1
|
Laureano-Marín AM, García I, Romero LC, Gotor C. Assessing the transcriptional regulation of L-cysteine desulfhydrase 1 in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:683. [PMID: 25538717 PMCID: PMC4255504 DOI: 10.3389/fpls.2014.00683] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 05/28/2023]
Abstract
Hydrogen sulfide is an important signaling molecule that functions as a physiological gasotransmitter of comparable importance to NO and CO in mammalian systems. In plants, numerous studies have shown that sulfide increases tolerance/resistance to stress conditions and regulates essential processes. The endogenous production of hydrogen sulfide in the cytosol of Arabidopsis thaliana occurs by the enzymatic desulfuration of L-cysteine, which is catalyzed by the L-cysteine desulfhydrase enzyme DES1. To define the functional role of DES1 and the role that the sulfide molecule may play in the regulation of physiological processes in plants, we studied the localization of the expression of this gene at the tissue level. Transcriptional data reveal that DES1 is expressed at all developmental stages and is more abundant at the seedling stage and in mature plants. At the tissue level, we analyzed the expression of a GFP reporter gene fused to promoter of DES1. The GFP fluorescent signal was detected in the cytosol of both epidermal and mesophyll cells, including the guard cells. GFP fluorescence was highly abundant around the hydathode pores and inside the trichomes. In mature plants, fluorescence was detected in floral tissues; a strong GFP signal was detected in sepals, petals, and pistils. When siliques were examined, the highest GFP fluorescence was observed at the bases of the siliques and the seeds. The location of GFP expression, together with the identification of regulatory elements within the DES1 promoter, suggests that DES1 is hormonally regulated. An increase in DES1 expression in response to ABA was recently demonstrated; in the present work, we observe that in vitro auxin treatment significantly repressed the expression of DES1.
Collapse
Affiliation(s)
| | | | | | - Cecilia Gotor
- *Correspondence: Cecilia Gotor, Instituto de Bioquímica Vegetal y Fotosíntesis, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain e-mail:
| |
Collapse
|
2
|
Kryvych S, Kleessen S, Ebert B, Kersten B, Fisahn J. Proteomics - The key to understanding systems biology of Arabidopsis trichomes. PHYTOCHEMISTRY 2011; 72:1061-1070. [PMID: 20952039 DOI: 10.1016/j.phytochem.2010.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/09/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
Every multicellular organism consists of numerous organs, tissues and specific cell types. To gain detailed knowledge about the morphogenesis of these complex structures, it is inevitable to advance biochemical analyses to ultimate spatial and temporal resolution since individual cell types contribute differently to the overall performance of living objects. Single cell sampling combined with systems biological approaches was recently applied to investigations of Arabidopsis thaliana trichomes (leaf hairs). These are single celled structures that provide ideal model systems to address various aspects of plant cell development and differentiation at the level of individual cells. A previously suggested function of trichomes in plant stress responses could thus be confirmed. Furthermore, trichome-specific "omics" data collected in several laboratories are mutually conclusive which demonstrates the applicability of systems biological approaches at the single cell level.
Collapse
Affiliation(s)
- Sergiy Kryvych
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
3
|
Shibagaki N, Grossman AR. Binding of cysteine synthase to the STAS domain of sulfate transporter and its regulatory consequences. J Biol Chem 2010; 285:25094-102. [PMID: 20529854 DOI: 10.1074/jbc.m110.126888] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sulfate ion (SO(4)(2-)) is transported into plant root cells by SO(4)(2-) transporters and then mostly reduced to sulfide (S(2-)). The S(2-) is then bonded to O-acetylserine through the activity of cysteine synthase (O-acetylserine (thiol)lyase or OASTL) to form cysteine, the first organic molecule of the SO(4)(2-) assimilation pathway. Here, we show that a root plasma membrane SO(4)(2-) transporter of Arabidopsis, SULTR1;2, physically interacts with OASTL. The interaction was initially demonstrated using a yeast two-hybrid system and corroborated by both in vivo and in vitro binding assays. The domain of SULTR1;2 shown to be important for association with OASTL is called the STAS domain. This domain is at the C terminus of the transporter and extends from the plasma membrane into the cytoplasm. The functional relevance of the OASTL-STAS interaction was investigated using yeast mutant cells devoid of endogenous SO(4)(2-) uptake activity but co-expressing SULTR1;2 and OASTL. The analysis of SO(4)(2-) transport in these cells suggests that the binding of OASTL to the STAS domain in this heterologous system negatively impacts transporter activity. In contrast, the activity of purified OASTL measured in vitro was enhanced by co-incubation with the STAS domain of SULTR1;2 but not with the analogous domain of the SO(4)(2-) transporter isoform SULTR1;1, even though the SULTR1;1 STAS peptide also interacts with OASTL based on the yeast two-hybrid system and in vitro binding assays. These observations suggest a regulatory model in which interactions between SULTR1;2 and OASTL coordinate internalization of SO(4)(2-) with the energetic/metabolic state of plant root cells.
Collapse
Affiliation(s)
- Nakako Shibagaki
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California 94305, USA.
| | | |
Collapse
|
4
|
Lieckfeldt E, Simon-Rosin U, Kose F, Zoeller D, Schliep M, Fisahn J. Gene expression profiling of single epidermal, basal and trichome cells of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1530-44. [PMID: 18006186 DOI: 10.1016/j.jplph.2007.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/06/2007] [Accepted: 06/10/2007] [Indexed: 05/24/2023]
Abstract
Samples of single epidermal, basal and trichome cells were collected by glass microcapillaries from 7-week-old Arabidopsis thaliana leaves. Transcript amplification of these single-cell samples was performed by RT PCR. For gene expression profiling, we hybridized the amplified transcriptome of each individual cell type to nylon membranes spotted with 16,000 Arabidopsis expressed sequence tags (ESTs). Initial analysis of the array filter data enabled us to functionally categorize transcripts that were present in each individual cell type. In order to confirm the filter array data, we used RT PCR. Results of this RT PCR approach confirmed the presence of 12 selected candidate genes in agreement with array filter hybridization data. Further, transcripts involved in detoxification and sulfur metabolism could be identified in epidermal cell extracts. Together, the results of our study provide the localization of approximately 1000 expressed genes to either pavement, basal or trichome cells. To cluster transcripts with similar expression levels, we developed a novel mathematical algorithm. Based on the mean and standard deviation, ratios of expression levels of a transcript were defined for pairs of the three cell types. This numerical analysis enabled subdivision into 67 categories of genes differentially expressed in epidermal, basal and trichome cells. Transcripts in each category displayed similar ratios of expression levels in the three cell types. Examples of these clusters are presented and discussed in Appendix A.
Collapse
Affiliation(s)
- Elke Lieckfeldt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Ebert B, Melle C, Lieckfeldt E, Zöller D, von Eggeling F, Fisahn J. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1227-37. [PMID: 18423788 DOI: 10.1016/j.jplph.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 01/22/2008] [Accepted: 01/25/2008] [Indexed: 05/24/2023]
Abstract
Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.
Collapse
Affiliation(s)
- Berit Ebert
- Max-Planck-Institute of Molecular Plant Physiology, 14776 Potsdam OT Golm, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C. Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:672-81. [PMID: 17853367 DOI: 10.1055/s-2007-965439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The metal phytoextraction potential of three legumes belonging to different genera has been studied under greenhouse conditions. Legumes accumulate As and metals mainly in roots, although translocation to shoot is observed. Alfalfa did accumulate the highest concentrations of As and metals in shoots and aerial biomass was less affected by the toxic elements, indicating its good behaviour in phytoextraction. Clover accumulated less metal, but showed larger biomass. EDTA addition enhanced Pb phytoextraction up to levels similar to those described for plants proposed in phytoremediation. The regulation of O-acetylserine (thiol)lyase from legumes under metal stress has been analysed to test the possibility of establishing a possible correlation between the expression of OASTL in the presence of the metals and the metal accumulation in legume plant tissues. Cd and Pb(EDTA) produce the strongest increases of OASTL activity, with the higher enhancement seen in roots, in parallel with the higher metal accumulation. Arsenic produced an increase of root enzyme activity, whereas Cu produced a decrease, mainly in shoots. Western blots using antibodies against an A. THALIANA cytosolic OAS-TL recognised up to five protein bands in crude extracts from LOTUS and clover. A low molecular weight isoform of 32 kDa was induced in the presence of Cd and Pb. A partial RT-PCR sequence from clover has been obtained, showing 86 - 97 % identity with other described OASTLs. The PCR fragment has been used to analyse OASTL mRNA levels of legumes under metal stress. OASTL transcripts were increased by As, Cd, and Pb, especially in roots, where metal accumulation was maximal, while Cu produced a decrease in the transcript levels.
Collapse
Affiliation(s)
- E Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Profesor García González, 2, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
7
|
Gutiérrez-Alcalá G, Calo L, Gros F, Caissard JC, Gotor C, Romero LC. A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2487-94. [PMID: 16014363 DOI: 10.1093/jxb/eri241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A DNA regulatory fragment was isolated from the promoter region of the OASA1 gene, encoding the cytosolic O-acetylserine(thiol)lyase enzyme that is highly expressed in Arabidopsis thaliana trichomes. This DNA fragment has been named an ATP fragment and comprises 1435 bp of the genomic region upstream of the OASA1 gene and 375 bp of the transcriptional initiation start site containing the first intron of the gene. The ATP fragment, fused to the green fluorescent protein (GFP) and beta-glucuronidase (GUS) reporter genes, is able to drive high-level gene expression in A. thaliana trichomes. Deletion analysis of the ATP fragment determined that the region from -266 to -66 contains regulatory elements required for trichome expression. In addition, the region from +112 to +375, comprising the first intronic region of the gene, is also essential for trichome gene expression. Expression of the full-length ATP fragment in tobacco and peppermint shows that this fragment is also able to drive expression in glandular trichomes and suggests additional biotechnological applications for this promoter.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Alcalá
- Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, CSIC-Universidad de Sevilla, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Fediuc E, Lips SH, Erdei L. O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:865-72. [PMID: 16146312 DOI: 10.1016/j.jplph.2004.11.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The roles of O-acetylserine (thiol) lyase (OASTL, EC 4.2.99.8) and abscisic (ABA) acid in stress responses to NaCl and cadmium treatments were investigated in Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steudel plants. OASTL activity increased under stress (25-300 microM Cd, 100mM NaCl, 1 microM ABA) in both Typha and Phragmites mainly in roots, contributing substantially to satisfy the higher demand of cysteine for adaptation and protection. The earliest significant responses in intact roots were recorded after 12-24 h of Cd treatments, but different levels of stimulation were also observed after 3 and 7 days of exposure. The OASTL activity responses of Phragmites to salinity (100mM NaCl) were higher than those of Typha. Cysteine synthesis in Typha is much higher than in Phragmites, which supports the efficiency of the thiol-metabolism-based protection shown in Typha. Exogenous ABA increased OASTL activity in both species. Cd treatments led to increased ABA levels in roots. Phragmites showed higher ABA levels compared to Typha. The increase of ABA content indicates the involvement of this phytohormone in early stress responses, while the stimulation of OASTL following the ABA application suggests that ABA has a role in an OASTL activation pathway.
Collapse
Affiliation(s)
- Erika Fediuc
- Biostress Research Laboratory, J. Blaustein Institute for Desert Researches, Ben Gurion University of the Negev, Sede Boqer Campus, 84990 Israel
| | | | | |
Collapse
|
9
|
Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W. Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. PHYTOCHEMISTRY 2004; 65:1641-9. [PMID: 15276459 DOI: 10.1016/j.phytochem.2004.03.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/23/2004] [Indexed: 05/08/2023]
Abstract
Metabolite, protein, and transcript analysis at the cellular level gives unparalleled insight into the complex roles tissues play in the plant system. However, while capillary electrophoresis and PCR amplification strategies make the profiling of metabolites and transcripts in specific cell types possible, the profiling of proteins in small samples represents a bottleneck. Here for the first time protein profiling has been achieved in a specific plant cell type: The application of specific cell sampling and shotgun peptide sequencing (nano LC/MS/MS) resulted in the identification of 63 unique proteins from pooled Arabidopsis trichome cells. A complete S-adenosylmethionine pathway cluster, two S-adenosylmethionine synthase isoforms, a glutathione S-conjugate translocator and other proteins involved in sulfur metabolism and detoxification are shown to be present in these cells, in agreement with previous work done at the level of trichome transcript analysis. The technology described here brings the simultaneous identification and localization of physiologically relevant cellular proteins within reach.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Max Planck Institute of Molecular Plant Physiology, Metabolic Networks, 14424 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Thomas Leustek
- Biotechnology Center for Agriculture and the Environment, Plant Science Department, 59 Dudley Road, Rutgers University, New Brunswick, New Jersey 08901-8520, USA, tel: (732)932-8165, ext 326, fax: (732)932-0312,
| |
Collapse
|
11
|
Grossman A, Takahashi H. MACRONUTRIENT UTILIZATION BY PHOTOSYNTHETIC EUKARYOTES AND THE FABRIC OF INTERACTIONS. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:163-210. [PMID: 11337396 DOI: 10.1146/annurev.arplant.52.1.163] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Organisms acclimate to a continually fluctuating nutrient environment. Acclimation involves responses specific for the limiting nutrient as well as responses that are more general and occur when an organism experiences different stress conditions. Specific responses enable organisms to efficiently scavenge the limiting nutrient and may involve the induction of high-affinity transport systems and the synthesis of hydrolytic enzymes that facilitate the release of the nutrient from extracellular organic molecules or from internal reserves. General responses include changes in cell division rates and global alterations in metabolic activities. In photosynthetic organisms there must be precise regulation of photosynthetic activity since when severe nutrient limitation prevents continued cell growth, excitation of photosynthetic pigments could result in the formation of reactive oxygen species, which can severely damage structural and functional features of the cell. This review focuses on ways that photosynthetic eukaryotes assimilate the macronutrients nitrogen, sulfur, and phosphorus, and the mechanisms that govern assimilatory activities. Also discussed are molecular responses to macronutrient limitation and the elicitation of those responses through integration of environmental and cellular cues.
Collapse
Affiliation(s)
- Arthur Grossman
- Department of Plant Biology, The Carnegie Institution of Washington 260 Panama Street, Stanford, California 94305; e-mail: , RIKEN Plant Science Center, 2-l Hirosawa, Wako, Saitama, 351-0198, Japan; e-mail:
| | | |
Collapse
|
12
|
Dominguez-Solís JR, Gutierrez-Alcalá G, Vega JM, Romero LC, Gotor C. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 2001; 276:9297-302. [PMID: 11121418 DOI: 10.1074/jbc.m009574200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the expression of the cytosolic O-acetylserine(thiol)lyase gene (Atcys-3A) from Arabidopsis thaliana under heavy metal stress conditions has been investigated. Northern blot analysis of Atcys-3A expression shows a 7-fold induction after 18 h of cadmium treatment. Addition of 50 microm CdCl(2) to the irrigation medium of mature Arabidopsis plants induces a rapid accumulation of the mRNA throughout the leaf lamina, the root and stem cortex, and stem vascular tissues when compared with untreated plants, as observed by in situ hybridization. High pressure liquid chromatography analysis of GSH content shows a transient increase after 18 h of metal treatment. Our results are compatible with a high cysteine biosynthesis rate under heavy metal stress required for the synthesis of GSH and phytochelatins, which are involved in the plant detoxification mechanism. Arabidopsis-transformed plants overexpressing the Atcys-3A gene by up to 9-fold show increased tolerance to cadmium when grown in medium containing 250 microm CdCl(2), suggesting that increased cysteine availability is responsible for cadmium tolerance. In agreement with these results, exogenous addition of cystine can, to some extent, also favor the growth of wild-type plants in cadmium-containing medium. Cadmium accumulates to higher levels in leaves of tolerant transformed lines than in wild-type plants.
Collapse
Affiliation(s)
- J R Dominguez-Solís
- Instituto de Bioquimica Vegetal y Fotosintesis, Centro de Investigaciones Cientificas Isla de la Cartuja, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Avda Américo Vespucio s/n, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
13
|
Gutierrez-Alcala G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC. Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci U S A 2000; 97:11108-13. [PMID: 10995473 PMCID: PMC27156 DOI: 10.1073/pnas.190334497] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Arabidopsis thaliana, trichome cells are specialized unicellular structures with uncertain functions. Based on earlier observations that one of the genes involved in cysteine biosynthesis (Atcys-3A) is highly expressed in trichomes, we have extended our studies in trichome cells to determine their capacity for glutathione (GSH) biosynthesis. First, we have analyzed by in situ hybridization the tissue-specific expression of the genes Atcys-3A and sat5, which encode O-acetylserine(thio)lyase (OASTL) and serine acetyltransferase (SAT), respectively, as well as gsh1 and gsh2, which encode gamma-glutamylcysteine synthetase and glutathione synthetase, respectively. The four genes are highly expressed in leaf trichomes of Arabidopsis, and their mRNA accumulate to high levels. Second, we have directly measured cytoplasmic GSH concentration in intact cells by laser-scanning microscopy after labeling with monochlorobimane as a GSH-specific probe. From these measurements, cytosolic GSH concentrations of 238+/-25, 80+/-2, and 144+/-19 microM were estimated for trichome, basement, and epidermal cells, respectively. Taking into account the volume of the cells measured using stereological techniques, the trichomes have a total GSH content more than 300-fold higher than the basement and epidermal cells. Third, after NaCl treatment, GSH biosynthesis is markedly decreased in trichomes. Atcys-3A, sat5, gsh1, and gsh2 mRNA levels show a decrease in transcript abundance, and [GSH](cyt) is reduced to 47+/-5 microM. These results suggest the important physiological significance of trichome cells related to GSH biosynthesis and their possible role as a sink during detoxification processes.
Collapse
Affiliation(s)
- G Gutierrez-Alcala
- Instituto de Bioquimica Vegetal y Fotosintesis, Centro de Investigaciones Cientificas Isla de la Cartuja, Consejo Superior de Investigaciones Cientificas and Universidad de Sevilla, Avenida Américo Vespucio s/n, 41092-Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Leustek T, Saito K. Sulfate transport and assimilation in plants. PLANT PHYSIOLOGY 1999; 120:637-44. [PMID: 10398698 PMCID: PMC1539218 DOI: 10.1104/pp.120.3.637] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- T Leustek
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08901-8520 (T.L.)
| | | |
Collapse
|
15
|
McCaskill D, Croteau R. Strategies for bioengineering the development and metabolism of glandular tissues in plants. Nat Biotechnol 1999; 17:31-6. [PMID: 9920265 DOI: 10.1038/5202] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glandular tissues in plants produce a wide variety of commercially important chemicals. We review specific model systems that can be exploited for bioengineering the development and metabolism of these specialized structures, and the economic considerations that must be satisfied to permit commercially viable bioengineering approaches to specific chemicals and that constrain the choice of production systems.
Collapse
Affiliation(s)
- D McCaskill
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | |
Collapse
|
16
|
García-Hernández M, Murphy A, Taiz L. Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. PLANT PHYSIOLOGY 1998; 118:387-97. [PMID: 9765524 PMCID: PMC34814 DOI: 10.1104/pp.118.2.387] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/1998] [Accepted: 07/14/1998] [Indexed: 05/18/2023]
Abstract
The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.
Collapse
Affiliation(s)
- M García-Hernández
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
17
|
Bick JA, Leustek T. Plant sulfur metabolism--the reduction of sulfate to sulfite. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:240-244. [PMID: 10066588 DOI: 10.1016/s1369-5266(98)80111-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Until recently the pathway by which plants reduce activated sulfate to sulfite was unresolved. Recent findings on two enzymes termed 5'-adenylylsulfate (APS) sulfotransferase and APS reductase have provided new information on this topic. On the basis of their similarities it is now proposed that these proteins are the same enzyme. These discoveries confirm that the sulfate assimilation pathway in plants differs from that in other sulfate assimilating organisms.
Collapse
Affiliation(s)
- J A Bick
- Biotechnology Center for Agriculture, Rutgers University, 59 Dudley Road, Foran Hall, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|