1
|
Lin Z, Wang Z, Zhang Y, Tan S, Masangano M, Kang M, Cao X, Huang P, Gao Y, Pei X, Ren X, He K, Liang Y, Ji G, Tian Z, Wang X, Ma X. Gene expression modules during the emergence stage of upland cotton under low-temperature stress and identification of the GhSPX9 cold-tolerance gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109320. [PMID: 39579718 DOI: 10.1016/j.plaphy.2024.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Cotton originates from tropical and subtropical regions, and low temperatures are one of the main stress factors restricting its growth, particularly during the seedling stage. However, the mechanism of cold resistance is complex, and the research on gene expression modules under low temperatures during the seedling emergence stage of cotton remains unexplored, and identified vital cold-tolerant genes remain scarce. Here, we revealed the dynamic changes of differentially expressed genes during seed germination under cold stress through transcriptome analysis, with 5140 genes stably differentiating across more than five time points, among which 2826 genes are up-regulated, and 2314 genes are down-regulated. The weighted gene co-expression network analysis (WGCNA) of transcriptome profiles revealed three major cold-responsive modules and identified 98 essential node genes potentially involved in cold response. Genome-wide association analysis further confirmed that the hub gene GhSPX9 is crucial for cold tolerance. Virus-induced gene silencing in cotton demonstrated that GhSPX9 is a positive regulator of cold tolerance in cotton, with interference in its expression significantly enhancing sensitivity to cold stress in germination and seedlings. These results can be applied to identify cold tolerance loci and genes in cotton, promoting research into cold tolerance mechanisms.
Collapse
Affiliation(s)
- Ziwei Lin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhenyu Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Songjuan Tan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Mayamiko Masangano
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Meng Kang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Cao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Peijun Huang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yu Liang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Gaoxiang Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zunzhe Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
2
|
Ros-Carrero C, Spiridon-Bodi M, Igual JC, Gomar-Alba M. The CDK Pho85 inhibits Whi7 Start repressor to promote cell cycle entry in budding yeast. EMBO Rep 2024; 25:745-769. [PMID: 38233717 PMCID: PMC10897450 DOI: 10.1038/s44319-023-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Pho85 is a multifunctional CDK that signals to the cell when environmental conditions are favorable. It has been connected to cell cycle control, mainly in Start where it promotes the G1/S transition. Here we describe that the Start repressor Whi7 is a key target of Pho85 in the regulation of cell cycle entry. The phosphorylation of Whi7 by Pho85 inhibits the repressor and explains most of the contribution of the CDK in the activation of Start. Mechanistically, Pho85 downregulates Whi7 protein levels through the control of Whi7 protein stability and WHI7 gene transcription. Whi7 phosphorylation by Pho85 also restrains the intrinsic ability of Whi7 to associate with promoters. Furthermore, although Whi5 is the main Start repressor in normal cycling cells, in the absence of Pho85, Whi7 becomes the major repressor leading to G1 arrest. Overall, our results reveal a novel mechanism by which Pho85 promotes Start through the regulation of the Whi7 repressor at multiple levels, which may confer to Whi7 a functional specialization to connect the response to adverse conditions with the cell cycle control.
Collapse
Affiliation(s)
- Cristina Ros-Carrero
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - Mihai Spiridon-Bodi
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| | - Mercè Gomar-Alba
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
3
|
Deprez MA, Caligaris M, Rosseels J, Hatakeyama R, Ghillebert R, Sampaio-Marques B, Mudholkar K, Eskes E, Meert E, Ungermann C, Ludovico P, Rospert S, De Virgilio C, Winderickx J. The nutrient-responsive CDK Pho85 primes the Sch9 kinase for its activation by TORC1. PLoS Genet 2023; 19:e1010641. [PMID: 36791155 PMCID: PMC9974134 DOI: 10.1371/journal.pgen.1010641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/28/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Yeast cells maintain an intricate network of nutrient signaling pathways enabling them to integrate information on the availability of different nutrients and adjust their metabolism and growth accordingly. Cells that are no longer capable of integrating this information, or that are unable to make the necessary adaptations, will cease growth and eventually die. Here, we studied the molecular basis underlying the synthetic lethality caused by loss of the protein kinase Sch9, a key player in amino acid signaling and proximal effector of the conserved growth-regulatory TORC1 complex, when combined with either loss of the cyclin-dependent kinase (CDK) Pho85 or loss of its inhibitor Pho81, which both have pivotal roles in phosphate sensing and cell cycle regulation. We demonstrate that it is specifically the CDK-cyclin pair Pho85-Pho80 or the partially redundant CDK-cyclin pairs Pho85-Pcl6/Pcl7 that become essential for growth when Sch9 is absent. Interestingly, the respective three CDK-cyclin pairs regulate the activity and distribution of the phosphatidylinositol-3 phosphate 5-kinase Fab1 on endosomes and vacuoles, where it generates phosphatidylinositol-3,5 bisphosphate that serves to recruit both TORC1 and its substrate Sch9. In addition, Pho85-Pho80 directly phosphorylates Sch9 at Ser726, and to a lesser extent at Thr723, thereby priming Sch9 for its subsequent phosphorylation and activation by TORC1. The TORC1-Sch9 signaling branch therefore integrates Pho85-mediated information at different levels. In this context, we also discovered that loss of the transcription factor Pho4 rescued the synthetic lethality caused by loss of Pho85 and Sch9, indicating that both signaling pathways also converge on Pho4, which appears to be wired to a feedback loop involving the high-affinity phosphate transporter Pho84 that fine-tunes Sch9-mediated responses.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joëlle Rosseels
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Riko Hatakeyama
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Ruben Ghillebert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Els Meert
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
| | - Christian Ungermann
- Department of Biology/Chemistry & Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail: (CDV); (JW)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Heverlee, Belgium
- * E-mail: (CDV); (JW)
| |
Collapse
|
4
|
Abstract
In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.
Collapse
|
5
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Märker R, Blank-Landeshammer B, Beier-Rosberger A, Sickmann A, Kück U. Phosphoproteomic analysis of STRIPAK mutants identifies a conserved serine phosphorylation site in PAK kinase CLA4 to be important in fungal sexual development and polarized growth. Mol Microbiol 2020; 113:1053-1069. [PMID: 32022307 DOI: 10.1111/mmi.14475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The highly conserved striatin-interacting phosphatases and kinases (STRIPAK) complex regulates phosphorylation/dephosphorylation of developmental proteins in eukaryotic microorganisms, animals and humans. To first identify potential targets of STRIPAK, we performed extensive isobaric tags for relative and absolute quantification-based proteomic and phosphoproteomic analyses in the filamentous fungus Sordaria macrospora. In total, we identified 4,193 proteins and 2,489 phosphoproteins, which are represented by 10,635 phosphopeptides. By comparing phosphorylation data from wild type and mutants, we identified 228 phosphoproteins to be regulated in all three STRIPAK mutants, thus representing potential targets of STRIPAK. To provide an exemplarily functional analysis of a STRIPAK-dependent phosphorylated protein, we selected CLA4, a member of the conserved p21-activated kinase family. Functional characterization of the ∆cla4 deletion strain showed that CLA4 controls sexual development and polarized growth. To determine the functional relevance of CLA4 phosphorylation and the impact of specific phosphorylation sites on development, we next generated phosphomimetic and -deficient variants of CLA4. This analysis identified (de)phosphorylation of a highly conserved serine (S685) residue in the catalytic domain of CLA4 as being important for fungal cellular development. Collectively, these analyses significantly contribute to the understanding of the mechanistic function of STRIPAK as a phosphatase and kinase signaling complex.
Collapse
Affiliation(s)
- Ramona Märker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Anna Beier-Rosberger
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|
7
|
Klein MO, Battagello DS, Cardoso AR, Hauser DN, Bittencourt JC, Correa RG. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell Mol Neurobiol 2019; 39:31-59. [PMID: 30446950 PMCID: PMC11469830 DOI: 10.1007/s10571-018-0632-3] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.
Collapse
Affiliation(s)
- Marianne O Klein
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Daniella S Battagello
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - Ariel R Cardoso
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil
| | - David N Hauser
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Jackson C Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, 05508-000, Brazil.
- Center for Neuroscience and Behavior, Institute of Psychology, USP, São Paulo, Brazil.
| | - Ricardo G Correa
- Center for Translational Neuroscience, Sanford Burnham Prebys (SBP) Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
8
|
Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola. BMC Genomics 2018; 19:557. [PMID: 30055574 PMCID: PMC6064131 DOI: 10.1186/s12864-018-4934-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Colletotrichum is a fungal genus in Ascomycota that contain many plant pathogens. Among all Colletotrichum genomes that have been sequenced, C. fructicola contains the largest number of candidate virulence factors, such as plant cell wall degrading enzymes, secondary metabolite (SM) biosynthetic enzymes, secreted proteinases, and small secreted proteins. Systematic analysis of the expressional patterns of these factors would be an important step toward identifying key virulence determinants. Results In this study, we obtained and compared the global transcriptome profiles of four types of infection-related structures: conidia, appressoria, infected apple leaves, and cellophane infectious hyphae (bulbous hyphae spreading inside cellophane) of C. fructicola. We also compared the expression changes of candidate virulence factors among these structures in a systematic manner. A total of 3189 genes were differentially expressed in at least one pairwise comparison. Genes showing in planta-specific expressional upregulations were enriched with small secreted proteins (SSPs), cytochrome P450s, carbohydrate-active enzymes (CAZYs) and secondary metabolite (SM) synthetases, and included homologs of several known candidate effectors and one SM gene cluster specific to the Colletotrichum genus. In conidia, tens of genes functioning in triacylglycerol biosynthesis showed coordinately expressional upregulation, supporting the viewpoint that C. fructicola builds up lipid droplets as energy reserves. Several phosphate starvation responsive genes were coordinately up-regulated during early plant colonization, indicating a phosphate-limited in planta environment immediately faced by biotrophic infectious hyphae. Conclusion This study systematically analyzes the expression patterns of candidate virulence genes, and reveals biological activities related to the development of several infection-related structures of C. fructicola. Our findings lay a foundation for further dissecting infection mechanisms in Colletotrichum and identifying disease control targets. Electronic supplementary material The online version of this article (10.1186/s12864-018-4934-0) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Kwon Y, Cha J, Chiang J, Tran G, Giaever G, Nislow C, Hur JS, Kwak YS. A chemogenomic approach to understand the antifungal action of Lichen-derived vulpinic acid. J Appl Microbiol 2016; 121:1580-1591. [DOI: 10.1111/jam.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/15/2016] [Accepted: 09/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Y. Kwon
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - J. Cha
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| | - J. Chiang
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Tran
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - G. Giaever
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - C. Nislow
- Pharmaceutical Sciences; University of British Columbia; Vancouver BC Canada
| | - J.-S. Hur
- Korean Lichen Research Institute; Suncheon National University; Suncheon Korea
| | - Y.-S. Kwak
- Department of Plant Medicine and Institute of Agriculture & Life Science; Gyeongsang National University; Jinju Korea
| |
Collapse
|
10
|
A new rapid and efficient system with dominant selection developed to inactivate and conditionally express genes in Candida albicans. Curr Genet 2016; 62:213-35. [PMID: 26497136 DOI: 10.1007/s00294-015-0526-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/30/2023]
Abstract
Candida albicans is an important human fungal pathogen but its study has been hampered for being a natural diploid that lacks a complete sexual cycle. Gene knock-out and essential gene repression are used to study gene function in C. albicans. To effectively study essential genes in wild-type C. albicans, we took advantage of the compatible effects of the antibiotics hygromycin B and nourseothricin, the recyclable CaSAT1-flipper and the tetracycline-repressible (Tet-off) system. To allow deleting two alleles simultaneously, we created a cassette with a C. albicans HygB resistance gene (CaHygB) flanked with the FLP recombinase target sites that can be operated alongside the CaSAT1-flipper. Additionally, to enable conditionally switching off essential genes, we created a CaHygB-based Tet-off cassette that consisted of the CaTDH3 promoter, which is used for the constitutive expression of the tetracycline-regulated transactivator and a tetracycline response operator. To validate the new systems, all strains were constructed based on the wild-type strain and selected by the two dominant selectable markers, CaHygB and CaSAT1. The C. albicans general transcriptional activator CaGCN4 and its negative regulator CaPCL5 genes were targeted for gene deletion, and the essential cyclin-dependent kinase CaPHO85 gene was placed under the Tet-off system. Cagcn4, Capcl5, the conditional Tet-off CaPHO85 mutants, and mutants bearing two out of the three mutations were generated. By subjecting the mutants to various stress conditions, the functional relationship of the genes was revealed. This new system can efficiently delete genes and conditionally switch off essential genes in wild-type C. albicans to assess functional interaction between genes.
Collapse
|
11
|
Zhang K, Song Q, Wei Q, Wang C, Zhang L, Xu W, Su Z. Down-regulation of OsSPX1 caused semi-male sterility, resulting in reduction of grain yield in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1661-72. [PMID: 26806409 PMCID: PMC5066639 DOI: 10.1111/pbi.12527] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/06/2015] [Indexed: 05/03/2023]
Abstract
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)-sensing mechanism plays an essential role in the Pi-signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down-regulation of OsSPX1 caused reduction of seed-setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild-type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi-male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole-genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down-regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed-setting rate in rice. The down-regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down-regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi-male sterility, and ultimately resulted in low seed-setting rate and grain yield.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qian Song
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
13
|
Peng L, Skylar A, Chang PL, Bisova K, Wu X. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Dev Biol 2014; 393:160-70. [PMID: 24951878 DOI: 10.1016/j.ydbio.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
Abstract
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
Collapse
Affiliation(s)
- Linda Peng
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter L Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Katerina Bisova
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Xuelin Wu
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Wang C, Wei Q, Zhang K, Wang L, Liu F, Zhao L, Tan Y, Di C, Yan H, Yu J, Sun C, Chen WJ, Xu W, Su Z. Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 2013; 8:e81849. [PMID: 24312593 PMCID: PMC3849359 DOI: 10.1371/journal.pone.0081849] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
Rice SPX domain gene, OsSPX1, plays an important role in the phosphate (Pi) signaling network. Our previous work showed that constitutive overexpression of OsSPX1 in tobacco and Arabidopsis plants improved cold tolerance while also decreasing total leaf Pi. In the present study, we generated rice antisense and sense transgenic lines of OsSPX1 and found that down-regulation of OsSPX1 caused high sensitivity to cold and oxidative stresses in rice seedlings. Compared to wild-type and OsSPX1-sense transgenic lines, more hydrogen peroxide accumulated in seedling leaves of OsSPX1-antisense transgenic lines for controls, cold and methyl viologen (MV) treatments. Glutathione as a ROS scavenger could protect the antisense transgenic lines from cold and MV stress. Rice whole genome GeneChip analysis showed that some oxidative-stress marker genes (e.g. glutathione S-transferase and P450s) and Pi-signaling pathway related genes (e.g. OsPHO2) were significantly down-regulated by the antisense of OsSPX1. The microarray results were validated by real-time RT-PCR. Our study indicated that OsSPX1 may be involved in cross-talks between oxidative stress, cold stress and phosphate homeostasis in rice seedling leaves.
Collapse
Affiliation(s)
- Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ling Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Plant Genetic and Breeding and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Linna Zhao
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuanjun Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chao Di
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingjuan Yu
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Plant Genetic and Breeding and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Wenqiong J. Chen
- Biology Department, San Diego State University, San Diego, California, United States of America
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (ZS); (WX)
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (ZS); (WX)
| |
Collapse
|
15
|
Evidence that two Pcl-like cyclins control Cdk9 activity during cell differentiation in Aspergillus nidulans asexual development. EUKARYOTIC CELL 2012; 12:23-36. [PMID: 23104571 DOI: 10.1128/ec.00181-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent protein kinases (CDKs) are usually involved in cell cycle regulation. However, Cdk9 is an exception and promotes RNA synthesis through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAPII). The CTD is comprised of repeating heptapeptides, in which serine residues at positions 2, 5, and 7 are of crucial importance. Ser5 phosphorylation causes transcription initiation and promoter escape. However, RNAPII pauses 20 to 50 bp downstream from the transcription start site, until Cdk9 phosphorylates Ser2. This event relieves the checkpoint and promotes the processivity of elongation. Here we present evidence that in the filamentous fungus Aspergillus nidulans, a Cdk9 homologue, PtkA, serves specific functions in conidiophore development. It was previously shown that PtkA interacts with two cyclins, PclA and the T cyclin PchA. Using yeast two-hybrid screens, we identified a third cyclin, PclB, and a kinase, PipA(Bud32). Both proteins were expressed in hyphae and in conidiophores, but interaction between each protein and PtkA was restricted to the conidiophores. Deletion of pchA caused a severe growth defect, and deletion of pipA was lethal, suggesting basic functions in PtkA-dependent gene transcription. In contrast, deletion of pclB in combination with deletion of pclA essentially caused a block in spore formation. We present evidence that the phosphorylation status of the CTD of RNA polymerase II in the conidiophore changes upon deletion of pclA or pclB. Our results suggest that tissue-specific modulation of Cdk9 activity by PclA and PclB is required for proper differentiation.
Collapse
|
16
|
Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 2012; 586:289-95. [PMID: 22285489 DOI: 10.1016/j.febslet.2012.01.036] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field.
Collapse
|
17
|
Omann MR, Lehner S, Escobar Rodríguez C, Brunner K, Zeilinger S. The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. MICROBIOLOGY-SGM 2011; 158:107-118. [PMID: 22075023 PMCID: PMC3352357 DOI: 10.1099/mic.0.052035-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoparasitic Trichoderma species are applied as biocontrol agents in agriculture to guard plants against fungal diseases. During mycoparasitism, Trichoderma directly interacts with phytopathogenic fungi, preceded by a specific recognition of the host and resulting in its disarming and killing. In various fungal pathogens, including mycoparasites, signalling via heterotrimeric G proteins plays a major role in regulating pathogenicity-related functions. However, the corresponding receptors involved in the recognition of host-derived signals are largely unknown. Functional characterization of Trichoderma atroviride Gpr1 revealed a prominent role of this seven-transmembrane protein of the cAMP-receptor-like family of fungal G-protein-coupled receptors in the antagonistic interaction with the host fungus and governing of mycoparasitism-related processes. Silencing of gpr1 led to an avirulent phenotype accompanied by an inability to attach to host hyphae. Furthermore, gpr1-silenced transformants were unable to respond to the presence of living host fungi with the expression of chitinase- and protease-encoding genes. Addition of exogenous cAMP was able to restore host attachment in gpr1-silenced transformants but could not restore mycoparasitic overgrowth. A search for downstream targets of the signalling pathway(s) involving Gpr1 resulted in the isolation of genes encoding e.g. a member of the cyclin-like superfamily and a small secreted cysteine-rich protein. Although silencing of gpr1 caused defects similar to those of mutants lacking the Tga3 Gα protein, no direct interaction between Gpr1 and Tga3 was observed in a split-ubiquitin two-hybrid assay.
Collapse
Affiliation(s)
- Markus R. Omann
- Research Area Molecular Biotechnology and Microbiology, Center for Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
| | - Sylvia Lehner
- Department for Agrobiotechnology IFA-Tulln, Institute of Analytical Chemistry, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Carolina Escobar Rodríguez
- Research Area Molecular Biotechnology and Microbiology, Center for Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
| | - Kurt Brunner
- Research Area Molecular Biotechnology and Microbiology, Center for Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
- Department for Agrobiotechnology IFA-Tulln, Institute of Analytical Chemistry, Konrad-Lorenz-Straße 20, Tulln, Austria
| | - Susanne Zeilinger
- Research Area Molecular Biotechnology and Microbiology, Center for Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, Wien, Austria
| |
Collapse
|
18
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
19
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
20
|
Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010; 31:2869-81. [DOI: 10.1002/elps.200900759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM, van Berkum NL, Apweiler E, Lijnzaad P, Holstege FCP, Kemmeren P. A consensus of core protein complex compositions for Saccharomyces cerevisiae. Mol Cell 2010; 38:916-28. [PMID: 20620961 DOI: 10.1016/j.molcel.2010.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/02/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
Analyses of biological processes would benefit from accurate definitions of protein complexes. High-throughput mass spectrometry data offer the possibility of systematically defining protein complexes; however, the predicted compositions vary substantially depending on the algorithm applied. We determine consensus compositions for 409 core protein complexes from Saccharomyces cerevisiae by merging previous predictions with a new approach. Various analyses indicate that the consensus is comprehensive and of high quality. For 85 out of 259 complexes not recorded in GO, literature search revealed strong support in the form of coprecipitation. New complexes were verified by an independent interaction assay and by gene expression profiling of strains with deleted subunits, often revealing which cellular processes are affected. The consensus complexes are available in various formats, including a merge with GO, resulting in 518 protein complex compositions. The utility is further demonstrated by comparison with binary interaction data to reveal interactions between core complexes.
Collapse
Affiliation(s)
- Joris J Benschop
- Department of Physiological Chemistry, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
23
|
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 2010; 10:134-49. [DOI: 10.1111/j.1567-1364.2009.00587.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Luo ZB, Janz D, Jiang X, Göbel C, Wildhagen H, Tan Y, Rennenberg H, Feussner I, Polle A. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation. PLANT PHYSIOLOGY 2009; 151:1902-17. [PMID: 19812185 PMCID: PMC2785981 DOI: 10.1104/pp.109.143735] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 10/04/2009] [Indexed: 05/09/2023]
Abstract
Ectomycorrhizas (EMs) alleviate stress tolerance of host plants, but the underlying molecular mechanisms are unknown. To elucidate the basis of EM-induced physiological changes and their involvement in stress adaptation, we investigated metabolic and transcriptional profiles in EM and non-EM roots of gray poplar (Populus x canescens) in the presence and absence of osmotic stress imposed by excess salinity. Colonization with the ectomycorrhizal fungus Paxillus involutus increased root cell volumes, a response associated with carbohydrate accumulation. The stress-related hormones abscisic acid and salicylic acid were increased, whereas jasmonic acid and auxin were decreased in EM compared with non-EM roots. Auxin-responsive reporter plants showed that auxin decreased in the vascular system. The phytohormone changes in EMs are in contrast to those in arbuscular mycorrhizas, suggesting that EMs and arbuscular mycorrhizas recruit different signaling pathways to influence plant stress responses. Transcriptome analyses on a whole genome poplar microarray revealed activation of genes related to abiotic and biotic stress responses as well as of genes involved in vesicle trafficking and suppression of auxin-related pathways. Comparative transcriptome analysis indicated EM-related genes whose transcript abundances were independent of salt stress and a set of salt stress-related genes that were common to EM non-salt-stressed and non-EM salt-stressed plants. Salt-exposed EM roots showed stronger accumulation of myoinositol, abscisic acid, and salicylic acid and higher K(+)-to-Na(+) ratio than stressed non-EM roots. In conclusion, EMs activated stress-related genes and signaling pathways, apparently leading to priming of pathways conferring abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrea Polle
- College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, People's Republic of China (Z.-B.L.); Büsgen Institute, Department for Forest Botany and Tree Physiology (Z.-B.L., D.J., A.P.), and Albrecht-von-Haller Institute for Plant Sciences, Department for Plant Biochemistry (C.G., I.F.), Georg-August University, 37077 Goettingen, Germany; College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China (X.J., Y.T.); and Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Albert-Ludwigs University, 79110 Freiburg, Germany (H.W., H.R.)
| |
Collapse
|
25
|
Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:550-61. [PMID: 19508276 DOI: 10.1111/j.1467-7652.2009.00423.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Low temperature is a major environmental stress for plants. Many important cultivated crops have limited capacity to survive below freezing/subfreezing temperatures. Low inorganic phosphate (Pi) is reportedly important in triggering cold acclimatization. SPX (SYG1/Pho81/XPR1: SYG1, suppressor of yeast gpal; Pho81, CDK inhibitor in yeast PHO pathway; XPR1, xenotropic and polytropic retrovirus receptor) domain proteins have been shown to be involved in the phosphate-related signal transduction and regulation pathways. Recently, Arabidopsis AtSPX family genes have been found to possess diverse functions in plant tolerance to phosphorus starvation, and OsSPX1 is involved in phosphate homeostasis in rice and optimizes growth under phosphate-limited conditions through a negative feedback loop. In this study, our phylogenetic and gene expression profiling approaches identified six rice OsSPX genes up-regulated during cold stress. Transgenic tobacco plants with constitutive expression of OsSPX1 were more tolerant to cold stress than were wild-type plants, and showed better seedling survival and reduced cellular electrolyte leakage. In addition, there was decreased total leaf Pi content and accumulation of free proline and sucrose in transgenic tobacco plants during cold stress. To further establish a cause-and-effect relationship between intracellular Pi level and cold acclimatization in transgenic plants, we generated transgenic Arabidopsis plants with constitutive expression of OsSPX1. Cold stress resulted in reduced leaf Pi levels in Arabidopsis transgenic relative to wild-type plants. From real-time reverse transcriptase-polymerase chain reaction analysis, several Pi starvation-related genes, such as AtSPX1 (orthologue of OsSPX1), PHO2, PLDZ2 and ATSIZ1, showed differential expression between wild-type and transgenic plants during cold stress. Our results indicate that OsSPX1 may play an important role in linking cold stress and Pi starvation signal transduction pathways.
Collapse
Affiliation(s)
- Linna Zhao
- State Key Laboratory for Agricultural Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
27
|
Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 2007; 66:303-14. [PMID: 17850263 DOI: 10.1111/j.1365-2958.2007.05914.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pho85 is a multifunctional cyclin-dependent kinase (Cdk) in Saccharomyces cerevisiae that has emerged as an important model for the role of Cdks in both cell cycle control and other processes. Pho85 is targeted to its substrates by 10 different cyclins or Pcls. Three of these Pcls have specific roles in G1 phase of the cell cycle, both in regulating G1-specific gene expression and in controlling polarized growth. Many known substrates of the G1 forms of Pho85 are also phosphorylated by the homologous Cdk Cln-Cdc28, suggesting parallel or overlapping roles. Most of the remaining Pcls function in signalling: Pho85 is generally active when environmental conditions are satisfactory, phosphorylating proteins involved in transcription and other regulatory events to keep the stress response and inappropriate activities turned off. Recently, genetic screens for synthetic lethality and synthetic dosage lethality, and proteomic screens for in vitro Pho85 substrates, have revealed more details about how Pho85 functions to regulate a variety of cellular processes.
Collapse
Affiliation(s)
- Dongqing Huang
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
28
|
Bömeke K, Pries R, Korte V, Scholz E, Herzog B, Schulze F, Braus GH. Yeast Gcn4p stabilization is initiated by the dissociation of the nuclear Pho85p/Pcl5p complex. Mol Biol Cell 2006; 17:2952-62. [PMID: 16611745 PMCID: PMC1483032 DOI: 10.1091/mbc.e05-10-0975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 11/11/2022] Open
Abstract
Protein stability of the c-jun-like yeast bZIP transcriptional activator Gcn4p is exclusively controlled in the yeast nucleus. Phosphorylation by the nuclear Pho85p cyclin-dependent protein kinase, a functional homolog of mammalian Cdk5, initiates the Gcn4p degradation pathway in complex with the cyclin Pcl5p. We show that the initial step in Gcn4p stabilization is the dissociation of the Pho85p/Pcl5p complex. Pcl7p, another nuclear and constantly present cyclin, is required for Gcn4p stabilization and is able to associate to Pho85p independently of the activity of the Gcn4p degradation pathway. In addition, the nuclear cyclin-dependent Pho85p kinase inhibitor Pho81p is required for Gcn4p stabilization. Pho81p only interacts with Pcl5p when Gcn4p is rapidly degraded but constitutively interacts with Pcl7p. Our data suggest that Pcl7p and Pho81p are antagonists of the Pho85p/Pcl5p complex formation in a yet unknown way, which are specifically required for Gcn4p stabilization. We suggest that dissociation of the Pho85p/Pcl5p complex as initial step in Gcn4p stabilization is a prerequisite for a shift of equilibrium to an increased amount of the Pho85p/Pcl7p complexes and subsequently results in decreased Gcn4p phosphorylation and therefore increased stability of the transcription factor.
Collapse
Affiliation(s)
- Katrin Bömeke
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Ralph Pries
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Virginia Korte
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Eva Scholz
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Britta Herzog
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Florian Schulze
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| |
Collapse
|
29
|
Mouillon JM, Persson BL. New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:171-6. [PMID: 16487340 DOI: 10.1111/j.1567-1364.2006.00036.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mechanism involved in the cellular phosphate response of Saccharomyces cerevisiae forms part of the PHO pathway, which upon expression allows a co-ordinated cellular response and adaptation to changes in availability of external phosphate. Although genetic studies and analyses of the S. cerevisiae genome have produced much information on the components of the PHO pathway, little is known about how cells sense the environmental phosphate level and the mechanistic regulation of phosphate acquisition. Recent studies emphasize different levels in phosphate sensing and signalling in response to external phosphate fluctuations. This review integrates all these findings into a model involving rapid and long-term effects of phosphate sensing and signalling in S. cerevisiae. The model describes in particular how yeast cells are able to adjust phosphate acquisition by integrating the status of the intracellular phosphate pools together with the extracellular phosphate concentration.
Collapse
Affiliation(s)
- Jean-Marie Mouillon
- Department of Chemistry and Biomedical Sciences, Kalmar University, Kalmar, Sweden
| | | |
Collapse
|
30
|
Swinnen E, Rosseels J, Winderickx J. The minimum domain of Pho81 is not sufficient to control the Pho85-Rim15 effector branch involved in phosphate starvation-induced stress responses. Curr Genet 2005; 48:18-33. [PMID: 15926040 DOI: 10.1007/s00294-005-0583-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The phosphate regulatory mechanism in yeast, known as the PHO pathway, is regulated by inorganic phosphate to control the expression of genes involved in the acquisition of phosphate from the medium. This pathway is also reported to contribute to other nutritional responses and as such it affects several phenotypic characteristics known also to be regulated by protein kinase A, including the transcription of genes involved in the general stress response and trehalose metabolism. We now demonstrate that transcription of post-diauxic shift (PDS)-controlled stress-responsive genes is solely regulated by the Pho85-Pho80 complex, whereas regulation of trehalose metabolism apparently involves several Pho85 cyclins. Interestingly, both read-outs depend on Pho81 but, while the previously described minimum domain of Pho81 is sufficient to sustain phosphate-regulated transcription of PHO genes, full-length Pho81 is required to control trehalose metabolism and the PDS targets. Consistently, neither the expression control of stress-regulated genes nor the trehalose metabolism relies directly on Pho4. Finally, we present data supporting that the PHO pathway functions in parallel to the fermentable growth medium- or Sch9-controlled pathway and that both pathways may share the protein kinase Rim15, which was previously reported to play a central role in the integration of glucose, nitrogen and amino acid availability.
Collapse
Affiliation(s)
- Erwin Swinnen
- Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | |
Collapse
|
31
|
Wilson WA, Wang Z, Roach PJ. Regulation of yeast glycogen phosphorylase by the cyclin-dependent protein kinase Pho85p. Biochem Biophys Res Commun 2005; 329:161-7. [PMID: 15721288 DOI: 10.1016/j.bbrc.2005.01.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Yeast accumulate glycogen in response to nutrient limitation. The key enzymes of glycogen synthesis and degradation, glycogen synthase, and phosphorylase, are regulated by reversible phosphorylation. Phosphorylation inactivates glycogen synthase but activates phosphorylase. The kinases and phosphatases that control glycogen synthase are well characterized whilst the enzymes modifying phosphorylase are poorly defined. Here, we show that the cyclin-dependent protein kinase, Pho85p, which we have previously found to regulate glycogen synthase also controls the phosphorylation state of phosphorylase.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry and Molecular Biology, Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
32
|
Makrantoni V, Antrobus R, Botting CH, Coote PJ. Rapid enrichment and analysis of yeast phosphoproteins using affinity chromatography, 2D-PAGE and peptide mass fingerprinting. Yeast 2005; 22:401-14. [PMID: 15806615 DOI: 10.1002/yea.1220] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A combination of affinity purification, 2D-PAGE and peptide mass fingerprinting was employed to study the phosphoprotein complement of Saccharomyces cerevisiae. Protein extracts were first passed through a phosphoprotein affinity column, and the phosphoprotein-enriched eluate fractions were then separated on 2D gels and visualized by staining with SYPRO Ruby. Proteins were excised from the gels and identified by peptide mass fingerprinting; 11/13 protein spots identified from a gel of the phosphoprotein-enriched fraction had prior published evidence indicating that they were phosphoproteins. Additional experiments using a specific stain for phosphoproteins, prior incubation of the protein extract with alkaline phosphatase and blotting with monoclonal antibodies to phosphothreonine, phosphoserine and phosphotyrosine demonstrated that the phosphoprotein affinity column was an effective method for enriching phosphoproteins. Further validating the method, growth of yeast in the presence of sorbic acid resulted in altered phosphorylation of 17 proteins, 13 of which had prior published evidence that they were phosphoproteins or had ATP binding activity.
Collapse
Affiliation(s)
- Vasso Makrantoni
- Centre for Biomolecular Science, University of St. Andrews, The North Haugh, St. Andrews, Fife KY16 9ST, UK
| | | | | | | |
Collapse
|
33
|
Wu D, Dou X, Hashmi SB, Osmani SA. The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J Biol Chem 2004; 279:37693-703. [PMID: 15247298 DOI: 10.1074/jbc.m403853200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, phosphate acquisition enzymes are regulated by a cyclin-dependent kinase (Pho85), a cyclin (Pho80), the cyclin-dependent kinase inhibitor Pho81, and the helix-loop-helix transcription factor Pho4 (the PHO system). Previous studies in Aspergillus nidulans indicate that a Pho85-like kinase, PHOA, does not regulate the classic PHO system but regulates development in a phosphate-dependent manner. A Pho80-like cyclin has now been isolated through its interaction with PHOA. Surprisingly, unlike PHOA, An-PHO80 does play a negative role in the PHO system. Similarly, an ortholog of Pho4 previously identified genetically as palcA also regulates the PHO system. However, An-PHO81, a putative cyclin-dependent kinase inhibitor, does not regulate the PHO system. Therefore, there are significant differences between the classic PHO system conserved between S. cerevisiae and Neurospora crassa compared with that which has evolved in A. nidulans. Most interestingly, under low phosphate conditions, the An-PHO80 cyclin also promotes sexual development while having a negative effect on asexual development. These effects are independent of the role An-PHO80 has in the classic PHO system. However, in high phosphate medium, An-PHO80 affects development because of deregulation of the PHO system as loss of palcA(Pho4) function negates the developmental defects caused by lack of An-pho80. Therefore, under low phosphate conditions the An-PHO80 cyclin regulates development independently of the PHO system, whereas in high phosphate it affects development through the PHO system. The data indicate that a single cyclin can control various aspects of growth and development in a multicellular organism.
Collapse
Affiliation(s)
- Dongliang Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
34
|
Li Z, Wang CC. A PHO80-like cyclin and a B-type cyclin control the cell cycle of the procyclic form of Trypanosoma brucei. J Biol Chem 2003; 278:20652-8. [PMID: 12665514 DOI: 10.1074/jbc.m301635200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclins bind and activate cyclin-dependent kinases that regulate cell cycle progression in eukaryotes. Cell cycle control in Trypanosoma brucei was analyzed in the present study. Genes encoding four PHO80 cyclin homologues and three B-type cyclin homologues but no G1 cyclin homologues were identified in this organism. Through knocking down expression of the seven cyclin genes with the RNA interference technique in the procyclic form of T. brucei, we demonstrated that one PHO80 homologue (CycE1/CYC2) and a B-type cyclin homologue (CycB2) are the essential cyclins regulating G1/S and G2/M transitions, respectively. This lack of overlapping cyclin function differs significantly from that observed in the other eukaryotes. Also, PHO80 cyclin is known for its involvement only in phosphate signaling in yeast with no known function in cell cycle control. Both observations thus suggest the presence of simple and novel cell cycle regulators in trypanosomes. T. brucei cells deficient in CycE1/CYC2 displayed a long slender morphology, whereas those lacking CycB2 assumed a fat stumpy form. These cells apparently still can undergo cytokinesis generating small numbers of anucleated daughter cells, each containing a single kinetoplast known as a zoid. Two different types of zoids were identified, the slender zoid derived from reduced CycE1/CYC2 expression and the stumpy zoid from CycB2 deficiency. This observation indicates an uncoupling between the kinetoplast and the nuclear cycle, resulting in cell division driven by kinetoplast segregation with neither a priori S phase nor mitosis in the trypanosome.
Collapse
Affiliation(s)
- Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
35
|
Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 2003; 11:1609-20. [PMID: 12820973 DOI: 10.1016/s1097-2765(03)00184-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Regulated binding of TBP to a promoter is a key event in transcriptional regulation. We show here that on glucose depletion, the S. cerevisiae Isw1 chromatin remodeling complex is required for the displacement of TBP from the PHO8 promoter. Displacement of TBP also requires the sequence-specific bHLH-LZ factor Cbf1p that targets Isw1p to the PHO8 UAS. Cbf1p- and Isw1p-dependent displacement of TBP is also observed at the PHO84 promoter, but not at the ADH1 promoter, where loss of TBP is Cbf1p- and Isw1p independent. The results point to a promoter-specific Isw1p-dependent mechanism for targeted regulation of basal transcription by displacement of TBP from a promoter.
Collapse
Affiliation(s)
- Jean-Luc Moreau
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 OTL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
36
|
Tan YSH, Morcos PA, Cannon JF. Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 2003; 278:147-53. [PMID: 12407105 DOI: 10.1074/jbc.m208058200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The budding yeast Glc7 serine/threonine protein phosphatase-1 is regulated by Glc8, the yeast ortholog of mammalian phosphatase inhibitor-2. In this work, we demonstrated that similarly to inhibitor-2, Glc8 function is regulated by phosphorylation. The cyclin-dependent protein kinase, Pho85, in conjunction with the related cyclins Pcl6 and Pcl7 comprise the major Glc8 kinase in vivo and in vitro. Several glc7 mutations are dependent on the presence of Glc8 for viability. For example, glc7 alleles R121K, R142H, and R198D are lethal in combination with a glc8 deletion. We found that glc7-R121K is lethal in combination with a pho85 deletion. This finding indicates that Pho85 is the sole Glc8 kinase in vivo. Furthermore, glc7-R121K is also lethal when combined with deletions of pcl6, plc7, pcl8, and pcl10, indicating that these related cyclins redundantly activate Pho85 for Glc8 phosphorylation in vivo. In vitro kinase assays and genetic results indicate that Pho85 cyclins Pcl6 and Pcl7 comprise the predominant Glc8 kinase.
Collapse
Affiliation(s)
- Yves S H Tan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
37
|
Huang D, Moffat J, Andrews B. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol Cell Biol 2002; 22:5076-88. [PMID: 12077337 PMCID: PMC139770 DOI: 10.1128/mcb.22.14.5076-5088.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 03/25/2002] [Accepted: 04/17/2002] [Indexed: 11/20/2022] Open
Abstract
Cyclin-dependent kinases (Cdks) are key regulators of the cell division cycle. Pho85 is a multifunctional Cdk in budding yeast involved in aspects of metabolism, the cell cycle, cell polarity, and gene expression. Consistent with a broad spectrum of functions, Pho85 associates with a family of 10 cyclins and deletion of PHO85 causes a pleiotropic phenotype. Discovering the physiological substrates of protein kinases is a major challenge, and we have pursued a number of genomics approaches to reveal the processes regulated by Pho85 and to understand the root cause of reduced cellular fitness in pho85Delta mutant strains. We used a functional-genomics approach called synthetic genetic array (SGA) analysis to systematically identify strain backgrounds in which PHO85 is required for viability. In parallel, we used DNA microarrays to examine the genome-wide transcriptional consequences of deleting PHO85 or members of the Pho85 cyclin family. Using this pairwise approach coupled with phenotypic tests, we uncovered clear roles for Pho85 in cell integrity and the response to adverse growth conditions. Importantly, our combined approach allowed us to ascribe new aspects of the complex pho85 phenotype to particular cyclins; our data highlight a cell integrity function for the Pcl1,2 subgroup of Pho85 Cdks that is independent of a role for the Pho80-Pho85 kinase in the response to stress. Using a modification of the SGA technique to screen for suppressors of pho85Delta strain growth defects, we found that deletion of putative vacuole protein gene VTC4 suppressed the sensitivity of the pho85Delta strain to elevated CaCl(2) and many other stress conditions. Expression of VTC4 is regulated by Pho4, a transcription factor that is inhibited by the Pho80-Pho85 kinase. Genetic tests and electron microscopy experiments suggest that VTC4 is a key target of Pho4 and that Pho80-Pho85-mediated regulation of VTC4 expression is required for proper vacuole function and for yeast cell survival under a variety of suboptimal conditions. The integration of multiple genomics approaches is likely to be a generally useful strategy for extracting functional information from pleiotropic mutant phenotypes.
Collapse
Affiliation(s)
- Dongqing Huang
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
38
|
Hyman LE, Kwon E, Ghosh S, McGee J, Chachulska AMB, Jackson T, Baricos WH. Binding to Elongin C inhibits degradation of interacting proteins in yeast. J Biol Chem 2002; 277:15586-91. [PMID: 11864988 DOI: 10.1074/jbc.m200800200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elongin C is a highly conserved, low molecular weight protein found in a variety of multiprotein complexes in human, rat, fly, worm, and yeast cells. Among the best characterized of these complexes is a mammalian E3 ligase that targets proteins for ubiquitination and subsequent degradation by the 26 S proteasome. Despite its crucial role as a component of such E3 ligases and other complexes, the specific function of Elongin C is unknown. In yeast, Elongin C is a non-essential gene and there is no obvious phenotype as associated with its absence. We previously reported that in Saccharomyces cerevisiae Elongin C (Elc1) interacts specifically and strongly with a class of proteins loosely defined as stress response proteins. In the present study, we examined the role of yeast Elc1 in the turnover of two of these binding partners, Snf4 and Pcl6. Deletion of Elc1 resulted in decreased steady-state levels of Snf4 and Pcl6 as indicated by Western blot analysis. Northern blot analysis of mRNA prepared from elc1 null and wild type strains revealed no difference in mRNA levels for Snf4 and Pcl6 establishing that the effects of Elc1 are not transcriptionally mediated. Reintroduction of either yeast or human Elongin C into Elc1 null strains abrogated this effect. Taken together, these data document that the levels of Snf4 and Pcl6 are dependent on the presence of Elc1 and that binding to Elc1 inhibits the degradation of these proteins. The results suggest a new function for yeast Elongin C that is distinct from a direct role in targeting proteins for ubiquitination and subsequent proteolysis.
Collapse
Affiliation(s)
- Linda E Hyman
- Department of Biochemistry, Tulane University Health Science Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wilson WA, Wang Z, Roach PJ. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol Cell Proteomics 2002; 1:232-42. [PMID: 12096123 DOI: 10.1074/mcp.m100024-mcp200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
At the onset of nutrient limitation, the yeast Saccharomyces cerevisiae synthesizes glycogen to serve as a carbon and energy reserve. We undertook a systematic survey for the genes that affect glycogen accumulation by taking advantage of the strain deletion set generated by the Saccharomyces Genome Deletion Project. The strain collection analyzed contained some 4600 diploid homozygous null deletants, representing approximately 88% of all viable haploid disruptants. We identified 324 strains with low and 242 with elevated glycogen stores, accounting for 12.4% of the genes analyzed. The screen was validated by the identification of many of the genes known already to influence glycogen accumulation. Many of the mutants could be placed into coherent families. For example, 195 or 60% of the hypoaccumulators carry mutations linked to respiratory function, a class of mutants well known to be defective in glycogen storage. The second largest group consists of approximately 60 genes involved in vesicular trafficking and vacuolar function, including genes encoding 13 of 17 proteins involved in the structure or assembly of the vacuolar ATPase. These data are consistent with our recent findings that the process of autophagy has a significant impact on glycogen storage (Wang, Z., Wilson, W. A., Fujino, M. A., and Roach, P. J. (2001) Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p. Mol. Cell. Biol. 21, 5742-5752). Autophagy delivers glycogen to the vacuole, and we propose that the impaired vacuolar function associated with ATPase mutants (vma10 or vma22) results in reduced degradation and subsequent hyperaccumulation of glycogen.
Collapse
Affiliation(s)
- Wayne A Wilson
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
40
|
Abstract
Through its association with a family of ten cyclins, the Pho85 cyclin-dependent kinase is involved in several signal transduction pathways in the yeast Saccharomyces cerevisiae. The responses mediated by Pho85 include cell-cycle progression and metabolism of nutrients such as phosphate and carbon sources. Although these responses require the phosphorylation of different substrates, and have different mechanistic consequences as a result of this phosphorylation, all appear to be involved in responses to changes in environmental conditions. Few of the activating signals or regulated targets have been unambiguously identified, but the kinase activity of Pho85 appears to inform the cell that the current environment is satisfactory.
Collapse
Affiliation(s)
- Adam S Carroll
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
41
|
Carroll AS, Bishop AC, DeRisi JL, Shokat KM, O'Shea EK. Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response. Proc Natl Acad Sci U S A 2001; 98:12578-83. [PMID: 11675494 PMCID: PMC60096 DOI: 10.1073/pnas.211195798] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to its well-established role in responding to phosphate starvation, the cyclin-dependent kinase Pho85 has been implicated in a number of other physiological responses of the budding yeast Saccharomyces cerevisiae, including synthesis of glycogen. To comprehensively characterize the range of Pho85-dependent gene expression, we used a chemical genetic approach that enabled us to control Pho85 kinase activity with a cell-permeable inhibitor and whole genome transcript profiling. We found significant phenotypic differences between the rapid loss of activity caused by inhibition and the deletion of the genomic copy of PHO85. We demonstrate that Pho85 controls the expression of not only previously identified glycogen synthetic genes, but also a significant regulon of genes involved in the cellular response to environmental stress. In addition, we show that the effects of this inhibitor are both rapid and reversible, making it well suited to the study of the behavior of dynamic signaling pathways.
Collapse
Affiliation(s)
- A S Carroll
- Howard Hughes Medical Institute, and Departments of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
42
|
Wang Z, Wilson WA, Fujino MA, Roach PJ. The yeast cyclins Pc16p and Pc17p are involved in the control of glycogen storage by the cyclin-dependent protein kinase Pho85p. FEBS Lett 2001; 506:277-80. [PMID: 11602261 DOI: 10.1016/s0014-5793(01)02914-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pho85p is a yeast cyclin-dependent protein kinase (Cdk) that can interact with 10 cyclins (Pcls) to form multiple protein kinases. The functions of most of the Pcls, including Pc16p and Pc17p, are poorly defined. We report here that Pc16p and Pc17p are involved in the metabolism of the branched storage polysaccharide glycogen under certain conditions and deletion of PCL6 and PCL7 restores glycogen accumulation to a snf1 pcl8 pcl10 triple mutant, paradoxically activating both glycogen synthase and phosphorylase. Pho85p thus affects glycogen accumulation through multiple Cdks composed of different cyclin partners.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry and Molecular Biology and Center for Diabetes Research, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5122, USA.
| | | | | | | |
Collapse
|
43
|
Huang S, Jeffery DA, Anthony MD, O'Shea EK. Functional analysis of the cyclin-dependent kinase inhibitor Pho81 identifies a novel inhibitory domain. Mol Cell Biol 2001; 21:6695-705. [PMID: 11533256 PMCID: PMC99814 DOI: 10.1128/mcb.21.19.6695-6705.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 07/07/2001] [Indexed: 11/20/2022] Open
Abstract
In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. A phosphate-responsive signal transduction pathway mediates this response by controlling the activity of the transcription factor Pho4. Three components of this signal transduction pathway resemble those used to regulate the eukaryotic cell cycle: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. Pho81 forms a stable complex with Pho80-Pho85 under both high- and low-phosphate conditions, but it only inhibits the kinase when cells are starved for phosphate. Pho81 contains six tandem repeats of the ankyrin consensus domain homologous to the INK4 family of mammalian CKIs. INK4 proteins inhibit kinase activity through an interaction of the ankyrin repeats and the CDK subunits. Surprisingly, we find that a region of Pho81 containing 80 amino acids C terminal to the ankyrin repeats is necessary and sufficient for Pho81's CKI function. The ankyrin repeats of Pho81 appear to have no significant role in Pho81 inhibition. Our results suggest that Pho81 inhibits Pho80-Pho85 with a novel motif.
Collapse
Affiliation(s)
- S Huang
- Department of Biochemistry & Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0448, USA
| | | | | | | |
Collapse
|
44
|
Toh-E A, Nishizawa M. Structure and function of cyclin-dependent Pho85 kinase of Saccharomyces cerevisiae. J GEN APPL MICROBIOL 2001; 47:107-117. [PMID: 12483553 DOI: 10.2323/jgam.47.107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast Saccharomyces cerevisiae has five cyclin-dependent protein kinases (Cdks), Cdc28, Srb10, Kin28, Ctk1, and Pho85. Any of these Cdks requires a cyclin partner for its kinase activity and a Cdk/cyclin complex, thus produced, phosphorylates a set of specific substrate proteins to exert its function. The cyclin partners of Srb10, Kin28, and Ctk1 are Srb11, Ccl1, and Ctk2, respectively. In contrast to the fact that each of Srb10, Kin28, and Ctk1 has a single cyclin partner, Cdc28 and Pho85 are polygamous; Cdc28 has 9 cyclins and Pho85 has 10 cyclins. Among these Cdks, Kin28 and Cdc28 are essential Cdks and it is well known that Cdc28 kinase plays a major role in regulating cell cycle progression. Pho85 is a non-essential Cdk but its absence causes a broad spectrum of phenotypes such as constitutive expression of PHO5, inability to utilize non-fermentable carbon sources, defects in cell cycle progression, and so on. Pho85 homologues are expanding to higher eukaryotes. Pho85 is most closely related with Cdk5 in terms of the amino acid sequence. The functional analysis of the domains of Pho85 also supports the close relationship between Pho85 and Cdk5, in which it was shown that the method of regulation of these two kinases is similar. Furthermore, forced expression of the mammalian CDK5 gene in a pho85Delta strain canceled a part of the pho85 defects. In this review, we summarize the functions of both Pho85/cyclin kinase and emphasize yeast Pho85 as valuable model systems to elucidate the functions of their homologues in other organisms.
Collapse
Affiliation(s)
- Akio Toh-E
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|