Analysis of GrxA and GrxC protein levels by western blot showed that GrxA increases in response to high light, heat or H2O2 while GrxC is only induced by high light and H2O2, in accordance with its mRNA levels. In addition, we have also generated mutants that have interrupted one, two, or three glutaredoxin genes. These mutants were viable and did not show any different phenotype from the WT under standard growth conditions. Nevertheless, analysis of these mutants under several stress conditions revealed that single grxA mutants grow slower after H2O2, heat and high light treatments, while mutants in grxB are indistinguishable from WT. grxC mutants were hypersensitive to treatments with H2O2, heat, high light and metals. A double grxAgrxC mutant was found to be even more sensitive to H2O2 than each corresponding single mutants. Surprisingly a mutation in grxB suppressed totally or partially the phenotypes of grxA and grxC mutants except the H2O2 sensitivity of the grxC mutant. This suggests that grxA and grxC participate in independent pathways while grxA and grxB participate in a common pathway for H2O2 resistance. The data presented here show that glutaredoxins are essential for stress adaptation in cyanobacteria, although their targets and mechanism of action remain unidentified.
Collapse
Affiliation(s)
| | | | - Francisco J. Florencio
- *Correspondence: Francisco J. Florencio, Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Av Americo Vespucio 49, E 41092 Seville, Spain e-mail:
| |
Collapse
|
21
|
Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 2012; 17:1124-60. [PMID: 22531002 DOI: 10.1089/ars.2011.4327] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thioredoxins (Trx) and glutaredoxins (Grx) constitute families of thiol oxidoreductases. Our knowledge of Trx and Grx in plants has dramatically increased during the last decade. The release of the Arabidopsis genome sequence revealed an unexpectedly high number of Trx and Grx genes. The availability of several genomes of vascular and nonvascular plants allowed the establishment of a clear classification of the genes and the chronology of their appearance during plant evolution. Proteomic approaches have been developed that identified the putative Trx and Grx target proteins which are implicated in all aspects of plant growth, including basal metabolism, iron/sulfur cluster formation, development, adaptation to the environment, and stress responses. Analyses of the biochemical characteristics of specific Trx and Grx point to a strong specificity toward some target enzymes, particularly within plastidial Trx and Grx. In apparent contradiction with this specificity, genetic approaches show an absence of phenotype for most available Trx and Grx mutants, suggesting that redundancies also exist between Trx and Grx members. Despite this, the isolation of mutants inactivated in multiple genes and several genetic screens allowed the demonstration of the involvement of Trx and Grx in pathogen response, phytohormone pathways, and at several control points of plant development. Cytosolic Trxs are reduced by NADPH-thioredoxin reductase (NTR), while the reduction of Grx depends on reduced glutathione (GSH). Interestingly, recent development integrating biochemical analysis, proteomic data, and genetics have revealed an extensive crosstalk between the cytosolic NTR/Trx and GSH/Grx systems. This crosstalk, which occurs at multiple levels, reveals the high plasticity of the redox systems in plants.
Collapse
Affiliation(s)
- Yves Meyer
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Perpignan, France
| | | | | | | | | |
Collapse
|
22
|
Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG. A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis. PLoS One 2012; 7:e44278. [PMID: 22970195 PMCID: PMC3435413 DOI: 10.1371/journal.pone.0044278] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/31/2012] [Indexed: 01/10/2023] Open
Abstract
Maintenance of an optimal redox environment is critical for appropriate functioning of cellular processes and cell survival. Despite the importance of maintaining redox homeostasis, it is not clear how the optimal redox potential is sensed and set, and the processes that impact redox on a cellular/organellar level are poorly understood. The genetic bases of cellular redox homeostasis were investigated using a green fluorescent protein (GFP) based redox probe, roGFP2 and a pH sensitive GFP-based probe, pHluorin. The use of roGFP2, in conjunction with pHluorin, enabled determination of pH-adjusted sub-cellular redox potential in a non-invasive and real-time manner. A genome-wide screen using both the non-essential and essential gene collections was carried out in Saccharomyces cerevisiae using cytosolic-roGFP2 to identify factors essential for maintenance of cytosolic redox state under steady-state conditions. 102 genes of diverse function were identified that are required for maintenance of cytosolic redox state. Mutations in these genes led to shifts in the half-cell glutathione redox potential by 75-10 mV. Interestingly, some specific oxidative stress-response processes were identified as over-represented in the data set. Further investigation of the role of oxidative stress-responsive systems in sub-cellular redox homeostasis was conducted using roGFP2 constructs targeted to the mitochondrial matrix and peroxisome and E(GSH) was measured in cells in exponential and stationary phase. Analyses allowed for the identification of key redox systems on a sub-cellular level and the identification of novel genes involved in the regulation of cellular redox homeostasis.
Collapse
Affiliation(s)
- Anita Ayer
- University of New South Wales, Sydney, Australia
| | | | | | - Simone S. Li
- University of New South Wales, Sydney, Australia
| | - Gertien Smits
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ian W. Dawes
- University of New South Wales, Sydney, Australia
- * E-mail:
| | | |
Collapse
|
23
|
Liu CG, Wang N, Lin YH, Bai FW. Very high gravity ethanol fermentation by flocculating yeast under redox potential-controlled conditions. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:61. [PMID: 22917193 PMCID: PMC3494525 DOI: 10.1186/1754-6834-5-61] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Very high gravity (VHG) fermentation using medium in excess of 250 g/L sugars for more than 15% (v) ethanol can save energy consumption, not only for ethanol distillation, but also for distillage treatment; however, stuck fermentation with prolonged fermentation time and more sugars unfermented is the biggest challenge. Controlling redox potential (ORP) during VHG fermentation benefits biomass accumulation and improvement of yeast cell viability that is affected by osmotic pressure and ethanol inhibition, enhancing ethanol productivity and yield, the most important techno-economic aspect of fuel ethanol production. RESULTS Batch fermentation was performed under different ORP conditions using the flocculating yeast and media containing glucose of 201 ± 3.1, 252 ± 2.9 and 298 ± 3.8 g/L. Compared with ethanol fermentation by non-flocculating yeast, different ORP profiles were observed with the flocculating yeast due to the morphological change associated with the flocculation of yeast cells. When ORP was controlled at -100 mV, ethanol fermentation with the high gravity (HG) media containing glucose of 201 ± 3.1 and 252 ± 2.9 g/L was completed at 32 and 56 h, respectively, producing 93.0 ± 1.3 and 120.0 ± 1.8 g/L ethanol, correspondingly. In contrast, there were 24.0 ± 0.4 and 17.0 ± 0.3 g/L glucose remained unfermented without ORP control. As high as 131.0 ± 1.8 g/L ethanol was produced at 72 h when ORP was controlled at -150 mV for the VHG fermentation with medium containing 298 ± 3.8 g/L glucose, since yeast cell viability was improved more significantly. CONCLUSIONS No lag phase was observed during ethanol fermentation with the flocculating yeast, and the implementation of ORP control improved ethanol productivity and yield. When ORP was controlled at -150 mV, more reducing power was available for yeast cells to survive, which in turn improved their viability and VHG ethanol fermentation performance. On the other hand, controlling ORP at -100 mV stimulated yeast growth and enhanced ethanol production under the HG conditions. Moreover, the ORP profile detected during ethanol fermentation with the flocculating yeast was less fluctuated, indicating that yeast flocculation could attenuate the ORP fluctuation observed during ethanol fermentation with non-flocculating yeast.
Collapse
Affiliation(s)
- Chen-Guang Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Na Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| | - Yen-Han Lin
- Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada
| | - Feng-Wu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
24
|
Abstract
Bacillithiol (BSH), the α-anomeric glycoside of l-cysteinyl-d-glucosamine with l-malic acid, plays a dominant role in the cytosolic thiol redox chemistry of the low guanine and cytosine (GC) Gram-positive bacteria (phylum Firmicutes). BSH is functionally analogous to glutathione (GSH) but differs sufficiently in chemical structure that cells have evolved a distinct set of enzymes that use BSH as cofactor. BSH was discovered in Bacillus subtilis as a mixed disulfide with the redox-sensing repressor OhrR and in B. anthracis by biochemical analysis of pools of labeled thiols. The structure of BSH was determined after purification from Deinococcus radiodurans. Similarities in structure between BSH and mycothiol (MSH) facilitated the identification of biosynthetic genes for BSH in the model organism B. subtilis. Phylogenomic analyses have identified several candidate BSH-using or associated proteins, including a BSH reductase, glutaredoxin-like thiol-dependent oxidoreductases (bacilliredoxins), and a BSH-S-transferase (FosB) involved in resistance to the epoxide antibiotic fosfomycin. Preliminary results implicate BSH in cellular processes to maintain cytosolic redox balance and for adaptation to reactive oxygen, nitrogen, and electrophilic species. BSH also is predicted to chelate metals avidly, in part due to the appended malate moiety, although the implications of BSH for metal ion homeostasis have yet to be explored in detail.
Collapse
Affiliation(s)
- John D Helmann
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA.
| |
Collapse
|
25
|
Vilella F, Alves R, Rodríguez-Manzaneque MT, Bellí G, Swaminathan S, Sunnerhagen P, Herrero E. Evolution and cellular function of monothiol glutaredoxins: involvement in iron-sulphur cluster assembly. Comp Funct Genomics 2010; 5:328-41. [PMID: 18629168 PMCID: PMC2447459 DOI: 10.1002/cfg.406] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 04/02/2004] [Indexed: 12/14/2022] Open
Abstract
A number of bacterial species, mostly proteobacteria, possess monothiol glutaredoxins homologous to the Saccharomyces cerevisiae mitochondrial protein Grx5, which is involved in iron-sulphur cluster synthesis. Phylogenetic profiling is used to predict that bacterial monothiol glutaredoxins also participate in the iron-sulphur cluster (ISC) assembly machinery, because their phylogenetic profiles are similar to the profiles of the bacterial homologues of yeast ISC proteins. High evolutionary co-occurrence is observed between the Grx5 homologues and the homologues of the Yah1 ferredoxin, the scaffold proteins Isa1 and Isa2, the frataxin protein Yfh1 and the Nfu1 protein. This suggests that a specific functional interaction exists between these ISC machinery proteins. Physical interaction analyses using low-definition protein docking predict the formation of strong and specific complexes between Grx5 and several components of the yeast ISC machinery. Two-hybrid analysis has confirmed the in vivo interaction between Grx5 and Isa1. Sequence comparison techniques and cladistics indicate that the other two monothiol glutaredoxins of S. cerevisiae, Grx3 and Grx4, have evolved from the fusion of a thioredoxin gene with a monothiol glutaredoxin gene early in the eukaryotic lineage, leading to differential functional specialization. While bacteria do not contain these chimaeric glutaredoxins, in many eukaryotic species Grx5 and Grx3/4-type monothiol glutaredoxins coexist in the cell.
Collapse
Affiliation(s)
- Felipe Vilella
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Rovira Roure 44, Lleida 25198, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
27
|
Tan SX, Greetham D, Raeth S, Grant CM, Dawes IW, Perrone GG. The thioredoxin-thioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J Biol Chem 2009; 285:6118-26. [PMID: 19951944 DOI: 10.1074/jbc.m109.062844] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione E(h)'. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular E(h)'. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.
Collapse
Affiliation(s)
- Shi-Xiong Tan
- Ramaciotti Centre for Gene Function Analysis, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Suvorova ES, Lucas O, Weisend CM, Rollins MF, Merrill GF, Capecchi MR, Schmidt EE. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 2009; 4:e6158. [PMID: 19584930 PMCID: PMC2703566 DOI: 10.1371/journal.pone.0006158] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 01/05/2023] Open
Abstract
Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Olivier Lucas
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carla M. Weisend
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - MaryClare F. Rollins
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Gary F. Merrill
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Mario R. Capecchi
- Howard Hughes Medical Institute (HHMI), University of Utah, Salt Lake City, Utah, United States of America
| | - Edward E. Schmidt
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
29
|
The glutathione/glutaredoxin system is essential for arsenate reduction in Synechocystis sp. strain PCC 6803. J Bacteriol 2009; 191:3534-43. [PMID: 19304854 DOI: 10.1128/jb.01798-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by an operon of three genes in which arsC codes for an arsenate reductase with unique characteristics. Here we describe the identification of two additional and nearly identical genes coding for arsenate reductases in Synechocystis sp. strain PCC 6803, which we have designed arsI1 and arsI2, and the biochemical characterization of both ArsC (arsenate reductase) and ArsI. Functional analysis of single, double, and triple mutants shows that both ArsI enzymes are active arsenate reductases but that their roles in arsenate resistance are essential only in the absence of ArsC. Based on its biochemical properties, ArsC belongs to a family that, though related to thioredoxin-dependent arsenate reductases, uses the glutathione/glutaredoxin system for reduction, whereas ArsI belongs to the previously known glutaredoxin-dependent family. We have also analyzed the role in arsenate resistance of the three glutaredoxins present in Synechocystis sp. strain PCC 6803 both in vitro and in vivo. Only the dithiolic glutaredoxins, GrxA (glutaredoxin A) and GrxB (glutaredoxin B), are able to donate electrons to both types of reductases in vitro, while GrxC (glutaredoxin C), a monothiolic glutaredoxin, is unable to donate electrons to either type. Analysis of glutaredoxin mutant strains revealed that only those lacking the grxA gene have impaired arsenic resistance.
Collapse
|
30
|
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Subj 2008; 1780:1217-35. [DOI: 10.1016/j.bbagen.2007.12.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
|
31
|
Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta Gen Subj 2008; 1780:1304-17. [DOI: 10.1016/j.bbagen.2008.06.003] [Citation(s) in RCA: 416] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 12/15/2022]
|
32
|
Kennedy PJ, Vashisht AA, Hoe KL, Kim DU, Park HO, Hayles J, Russell P. A genome-wide screen of genes involved in cadmium tolerance in Schizosaccharomyces pombe. Toxicol Sci 2008; 106:124-39. [PMID: 18684775 PMCID: PMC2563147 DOI: 10.1093/toxsci/kfn153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 07/21/2008] [Indexed: 11/14/2022] Open
Abstract
Cadmium is a worldwide environmental toxicant responsible for a range of human diseases including cancer. Cellular injury from cadmium is minimized by stress-responsive detoxification mechanisms. We explored the genetic requirements for cadmium tolerance by individually screening mutants from the fission yeast (Schizosaccharomyces pombe) haploid deletion collection for inhibited growth on agar growth media containing cadmium. Cadmium-sensitive mutants were further tested for sensitivity to oxidative stress (hydrogen peroxide) and osmotic stress (potassium chloride). Of 2649 mutants screened, 237 were sensitive to cadmium, of which 168 were cadmium specific. Most were previously unknown to be involved in cadmium tolerance. The 237 genes represent a number of pathways including sulfate assimilation, phytochelatin synthesis and transport, ubiquinone (Coenzyme Q10) biosynthesis, stress signaling, cell wall biosynthesis and cell morphology, gene expression and chromatin remodeling, vacuole function, and intracellular transport of macromolecules. The ubiquinone biosynthesis mutants are acutely sensitive to cadmium but only mildly sensitive to hydrogen peroxide, indicating that Coenzyme Q10 plays a larger role in cadmium tolerance than just as an antioxidant. These and several other mutants turn yellow when exposed to cadmium, suggesting cadmium sulfide accumulation. This phenotype can potentially be used as a biomarker for cadmium. There is remarkably little overlap with a comparable screen of the Saccharomyces cerevisiae haploid deletion collection, indicating that the two distantly related yeasts utilize significantly different strategies for coping with cadmium stress. These strategies and their relation to cadmium detoxification in humans are discussed.
Collapse
Affiliation(s)
- Patrick J. Kennedy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ajay A. Vashisht
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Kwang-Lae Hoe
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Dong-Uk Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Republic of Korea
| | - Han-Oh Park
- BiONEER Corporation, Daejeon 306-220, Republic of Korea
| | - Jacqueline Hayles
- Cell Cycle Laboratory, Cancer Research UK, London Research Institute, London WC2A 3PX, UK
| | - Paul Russell
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
33
|
Buchholz K, Rahlfs S, Schirmer RH, Becker K, Matuschewski K. Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite. PLoS One 2008; 3:e2474. [PMID: 18575607 PMCID: PMC2429964 DOI: 10.1371/journal.pone.0002474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/30/2008] [Indexed: 11/18/2022] Open
Abstract
Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies.
Collapse
Affiliation(s)
- Kathrin Buchholz
- Interdisciplinary Research Centre, Justus-Liebig University, Giessen, Germany
- Biochemistry Centre, Ruprecht-Karls University, Heidelberg, Germany
- Department of Parasitology, School of Medicine, Heidelberg University, Heidelberg, Germany
| | - Stefan Rahlfs
- Interdisciplinary Research Centre, Justus-Liebig University, Giessen, Germany
| | | | - Katja Becker
- Interdisciplinary Research Centre, Justus-Liebig University, Giessen, Germany
- * E-mail: (KB); (KM)
| | - Kai Matuschewski
- Department of Parasitology, School of Medicine, Heidelberg University, Heidelberg, Germany
- * E-mail: (KB); (KM)
| |
Collapse
|
34
|
Abstract
The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that Tsa1 functions to maintain the integrity of the translation apparatus. In the present study we report that Tsa1 functions as an antioxidant on actively translating ribosomes. Its peroxidase activity is required for ribosomal function, since mutation of the peroxidatic cysteine residue, which inactivates peroxidase but not chaperone activity, results in sensitivity to translation inhibitors. The peroxidatic cysteine residue is also required for a shift from ribosomes to its high-molecular-mass form in response to peroxide stress. Thus Tsa1 appears to function predominantly as an antioxidant in protecting both the cytosol and actively translating ribosomes against endogenous ROS (reactive oxygen species), but shifts towards its chaperone function in response to oxidative stress conditions. Analysis of the distribution of Tsa1 in thioredoxin system mutants revealed that the ribosome-associated form of Tsa1 is increased in mutants lacking thioredoxin reductase (trr1) and thioredoxins (trx1 trx2) in parallel with the general increase in total Tsa1 levels which is observed in these mutants. In the present study we show that deregulation of Tsa1 in the trr1 mutant specifically promotes translation defects including hypersensitivity to translation inhibitors, increased translational error-rates and ribosomal protein aggregation. These results have important implications for the role of peroxiredoxins in stress and growth control, since peroxiredoxins are likely to be deregulated in a similar manner during many different disease states.
Collapse
|
35
|
López-Mirabal HR, Winther JR. Redox characteristics of the eukaryotic cytosol. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:629-40. [DOI: 10.1016/j.bbamcr.2007.10.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Accepted: 10/22/2007] [Indexed: 12/11/2022]
|
36
|
Ng CH, Tan SX, Perrone GG, Thorpe GW, Higgins VJ, Dawes IW. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor. Free Radic Biol Med 2008; 44:1131-45. [PMID: 18206664 DOI: 10.1016/j.freeradbiomed.2007.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 10/26/2007] [Accepted: 12/07/2007] [Indexed: 11/15/2022]
Abstract
A total of 286 H2O2-sensitive Saccharomyces cerevisiae deletion mutants were screened to identify genes involved in cellular adaptation to H2O2 stress. YAP1, SKN7, GAL11, RPE1, TKL1, IDP1, SLA1, and PET8 were important for adaptation to H2O2. The mutants were divisible into two groups based on their responses to a brief acute dose of H2O2 and to chronic exposure to H2O2. Transcription factors Yap1p, Skn7p, and Gal11p were important for both acute and chronic responses to H2O2. Yap1p and Skn7p were acting in concert for adaptation, which indicates that upregulation of antioxidant functions rather than generation of NADPH or glutathione is important for adaptation. Deletion of GPX3 and YBP1 involved in sensing H2O2 and activating Yap1p affected adaptation but to a lesser extent than YAP1 deletion. NADPH generation was also required for adaptation. RPE1, TKL1, or IDP1 deletants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose, and other mutants affected in NADPH generation tested were similarly affected in adaptation. These mutants overproduced reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This overproduction of GSH was not regulated at transcription of the gene encoding gamma-glutamylcysteine synthetase.
Collapse
Affiliation(s)
- Chong-Han Ng
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Toledano MB, Kumar C, Le Moan N, Spector D, Tacnet F. The system biology of thiol redox system inEscherichia coliand yeast: Differential functions in oxidative stress, iron metabolism and DNA synthesis. FEBS Lett 2007; 581:3598-607. [PMID: 17659286 DOI: 10.1016/j.febslet.2007.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/02/2007] [Indexed: 11/21/2022]
Abstract
By its ability to engage in a variety of redox reactions and coordinating metals, cysteine serves as a key residue in mediating enzymatic catalysis, protein oxidative folding and trafficking, and redox signaling. The thiol redox system, which consists of the glutathione and thioredoxin pathways, uses the cysteine residue to catalyze thiol-disulfide exchange reactions, thereby controlling the redox state of cytoplasmic cysteine residues and regulating the biological functions it subserves. Here, we consider the thiol redox systems of Escherichia coli and Saccharomyces cerevisiae, emphasizing the role of genetic approaches in the understanding of the cellular functions of these systems. We show that although prokaryotic and eukaryotic systems have a similar architecture, they profoundly differ in their overall cellular functions.
Collapse
Affiliation(s)
- Michel B Toledano
- CEA, iBiTecS, Laboratoire Stress Oxydants et Cancer, Gif sur Yvette F-91191, France.
| | | | | | | | | |
Collapse
|
38
|
Reichheld JP, Khafif M, Riondet C, Droux M, Bonnard G, Meyer Y. Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. THE PLANT CELL 2007; 19:1851-65. [PMID: 17586656 PMCID: PMC1955716 DOI: 10.1105/tpc.107.050849] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
NADPH-dependent thioredoxin reductases (NTRs) are key regulatory enzymes determining the redox state of the thioredoxin system. The Arabidopsis thaliana genome has two genes coding for NTRs (NTRA and NTRB), both of which encode mitochondrial and cytosolic isoforms. Surprisingly, plants of the ntra ntrb knockout mutant are viable and fertile, although with a wrinkled seed phenotype, slower plant growth, and pollen with reduced fitness. Thus, in contrast with mammals, our data demonstrate that neither cytosolic nor mitochondrial NTRs are essential in plants. Nevertheless, in the double mutant, the cytosolic thioredoxin h3 is only partially oxidized, suggesting an alternative mechanism for thioredoxin reduction. Plant growth in ntra ntrb plants is hypersensitive to buthionine sulfoximine (BSO), a specific inhibitor of glutathione biosynthesis, and thioredoxin h3 is totally oxidized under this treatment. Interestingly, this BSO-mediated growth arrest is fully reversible, suggesting that BSO induces a growth arrest signal but not a toxic accumulation of activated oxygen species. Moreover, crossing ntra ntrb with rootmeristemless1, a mutant blocked in root growth due to strongly reduced glutathione synthesis, led to complete inhibition of both shoot and root growth, indicating that either the NTR or the glutathione pathway is required for postembryonic activity in the apical meristem.
Collapse
Affiliation(s)
- Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université de Perpignan, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5096, Perpignan, France.
| | | | | | | | | | | |
Collapse
|
39
|
López-Mirabal HR, Thorsen M, Kielland-Brandt MC, Toledano MB, Winther JR. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide. FEMS Yeast Res 2007; 7:391-403. [PMID: 17253982 DOI: 10.1111/j.1567-1364.2006.00202.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS sensitivity. DPS seems to induce a specific disulfide stress, where an increase in the cytoplasmic/nuclear GSSG/GSH ratio results in putative DPS target(s) becoming sensitive to DPS.
Collapse
|
40
|
Herrero E, Ros J, Tamarit J, Bellí G. Glutaredoxins in fungi. PHOTOSYNTHESIS RESEARCH 2006; 89:127-40. [PMID: 16915356 DOI: 10.1007/s11120-006-9079-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/09/2006] [Indexed: 05/11/2023]
Abstract
Glutaredoxins (GRXs) can be subdivided into two subfamilies: dithiol GRXs with the CPY/FC active site motif, and monothiol GRXs with the CGFS motif. Both subfamilies share a thioredoxin-fold structure. Some monothiol GRXs exist with a single-Grx domain while others have a thioredoxin-like domain (Trx) and one or more Grx domains in tandem. Most fungi have both dithiol and monothiol GRXs with different subcellular locations. GRX-like molecules also exist in fungi that differ by one residue from one of the canonical active site motifs. Additionally, Omega-class glutathione transferases (GSTs) are active as GRXs. Among fungi, the GRXs more extensively studied are those from Saccharomyces cerevisiae. This organism contains two dithiol GRXs (ScGrx1 and ScGrx2) with partially overlapping functions in defence against oxidative stress. In this function, they cooperate with GSTs Gtt1 and Gtt2. While ScGrx1 is cytosolic, two pools exist for ScGrx2, a major one at the cytosol and a minor one at mitochondria. On the other hand, S. cerevisiae cells have two monothiol GRXs with the Trx-Grx structure (ScGrx3 and ScGrx4) that locate at the nucleus and probably regulate the activity of transcription factors such as Aft1, and one monothiol GRX with the Grx structure (ScGrx5) that localizes at the mitochondrial matrix, where it participates in the synthesis of iron-sulphur clusters. The function of yeast Grx5 seems to be conserved along the evolutionary scale.
Collapse
Affiliation(s)
- Enrique Herrero
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008, Lleida, Spain.
| | | | | | | |
Collapse
|
41
|
Carroll MC, Outten CE, Proescher JB, Rosenfeld L, Watson WH, Whitson LJ, Hart PJ, Jensen LT, Culotta VC. The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J Biol Chem 2006; 281:28648-56. [PMID: 16880213 PMCID: PMC2757158 DOI: 10.1074/jbc.m600138200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.
Collapse
Affiliation(s)
- Mark C. Carroll
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Caryn E. Outten
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jody B. Proescher
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Leah Rosenfeld
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Walter H. Watson
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Lisa J. Whitson
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, Texas 78229
| | - P. John Hart
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, Texas 78229
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio, Texas 78229
| | - Laran T. Jensen
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria Cizewski Culotta
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
- To whom correspondence should be addressed: Dept. of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Rm. E7626, Baltimore, MD 21205. Tel.: 410-955-3029; Fax: 410-955-0116;
| |
Collapse
|
42
|
Koc A, Mathews CK, Wheeler LJ, Gross MK, Merrill GF. Thioredoxin is required for deoxyribonucleotide pool maintenance during S phase. J Biol Chem 2006; 281:15058-63. [PMID: 16574642 DOI: 10.1074/jbc.m601968200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin was initially identified by its ability to serve as an electron donor for ribonucleotide reductase in vitro. Whether it serves a similar function in vivo is unclear. In Saccharomyces cerevisiae, it was previously shown that Deltatrx1 Deltatrx2 mutants lacking the two genes for cytosolic thioredoxin have a slower growth rate because of a longer S phase, but the basis for S phase elongation was not identified. The hypothesis that S phase protraction was due to inefficient dNTP synthesis was investigated by measuring dNTP levels in asynchronous and synchronized wild-type and Deltatrx1 Deltatrx2 yeast. In contrast to wild-type cells, Deltatrx1 Deltatrx2 cells were unable to accumulate or maintain high levels of dNTPs when alpha-factor- or cdc15-arrested cells were allowed to reenter the cell cycle. At 80 min after release, when the fraction of cells in S phase was maximal, the dNTP pools in Deltatrx1 Deltatrx2 cells were 60% that of wild-type cells. The data suggest that, in the absence of thioredoxin, cells cannot support the high rate of dNTP synthesis required for efficient DNA synthesis during S phase. The results constitute in vivo evidence for thioredoxin being a physiologically relevant electron donor for ribonucleotide reductase during DNA precursor synthesis.
Collapse
Affiliation(s)
- Ahmet Koc
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
43
|
Vignols F, Bréhélin C, Surdin-Kerjan Y, Thomas D, Meyer Y. A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A 2005; 102:16729-34. [PMID: 16272220 PMCID: PMC1283818 DOI: 10.1073/pnas.0506880102] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Indexed: 01/19/2023] Open
Abstract
All organisms contain thioredoxin (TRX), a regulatory thiol:disulfide protein that reduces disulfide bonds in target proteins. Unlike animals and yeast, plants contain numerous TRXs for which no function has been assigned in vivo. Recent in vitro proteomic approaches have opened the way to the identification of >100 TRX putative targets, but of which none of the numerous plant TRXs can be specifically associated. In contrast, in vivo methodologies, including classical yeast two-hybrid (Y2H) systems, failed to reveal the expected high number of TRX targets. Here, we developed a yeast strain named CY306 designed to identify TRX targets in vivo by a Y2H approach. CY306 contains a GAL4 reporter system but also carries deletions of endogenous genes encoding cytosolic TRXs (TRX1 and TRX2) that presumably compete with TRXs introduced as bait. We demonstrate here that, in the CY306 strain, yeast TRX1 and TRX2, as well as Arabidopsis TRX introduced as bait, interact with known TRX targets or putative partners such as yeast peroxiredoxins AHP1 and TSA1, whereas the same interactions cannot be detected in classical Y2H strains. Thanks to CY306, we also show that TRXs interact with the phosphoadenosine-5-phosphosulfate (PAPS) reductase MET16 through a conserved cysteine. Moreover, interactions visualized in CY306 are highly specific depending on the TRX and targets tested. CY306 constitutes a relevant genetic system to explore the TRX interactome in vivo and with high specificity, and opens new perspectives in the search for new TRX-interacting proteins by Y2H library screening in organisms with multiple TRXs.
Collapse
Affiliation(s)
- Florence Vignols
- Laboratoire Génome et Développement des Plantes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5096, Perpignan, France.
| | | | | | | | | |
Collapse
|
44
|
Rand JD, Grant CM. The thioredoxin system protects ribosomes against stress-induced aggregation. Mol Biol Cell 2005; 17:387-401. [PMID: 16251355 PMCID: PMC1345676 DOI: 10.1091/mbc.e05-06-0520] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We previously showed that thioredoxins are required for dithiothreitol (DTT) tolerance, suggesting they maintain redox homeostasis in response to both oxidative and reductive stress conditions. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to DTT to identify cell functions involved in resistance to reductive stress. We identified 195 mutants, whose gene products are localized throughout the cell. DTT-sensitive mutants were distributed among most major biological processes, but they particularly affected gene expression, metabolism, and the secretory pathway. Strikingly, a mutant lacking TSA1, encoding a peroxiredoxin, showed a similar sensitivity to DTT as a thioredoxin mutant. Epistasis analysis indicated that thioredoxins function upstream of Tsa1 in providing tolerance to DTT. Our data show that the chaperone function of Tsa1, rather than its peroxidase function, is required for this activity. Cells lacking TSA1 were found to accumulate aggregated proteins, and this was exacerbated by exposure to DTT. Analysis of the protein aggregates revealed that they are predominantly composed of ribosomal proteins. Furthermore, aggregation was found to correlate with an inhibition of translation initiation. We propose that Tsa1 normally functions to chaperone misassembled ribosomal proteins, preventing the toxicity that arises from their aggregation.
Collapse
Affiliation(s)
- Jonathan D Rand
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
45
|
Trotter EW, Grant CM. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:392-400. [PMID: 15701801 PMCID: PMC549330 DOI: 10.1128/ec.4.2.392-400.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.
Collapse
Affiliation(s)
- Eleanor W Trotter
- The Faculty of Life Sciences, The University of Manchester, Manchester M60 1QD, United Kingdom
| | | |
Collapse
|
46
|
Sarkar N, Lemaire S, Wu-Scharf D, Issakidis-Bourguet E, Cerutti H. Functional specialization of Chlamydomonas reinhardtii cytosolic thioredoxin h1 in the response to alkylation-induced DNA damage. EUKARYOTIC CELL 2005; 4:262-73. [PMID: 15701788 PMCID: PMC549321 DOI: 10.1128/ec.4.2.262-273.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA damage occurs as a by-product of intrinsic cellular processes, like DNA replication, or as a consequence of exposure to genotoxic agents. Organisms have evolved multiple mechanisms to avoid, tolerate, or repair DNA lesions. To gain insight into these processes, we have isolated mutants hypersensitive to DNA-damaging agents in the green alga Chlamydomonas reinhardtii. One mutant, Ble-1, showed decreased survival when it was treated with methyl methanesulfonate (MMS), bleomycin, or hydrogen peroxide (H2O2) but behaved like the wild type when it was exposed to UVC irradiation. Ble-1 carries an extensive chromosomal deletion that includes the gene encoding cytosolic thioredoxin h1 (Trxh1). Transformation of Ble-1 with a wild-type copy of Trxh1 fully corrected the MMS hypersensitivity and partly restored the tolerance to bleomycin. Trxh1 also complemented a defect in the repair of MMS-induced DNA strand breaks and alkali-labile sites. In addition, a Trxh1-beta-glucuronidase fusion protein translocated to the nucleus in response to treatment with MMS. However, somewhat surprisingly, Trxh1 failed to correct the Ble-1 hypersensitivity to H2O2. Moreover, Trxh1 suppression by RNA interference in a wild-type strain resulted in enhanced sensitivity to MMS and DNA repair defects but no increased cytotoxicity to H2O2. Thioredoxins have been implicated in oxidative-stress responses in many organisms. Yet our results indicate a specific role of Chlamydomonas Trxh1 in the repair of MMS-induced DNA damage, whereas it is dispensable for the response to H2O2. These observations also suggest functional specialization among cytosolic thioredoxins since another Chlamydomonas isoform (Trxh2) does not compensate for the lack of Trxh1.
Collapse
Affiliation(s)
- Nandita Sarkar
- School of Biological Sciences and Plant Science Initiative, University Of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | |
Collapse
|
47
|
Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:1215-28. [PMID: 16087409 DOI: 10.1016/j.femsyr.2005.06.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/02/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022] Open
Abstract
Saccharomyces cerevisiae mutants lacking oxidative stress response genes were used to investigate which genes are required under normal aerobic conditions to maintain cellular redox homeostasis, using intracellular glutathione redox potential (glutathione E(h)) to indicate the redox environment of the cells. Levels of reactive oxygen species (ROS) and mitochondrial membrane potentials (MMP) were also assessed by FACS using dihydroethidium and rhodamine 123 as fluorescent probes. Cells became more oxidised as strains shifted from exponential growth to stationary phase. During both phases the presence of reduced thioredoxin and the activity of glutathione reductase were important for redox homeostasis. Thioredoxin reductase contributed less during exponential phase when there was a strong requirement for active Yap1p transcription factor, but was critical during stationary phase. The absence of ROS detoxification systems, such as catalases or superoxide dismutases, had a lesser effect on glutathione E(h), but a more pronounced effect on ROS levels and MMP. These results reflect the major shift in ROS generation as cells switch from fermentative to respiratory metabolism and also showed that there was not a strong correlation between ROS production, MMP and cellular redox environment. Heterogeneity was detected in populations of strains with compromised anti-oxidant defences, and as cells aged they shifted from one cell type with low ROS content to another with much higher intracellular ROS.
Collapse
Affiliation(s)
- Tamara Drakulic
- Ramaciotti Centre for Gene Function Analysis and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Chung WH, Kim KD, Cho YJ, Roe JH. Differential expression and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizosaccharomyces pombe. Biochem Biophys Res Commun 2004; 321:922-9. [PMID: 15358115 DOI: 10.1016/j.bbrc.2004.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Indexed: 11/28/2022]
Abstract
Glutaredoxins are glutathione-specific thiol oxidoreductases. The regulation and the role of grx1(+) and grx2(+) genes encoding dithiol glutaredoxins were analyzed in Schizosaccharomyces pombe. When tested in the same genetic background including mating type, the grx1 null mutant became sensitive to hydrogen peroxide, whereas grx2 mutant became highly sensitive to paraquat, a superoxide generator. The grx1grx2 double mutant showed additive phenotype of each single mutant. The grx1(+) gene expression was induced by various stresses such as oxidants, salts, and heat, and increased in the stationary phase, whereas grx2(+) stayed constitutive. The induction was mediated via Spc1 MAP kinase path involving both Atf1 and Pap1 transcription factors. Sub-cellular fractionation as well as fluorescence microscopy revealed that Grx1 resides mainly in the cytosol, whereas Grx2 is in mitochondria. These results suggest distinct roles for Grx1 and Grx2 in S. pombe in mediating glutathione-dependent redox homeostasis.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- Laboratory of Molecular Microbiology, Institute of Microbiology, School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
49
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
50
|
Wheeler GL, Grant CM. Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. PHYSIOLOGIA PLANTARUM 2004; 120:12-20. [PMID: 15032872 DOI: 10.1111/j.0031-9317.2004.0193.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An increasingly important area of research is based on sulphydryl chemistry, since the oxidation of -SH groups is one of the earliest observable events during oxidant-mediated damage and -SH groups play a critical role in the function of many macromolecular structures including enzymes, transcription factors and membrane proteins. Glutaredoxins and thioredoxins are small heat-stable oxidoreductases, conserved throughout evolution, which play key roles in maintaining the cellular redox balance. Much progress has been made in analysing these systems in the yeast Saccharomyces cerevisiae which is a very useful model eukaryote due to its ease of genetic manipulation, its compact genome, the availability of the entire genome sequence, and the current rate of progress in gene function research. Yeast, like all eukaryotes, contains a number of glutaredoxin and thioredoxin isoenzymes located in both the cytoplasm and the mitochondria. This review describes recent findings made in yeast that are leading to a better understanding of the regulation and role of redox homeostasis in eukaryotic cell metabolism.
Collapse
Affiliation(s)
- Glen L. Wheeler
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK
| | | |
Collapse
|