1
|
Li C, Hou N, Fang N, He J, Ma Z, Ma F, Guan Q, Li X. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:83-92. [PMID: 34627025 DOI: 10.1016/j.plaphy.2021.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/12/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.
Collapse
Affiliation(s)
- Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Nan Fang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ziqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
2
|
Y-Box Binding Proteins in mRNP Assembly, Translation, and Stability Control. Biomolecules 2020; 10:biom10040591. [PMID: 32290447 PMCID: PMC7226217 DOI: 10.3390/biom10040591] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Y-box binding proteins (YB proteins) are DNA/RNA-binding proteins belonging to a large family of proteins with the cold shock domain. Functionally, these proteins are known to be the most diverse, although the literature hardly offers any molecular mechanisms governing their activities in the cell, tissue, or the whole organism. This review describes the involvement of YB proteins in RNA-dependent processes, such as mRNA packaging into mRNPs, mRNA translation, and mRNA stabilization. In addition, recent data on the structural peculiarities of YB proteins underlying their interactions with nucleic acids are discussed.
Collapse
|
3
|
Budkina KS, Zlobin NE, Kononova SV, Ovchinnikov LP, Babakov AV. Cold Shock Domain Proteins: Structure and Interaction with Nucleic Acids. BIOCHEMISTRY (MOSCOW) 2020; 85:S1-S19. [DOI: 10.1134/s0006297920140011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Alharbi SN, Alduhaymi IS, Alqahtani L, Altammaami MA, Alhoshani FM, Alrabiah DK, Alyemni SO, Alsulami KA, Alghamdi WM, Fallatah M. Molecular Characterization, Bioinformatic Analysis, and Expression Profile of Lin-28 Gene and Its Protein from Arabian Camel ( Camelus dromedarius). Int J Mol Sci 2019; 20:ijms20092291. [PMID: 31075852 PMCID: PMC6540139 DOI: 10.3390/ijms20092291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/27/2019] [Accepted: 05/05/2019] [Indexed: 02/03/2023] Open
Abstract
Lin-28 is an RNA-binding protein that is known for its role in promoting the pluripotency of stem cells. In the present study, Arabian camel Lin-28 (cLin-28) cDNA was identified and analyzed. Full length cLin-28 mRNA was obtained using the reverse transcription polymerase chain reaction (RT-PCR). It was shown to be 715 bp in length, and the open reading frame (ORF) encoded 205 amino acids. The molecular weight and theoretical isoelectric point (pI) of the cLin-28 protein were predicted to be 22.389 kDa and 8.50, respectively. Results from the bioinformatics analysis revealed that cLin-28 has two main domains: an N-terminal cold-shock domain (CSD) and a C-terminal pair of retroviral-type Cysteine3Histidine (CCHC) zinc fingers. Sequence similarity and phylogenetic analysis showed that the cLin-28 protein is grouped together Camelus bactrianus and Bos taurus. Quantitative real-time PCR (qPCR) analysis showed that cLin-28 mRNA is highly expressed in the lung, heart, liver, and esophageal tissues. Peptide mass fingerprint-mass spectrometry (PMF-MS) analysis of the purified cLin-28 protein confirmed the identity of this protein. Comparing the modeled 3D structure of cLin-28 protein with the available protein 3D structure of the human Lin-28 protein confirmed the presence of CSD and retroviral-type CCHC zinc fingers, and high similarities were noted between the two structures by using super secondary structure prediction.
Collapse
Affiliation(s)
- Sultan N Alharbi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| | - Ibtehal S Alduhaymi
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| | - Lama Alqahtani
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| | - Musaad A Altammaami
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Fahad M Alhoshani
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Deema K Alrabiah
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Saleh O Alyemni
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Khulud A Alsulami
- National Center for Pharmaceutical Technology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Waleed M Alghamdi
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh 11461, Saudi Arabia.
| | - Mohannad Fallatah
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
5
|
Amir M, Kumar V, Dohare R, Islam A, Ahmad F, Hassan MI. Sequence, structure and evolutionary analysis of cold shock domain proteins, a member of OB fold family. J Evol Biol 2018; 31:1903-1917. [PMID: 30267552 DOI: 10.1111/jeb.13382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/28/2022]
Abstract
The cold shock domain (CSD) belongs to the oligosaccharide/oligonucleotide-binding fold superfamily which is highly conserved from prokaryotes to higher eukaryotes, and appears to function as RNA chaperones. CSD is involved in diverse cellular processes, including adaptation to low temperatures, nutrient stress, cellular growth and developmental processes. Structural Classification of Proteins (SCOP) database broadly classifies OB fold proteins into 18 different superfamilies, including nucleic acid-binding superfamily (NAB). The NAB is further divided into 17 families together with cold shock DNA-binding protein family (CSDB). The CSDB have more than 240 000 sequences in UniProt database consisting of 32 domains including CSD. Among these domains, CSD is the second largest sequence contributor (> 40 398 sequences). Herein, we have systematically analysed the relative abundance and distribution of CSD proteins based on sequences, structures, repeats and gene ontology (GO) molecular functions in all domains of life. Analysis of sequence distribution suggesting that CSDs are largely found in bacteria (83-94%) with single CSD repeat. However, repeat distribution in eukaryota varies from 1 to 5 in combination with other auxiliary domain that makes CSD proteins functionally more diverse compared to the bacterial counterparts. Further, analysis of repeats distributions on evolutionary scale suggest that existence of CSD in multiple repeats is mainly driven through speciation, gene shuffling and gene duplication events.
Collapse
Affiliation(s)
- Mohd Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.,Amity Institute of Neuropsychology & Neurosciences, Amity University Noida, UP, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
6
|
Fu Y, Gao L, Shi Z, You F, Zhang J, Li W. Characterization and expression of lin-28a involved in lin28/let-7signal pathway during early development of P. olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:451-463. [PMID: 29218439 DOI: 10.1007/s10695-017-0445-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
Heterochronic lin-28 is a conserved RNA-binding protein that plays a key role in the timing of developmental events in organisms. As a crucial heterochronic gene, the protein controls developmental events of the second of four larval stages in Caenorhabditi elegans. Heterochronic let-7 miRNAs are often present in various species and highly conserved in sequence and biological function and are required for various biological processes. Previous studies showed that ten let-7 miRNAs were identified in the Japanese flounder (Paralichthys olivaceus) and that they were primarily expressed during metamorphosis. In this study, we clone and characterize the lin-28a gene from P. olivaceus and exhibit its dynamic expression pattern at different developmental stages and various adult tissues. The results show that the P. olivaceus lin-28a gene has high sequence similarity with other species and is highly expressed in the embryonic stage but weakly expressed in the larval stage. In addition, lin-28a overexpression causes cell proliferation and significantly promotes the levels of pre-let-7a and pre-let-7d while markedly depressing let-7a and let-7d expression in FEC (Flounder Embryonic Cell), which indicate that lin-28 possibly blocks the maturation of let-7 miRNAs. Additionally, lin-28a is identified as a target gene of let-7 miRNAs, and let-7 miRNAs directly regulate lin-28a expression by targeting its 3' UTR. Taken together, lin-28a along with let-7 miRNA participates in a lin-28/let-7 axis pathway that regulates cell division and timing of embryonic and metamorphic events in P. olivaceus.
Collapse
Affiliation(s)
- Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Lina Gao
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Junling Zhang
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Wenjuan Li
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, Ministry of Agriculture, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| |
Collapse
|
7
|
Arabidopsis cold shock domain protein 2 influences ABA accumulation in seed and negatively regulates germination. Biochem Biophys Res Commun 2014; 456:380-4. [PMID: 25475723 DOI: 10.1016/j.bbrc.2014.11.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 11/21/2022]
Abstract
The cold shock domain (CSD) is the most conserved nucleic acid binding domain and is distributed from bacteria to animals and plants. CSD proteins are RNA chaperones that destabilize RNA secondary structures to regulate stress tolerance and development. AtCSP2 is one of the four CSD proteins in Arabidopsis and is up-regulated in response to cold. Since AtCSP2 negatively regulates freezing tolerance, it was proposed to be a modulator of freezing tolerance during cold acclimation. Here, we examined the function of AtCSP2 in seed germination. We found that AtCSP2-overexpressing lines demonstrated retarded germination as compared with the wild type, with or without stress treatments. The ABA levels in AtCSP2-overexpressing seeds were higher than those in the wild type. In addition, overexpression of AtCSP2 reduced the expression of an ABA catabolic gene (CYP707A2) and gibberellin biosynthesis genes (GA20ox and GA3ox). These results suggest that AtCSP2 negatively regulates seed germination by controlling ABA and GA levels.
Collapse
|
8
|
Sasaki K, Kim MH, Imai R. Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation. THE NEW PHYTOLOGIST 2013; 198:95-102. [PMID: 23323758 DOI: 10.1111/nph.12118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/27/2012] [Indexed: 06/01/2023]
Abstract
Bacterial cold shock proteins (CSPs) act as RNA chaperones that destabilize mRNA secondary structures at low temperatures. Bacterial CSPs are composed solely of a nucleic acid-binding domain termed the cold shock domain (CSD). Plant CSD proteins contain an auxiliary domain in addition to the CSD but also show RNA chaperone activity. However, their biological functions are poorly understood. We examined Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 (AtCSP2) using overexpressing and mutant lines. A double mutant, with reduced AtCSP2 and no AtCSP4, showed higher freezing tolerance than the wild-type when cold-acclimated. The increase in freezing tolerance was associated with up-regulation of CBF transcription factors and their downstream genes. By contrast, overexpression of AtCSP2 resulted in decreased freezing tolerance when cold-acclimated. In addition, late flowering and shorter siliques were observed in the overexpressing lines. AtCSP2 negatively regulates freezing tolerance and is partially redundant with its closest paralog, AtCSP4.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Hokkaido Agriculture Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555, Japan
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| | - Myung-Hee Kim
- Hokkaido Agriculture Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555, Japan
| | - Ryozo Imai
- Hokkaido Agriculture Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo, 062-8555, Japan
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
| |
Collapse
|
9
|
Yang C, Wang L, Siva VS, Shi X, Jiang Q, Wang J, Zhang H, Song L. A novel cold-regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid-binding activity. PLoS One 2012; 7:e32012. [PMID: 22359656 PMCID: PMC3281114 DOI: 10.1371/journal.pone.0032012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 01/20/2012] [Indexed: 11/26/2022] Open
Abstract
Background The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P<0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17°C for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII-CfCSP grew vigorously, indicating that CfCSP shared a similar function with E. coli CSPs for the cold adaptation. Conclusions These results suggest that CfCSP is a novel eukaryotic cold-regulated nucleic acid-binding protein and may function as an RNA chaperone in vivo during the cold adaptation process.
Collapse
Affiliation(s)
- Chuanyan Yang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Lingling Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| | - Vinu S. Siva
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Shi
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Qiufen Jiang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Wang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
| | - Linsheng Song
- The Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese 7 Academy of Sciences, Qingdao, China
- * E-mail: (LW); (LS)
| |
Collapse
|
10
|
Sasaki K, Imai R. Pleiotropic roles of cold shock domain proteins in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:116. [PMID: 22639630 PMCID: PMC3355641 DOI: 10.3389/fpls.2011.00116] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/27/2011] [Indexed: 05/21/2023]
Abstract
The cold shock domain (CSD) is a nucleic acid binding domain that is widely conserved from bacteria to higher plants and animals. In Escherichia coli, cold shock proteins (CSPs) are composed solely of a CSD and function as RNA chaperones that destabilize RNA secondary structures. Cellular RNAs tend to be folded into unfavorable structures under low temperature conditions, and RNA chaperones resolve these structures, recovering functionality of the RNAs. CSP functions are associated mainly with cold adaptation, but they are also involved in other biological processes under normal growth conditions. Eukaryotic CSD proteins contain auxiliary domains in addition to the CSD and regulate many biological processes such as development and stress tolerance. In plants, it has been demonstrated that CSD proteins play essential roles in acquiring freezing tolerance. In addition, it has been suggested that some plant CSD proteins regulate embryo development, flowering time, and fruit development. In this review, we summarize the pleiotropic biological functions of CSP proteins in plants and discuss possible mechanisms by which plant CSD proteins regulate the functions of RNA molecules.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Hokkaido Agriculture Research Center, National Agriculture and Food Research OrganizationSapporo, Japan
- Graduate School of Agriculture, Hokkaido UniversitySapporo, Japan
| | - Ryozo Imai
- Hokkaido Agriculture Research Center, National Agriculture and Food Research OrganizationSapporo, Japan
- Graduate School of Agriculture, Hokkaido UniversitySapporo, Japan
- *Correspondence: Ryozo Imai, Hokkaido Agriculture Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan. e-mail:
| |
Collapse
|
11
|
Kim BH, Kim HG, Bae GI, Bang IS, Bang SH, Choi JH, Park YK. Expression of cspH upon nutrient up-shift in Salmonella enterica serovar Typhimurium. Arch Microbiol 2004; 182:37-43. [PMID: 15235764 DOI: 10.1007/s00203-004-0692-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 06/03/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The gene cspH, which encodes one of the cold-shock proteins in Salmonella enterica serovar Typhimurium, has previously been reported to be induced during early exponential phase at 37 degrees C. In the present study, the expression of cspH upon nutrient up-shift at 37 degrees C was investigated and found to be affected by DNA gyrase and DNA-binding protein Fis. When cells at stationary phase were subcultured into a rich medium, the mRNA level of cspH increased dramatically prior to the first cell division. However, when the cells were treated with DNA gyrase inhibitors, cspH mRNA was not induced upon nutrient up-shift. The low level of DNA superhelical density at the cspH promoter in part affected the expression of cspH mRNA in vitro. In addition, a fis-deficient strain had a lower level of cspH mRNA than the wild-type upon nutrient up-shift. Finally, a cspH-lacZ construct, in which the putative binding region for Fis was deleted in the cspH promoter, expressed a low level of LacZ, in contrast to the native cspH-lacZ construct.
Collapse
Affiliation(s)
- Bae Hoon Kim
- School of Life Sciences and Biotechnology, Korea University, 136-701, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Moss EG, Tang L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev Biol 2003; 258:432-42. [PMID: 12798299 DOI: 10.1016/s0012-1606(03)00126-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The heterochronic gene lin-28 is a regulator of developmental timing in the nematode Caenorhabditis elegans. It must be expressed in the first larval stage and downregulated by the second stage for normal development. This downregulation is mediated in part by lin-4, a 21-nt microRNA. If downregulation fails due to a mutation in a short sequence in the lin-28 3' UTR that is complementary to lin-4, then a variety of somatic cell lineages fail to progress normally in development. Here, we report that Lin-28 homologues exist in diverse animals, including Drosophila, Xenopus, mouse, and human. These homologues are characterized by the LIN-28 protein's unusual pairing of RNA-binding motifs: a cold shock domain (CSD) and a pair of retroviral-type CCHC zinc knuckles. Conservation of LIN-28 proteins shows them to be distinct from the other conserved family of CSD-containing proteins of animals, the Y-box proteins. Importantly, the LIN-28 proteins of Drosophila, Xenopus, and mouse each appear to be expressed and downregulated during development, consistent with a conserved role for this regulator of developmental timing. In addition, the extremely long 3' UTRs of mouse and human Lin-28 genes show extensive regions of sequence identity that contain sites complementary to the mammalian homologues of C. elegans lin-4 and let-7 microRNAs, suggesting that microRNA regulation is a conserved feature of the Lin-28 gene in diverse animals.
Collapse
Affiliation(s)
- Eric G Moss
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
13
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|
14
|
Chen DT, Lin A. Domain swapping in ribonuclease T1 allows the acquisition of double-stranded activity. Protein Eng Des Sel 2002; 15:997-1003. [PMID: 12601139 DOI: 10.1093/protein/15.12.997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.
Collapse
Affiliation(s)
- Dow-Tien Chen
- Institute of Genetics, National Yang-Ming University, Shih-Pai, Taipei, Taiwan
| | | |
Collapse
|
15
|
Karlson D, Nakaminami K, Toyomasu T, Imai R. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J Biol Chem 2002; 277:35248-56. [PMID: 12122010 DOI: 10.1074/jbc.m205774200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms of cold acclimation are still largely unknown; however, it has been established that overwintering plants such as winter wheat increases freeze tolerance during cold treatments. In prokaryotes, cold shock proteins are induced by temperature downshifts and have been proposed to function as RNA chaperones. A wheat cDNA encoding a putative nucleic acid-binding protein, WCSP1, was isolated and found to be homologous to the predominant CspA of Escherichia coli. The putative WCSP1 protein contains a three-domain structure consisting of an N-terminal cold shock domain with two internal conserved consensus RNA binding domains and an internal glycine-rich region, which is interspersed with three C-terminal CX(2)CX(4)HX(4)C (CCHC) zinc fingers. Each domain has been described independently within several nucleotide-binding proteins. Northern and Western blot analyses showed that WCSP1 mRNA and protein levels steadily increased during cold acclimation, respectively. WCSP1 induction was cold-specific because neither abscisic acid treatment, drought, salinity, nor heat stress induced WCSP1 expression. Nucleotide binding assays determined that WCSP1 binds ssDNA, dsDNA, and RNA homopolymers. The capacity to bind dsDNA was nearly eliminated in a mutant protein lacking C-terminal zinc fingers. Structural and expression similarities to E. coli CspA suggest that WCSP1 may be involved in gene regulation during cold acclimation.
Collapse
Affiliation(s)
- Dale Karlson
- Winter Stress Laboratory, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | | | | | | |
Collapse
|
16
|
Falsone SF, Weichel M, Crameri R, Breitenbach M, Kungl AJ. Unfolding and double-stranded DNA binding of the cold shock protein homologue Cla h 8 from Cladosporium herbarum. J Biol Chem 2002; 277:16512-6. [PMID: 11861653 DOI: 10.1074/jbc.m200833200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cloning, purification, and biophysical characterization of the first eukaryotic cold shock protein homologue, Cla h 8, expressed as single functional polypeptide is reported here. It was discovered as a minor allergen of the mold Cladosporium herbarum by phage display using a library selectively enriched for IgE-binding proteins. Based on the sequence homology of Cla h 8 with bacterial cold shock proteins (CSPs), a homology-based computer model of the allergen was computed indicating an all-beta structure of Cla h 8. This major structural feature was confirmed by CD spectroscopy. Despite the structural similarities with bacterial CSPs, the DNA-binding and unfolding behavior of Cla h 8 exhibited unique and previously undescribed characteristics. High affinities of Cla h 8 for single-stranded DNA as well as for double-stranded DNA corresponding to the human Y-box were detected. The affinity for double-stranded DNA increased significantly with decreasing temperature, which was paralleled by an increase in the beta sheet content of the protein. Temperature-dependent fluorescence anisotropy and far-UV CD measurements revealed different unfolding transitions at 28 and at 35.7 degrees C, respectively, indicating a multistate transition, which is uncommon for CSPs. The enhanced affinity for DNA at low temperatures together with the low unfolding transition refer to the functional significance of Cla h 8 at reduced temperatures.
Collapse
Affiliation(s)
- S Fabio Falsone
- Department of Protein Chemistry and Biophysics, Institute of Pharmaceutical Chemistry and Pharmaceutical Technology, University of Graz, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|