1
|
Yang C, Huang L, Wang BC, Zhong Y, Ma X, Zhang C, Sun Q, Wu Y, Yao Y, Liu Q. Enhancing quality traits in staple crops: current advances and future perspectives. J Genet Genomics 2025:S1673-8527(25)00132-8. [PMID: 40348082 DOI: 10.1016/j.jgg.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Staple crops such as rice, wheat and maize are crucial for global food security; however, improving their quality remains a significant challenge. This review summarizes recent advances in enhancing crop quality, focusing on key areas such as the molecular mechanisms underlying endosperm filling initiation, starch granule synthesis, protein body formation, and the interactions between carbon and nitrogen metabolism. It also highlights ten unresolved questions related to starch-protein spatial distribution, epigenetic regulation, and the environmental impacts on quality traits. The integration of multi-omics approaches, and rational design strategies presents opportunities to develop high-yield "super-crop" varieties with enhanced nutritional value, better processing characteristics, and attributes preferred by consumers. Addressing these challenges is crucial to promote sustainable agriculture and achieve the dual objectives of food security and environmental conservation.
Collapse
Affiliation(s)
- Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lichun Huang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Bai-Chen Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Wang M, Li AM, Pan YQ, Chen ZL, Qin CX, Su ZL, Lakshmanan P, Song JM, Liao F, Huang DL. Gibberellin biosynthesis gene ScGA20 oxidase enhances sugarcane growth by modulating genes associated with phytohormone and growth processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109652. [PMID: 40024146 DOI: 10.1016/j.plaphy.2025.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
Sugarcane is a globally significant crop for sugar and energy production, yet its breeding potential is limited by its complex genetic background and restricted genetic diversity. Molecular breeding presents a promising approach to boost sugarcane productivity. Gibberellins (GA) plays a critical role in plant growth and development, with GA20-oxidase being the most crucial enzyme in GA biosynthesis. In this study, we isolated the sugarcane gene encoding GA20-oxidase (ScGA20ox, OR283803) enzyme, a 43.88 kDa hydrophilic protein, and introduced it into sugarcane variety GT42 via biolistics transformation. Transgenic sugarcane expressing Ubi-driven ScGA20ox exhibited elevated GA levels and accelerated growth. Transcriptome analysis revealed that genes associated with plant hormone metabolism and growth-related pathways, including photosynthesis, plant hormone signal transduction, and starch and sucrose metabolism were involved in the GA20ox-mediated growth in sugarcane. This work underscores the potential of GA20ox for enhancing sugarcane yields through transgenic approaches, while advancing our understanding of GA's regulatory role in the growth of this crucial sugar crop.
Collapse
Affiliation(s)
- Miao Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ao-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - You-Qiang Pan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhong-Liang Chen
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Cui-Xian Qin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ze-Lin Su
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Prakash Lakshmanan
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jia-Ming Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fen Liao
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| | - Dong-Liang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China.
| |
Collapse
|
3
|
Yang H, Dong X, Chai Y, Cui S, Tian L, Zhang J, Qu LQ. Loss-of-function of SSIIa and SSIIIa confers high resistant starch content in rice endosperm. Carbohydr Polym 2025; 348:122871. [PMID: 39567160 DOI: 10.1016/j.carbpol.2024.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024]
Abstract
Rice (Oryza sativa L.) endosperm accumulates huge amounts of starch. Rice starch is highly digestible, potentially enhancing the occurrence of blood sugar- and intestine-related diseases such as type 2 diabetes. Resistant starch (RS) is hardly digestible in small intestine but can be converted into beneficial short-chain fatty acids in large intestine, potentially reducing the incidence of these diseases. However, it is still difficult to produce a high RS rice variety. Here, we report that simultaneous deficiency of soluble starch synthases IIa and IIIa confers high RS content in rice endosperm. The ssIIa ssIIIa exhibited higher RS content than did the ssIIIa ssIIIb, a mutant reported currently to have remarkably higher RS content than parental ssIIIa, under our experimental conditions. Loss-of-function of SSIIa and SSIIIa significantly elevated the activity of granule-bound starch synthase I and thus content of amylose. Furthermore, total lipid content increased in mutant seeds, implying that intermediate metabolites spilled out from starch biosynthesis into lipid biosynthesis. The increased amylose content and improved lipid synthesis coordinately contributed to high RS content in mutant seeds. These results further reveal the molecular mechanism of RS occurrence in rice endosperm and provide a critical genetic resource for breeding higher RS rice cultivars.
Collapse
Affiliation(s)
- Huifang Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangbai Dong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Yaru Chai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Cui
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Tian
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jindan Zhang
- Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Le Qing Qu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Matsushima R, Hisano H, Kim JS, McNelly R, Oitome NF, Seung D, Fujita N, Sato K. Mutations in starch BRANCHING ENZYME 2a suppress the traits caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:212. [PMID: 39217239 PMCID: PMC11365852 DOI: 10.1007/s00122-024-04725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
KEY MESSAGE The hvbe2a mutations restore the starch-deficient phenotype caused by the hvisa1 and hvflo6 mutations in barley endosperm. The genetic interactions among starch biosynthesis genes can be exploited to alter starch properties, but they remain poorly understood due to the various combinations of mutations to be tested. Here, we isolated two novel barley mutants defective in starch BRANCHING ENZYME 2a (hvbe2a-1 and hvbe2a-2) based on the starch granule (SG) morphology. Both hvbe2a mutants showed elongated SGs in the endosperm and increased resistant starch content. hvbe2a-1 had a base change in HvBE2a gene, substituting the amino acid essential for its enzyme activity, while hvbe2a-2 is completely missing HvBE2a due to a chromosomal deletion. Further genetic crosses with barley isoamylase1 mutants (hvisa1) revealed that both hvbe2a mutations could suppress defects in endosperm caused by hvisa1, such as reduction in starch, increase in phytoglycogen, and changes in the glucan chain length distribution. Remarkably, hvbe2a mutations also transformed the endosperm SG morphology from the compound SG caused by hvisa1 to bimodal simple SGs, resembling that of wild-type barley. The suppressive impact was in competition with floury endosperm 6 mutation (hvflo6), which could enhance the phenotype of hvisa1 in the endosperm. In contrast, the compound SG formation induced by the hvflo6 hvisa1 mutation in pollen was not suppressed by hvbe2a mutations. Our findings provide new insights into genetic interactions in the starch biosynthetic pathway, demonstrating how specific genetic alterations can influence starch properties and SG morphology, with potential applications in cereal breeding for desired starch properties.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - June-Sik Kim
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Rose McNelly
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich,, NR4 7UH, UK
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
5
|
Liu X, Gilbert RG. Normal and abnormal glycogen structure - A review. Carbohydr Polym 2024; 338:122195. [PMID: 38763710 DOI: 10.1016/j.carbpol.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Glycogen, a complex branched glucose polymer, is found in animals and bacteria, where it serves as an energy storage molecule. It has linear (1 → 4)-α glycosidic bonds between anhydroglucose monomer units, with branch points connected by (1 → 6)-α bonds. Individual glycogen molecules are referred to as β particles. In organs like the liver and heart, these β particles can bind into larger aggregate α particles, which exhibit a rosette-like morphology. The mechanisms and bonding underlying the aggregation process are not fully understood. For example, mammalian liver glycogen has been observed to be molecularly fragile under certain conditions, such as glycogen from diabetic livers fragmenting when exposed to dimethyl sulfoxide (DMSO), while glycogen from healthy livers is much less fragile; this indicates some difference, as yet unknown, in the bonding between β particles in healthy and diabetic glycogen. This fragility may have implications for blood sugar regulation, especially in pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
6
|
Fox GP, Bettenhausen HM. Variation in quality of grains used in malting and brewing. FRONTIERS IN PLANT SCIENCE 2023; 14:1172028. [PMID: 37377804 PMCID: PMC10291334 DOI: 10.3389/fpls.2023.1172028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.
Collapse
Affiliation(s)
- Glen P. Fox
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Harmonie M. Bettenhausen
- Center for Craft Food and Beverage, Hartwick College Center for Craft Food and Beverage, Oneonta, NY, United States
| |
Collapse
|
7
|
Matsushima R, Hisano H, Galis I, Miura S, Crofts N, Takenaka Y, Oitome NF, Ishimizu T, Fujita N, Sato K. FLOURY ENDOSPERM 6 mutations enhance the sugary phenotype caused by the loss of ISOAMYLASE1 in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:94. [PMID: 37010621 PMCID: PMC10070237 DOI: 10.1007/s00122-023-04339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Barley double mutants in two genes involved in starch granule morphology, HvFLO6 and HvISA1, had impaired starch accumulation and higher grain sugar levels than either single mutant. Starch is a biologically and commercially important glucose polymer synthesized by plants as semicrystalline starch granules (SGs). Because SG morphology affects starch properties, mutants with altered SG morphology may be useful in breeding crops with desirable starch properties, including potentially novel properties. In this study, we employed a simple screen for mutants with altered SG morphology in barley (Hordeum vulgare). We isolated mutants that formed compound SGs together with the normal simple SGs in the endosperm and found that they were allelic mutants of the starch biosynthesis genes ISOAMYLASE1 (HvISA1) and FLOURY ENDOSPERM 6 (HvFLO6), encoding starch debranching enzyme and CARBOHYDRATE-BINDING MODULE 48-containing protein, respectively. We generated the hvflo6 hvisa1 double mutant and showed that it had significantly reduced starch biosynthesis and developed shrunken grains. In contrast to starch, soluble α-glucan, phytoglycogen, and sugars accumulated to higher levels in the double mutant than in the single mutants. In addition, the double mutants showed defects in SG morphology in the endosperm and in the pollen. This novel genetic interaction suggests that hvflo6 acts as an enhancer of the sugary phenotype caused by hvisa1 mutation.
Collapse
Affiliation(s)
- Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, 010-0195, Japan
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
8
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Hashimoto S, Okada S, Araki-Nakamura S, Ohmae-Shinohara K, Miura K, Kawaguchi H, Ogino C, Kasuga S, Sazuka T. An analysis of sugary endosperm in sorghum: Characterization of mutant phenotypes depending on alleles of the corresponding starch debranching enzyme. FRONTIERS IN PLANT SCIENCE 2023; 14:1114935. [PMID: 36860899 PMCID: PMC9969085 DOI: 10.3389/fpls.2023.1114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Sorghum is the fifth most important cereal crop. Here we performed molecular genetic analyses of the 'SUGARY FETERITA' (SUF) variety, which shows typical sugary endosperm traits (e.g., wrinkled seeds, accumulation of soluble sugars, and distorted starch). Positional mapping indicated that the corresponding gene was located on the long arm of chromosome 7. Within the candidate region of 3.4 Mb, a sorghum ortholog for maize Su1 (SbSu) encoding a starch debranching enzyme ISA1 was found. Sequencing analysis of SbSu in SUF uncovered nonsynonymous single nucleotide polymorphisms (SNPs) in the coding region, containing substitutions of highly conserved amino acids. Complementation of the rice sugary-1 (osisa1) mutant line with the SbSu gene recovered the sugary endosperm phenotype. Additionally, analyzing mutants obtained from an EMS-induced mutant panel revealed novel alleles with phenotypes showing less severe wrinkles and higher Brix scores. These results suggested that SbSu was the corresponding gene for the sugary endosperm. Expression profiles of starch synthesis genes during the grain-filling stage demonstrated that a loss-of-function of SbSu affects the expression of most starch synthesis genes and revealed the fine-tuned gene regulation in the starch synthetic pathway in sorghum. Haplotype analysis using 187 diverse accessions from a sorghum panel revealed the haplotype of SUF showing severe phenotype had not been used among the landraces and modern varieties. Thus, weak alleles (showing sweet and less severe wrinkles), such as in the abovementioned EMS-induced mutants, are more valuable for grain sorghum breeding. Our study suggests that more moderate alleles (e.g. produced by genome editing) should be beneficial for improving grain sorghum.
Collapse
Affiliation(s)
- Shumpei Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Satoshi Okada
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | | | | | - Kotaro Miura
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Hideo Kawaguchi
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Shigemitsu Kasuga
- Faculty of Agriculture, Education and Research Center of Alpine Field Science, Shinshu University, Minamiminowa, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Simon I, Persky Z, Avital A, Harat H, Schroeder A, Shoseyov O. Foliar Application of dsRNA Targeting Endogenous Potato ( Solanum tuberosum) Isoamylase Genes ISA1, ISA2, and ISA3 Confers Transgenic Phenotype. Int J Mol Sci 2022; 24:ijms24010190. [PMID: 36613634 PMCID: PMC9820567 DOI: 10.3390/ijms24010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Isoamylase (ISA) is a debranching enzyme found in many plants, which hydrolyzes (1-6)-α-D glucosidic linkages in starch, amylopectin, and β-dextrins, and is thought to be responsible for starch granule formation (ISA1 and ISA2) and degradation (ISA3). Lipid-modified PEI (lmPEI) was synthesized as a carrier for long double-stranded RNA (dsRNA, 250-bp), which targets the three isoamylase isoforms. The particles were applied to the plant via the foliar spray and were differentially effective in suppressing the expressions of ISA1 and ISA2 in the potato leaves, and ISA3 in the tubers. Plant growth was not significantly impaired, and starch levels in the tubers were not affected as well. Interestingly, the treated plants had significantly smaller starch granule sizes as well as increased sucrose content, which led to an early sprouting phenotype. We confirm the proposal of previous research that an increased number of small starch granules could be responsible for an accelerated turnover of glucan chains and, thus, the rapid synthesis of sucrose, and we propose a new relationship between ISA3 and the starch granule size. The implications of this study are in achieving a transgenic phenotype for endogenous plant genes using a systemic, novel delivery system, and foliar applications of dsRNA for agriculture.
Collapse
Affiliation(s)
- Ido Simon
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Zohar Persky
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Aviram Avital
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Hila Harat
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
| | - Oded Shoseyov
- Robert H. Smith Faculty of Agriculture Food and Environment, Hebrew University, Rehovot 76100, Israel
- Correspondence:
| |
Collapse
|
11
|
Genome-Wide Identification of DOF Gene Family and the Mechanism Dissection of SbDof21 Regulating Starch Biosynthesis in Sorghum. Int J Mol Sci 2022; 23:ijms232012152. [PMID: 36293009 PMCID: PMC9603474 DOI: 10.3390/ijms232012152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Starch is one of the main utilization products of sorghum (Sorghum bicolor L.), the fifth largest cereal crop in the world. Up to now, the regulation mechanism of starch biosynthesis is rarely documented in sorghum. In the present study, we identified 30 genes encoding the C2-C2 zinc finger domain (DOF), with one to three exons in the sorghum genome. The DOF proteins of sorghum were divided into two types according to the results of sequence alignment and evolutionary analysis. Based on gene expressions and co-expression analysis, we identified a regulatory factor, SbDof21, that was located on chromosome 5. SbDof21 contained two exons, encoding a 36.122 kD protein composed of 340 amino acids. SbDof21 co-expressed with 15 genes involved in the sorghum starch biosynthesis pathway, and the Pearson correlation coefficients (PCCs) with 11 genes were greater than 0.9. The results of qRT-PCR assays indicated that SbDof21 is highly expressed in sorghum grains, exhibiting low relative expression levels in the tissues of roots, stems and leaves. SbDOF21 presented as a typical DOF transcription factor (TF) that was localized to the nucleus and possessed transcriptional activation activity. Amino acids at positions 182–231 of SbDOF21 formed an important structure in its activation domain. The results of EMSA showed that SbDOF21 could bind to four tandem repeats of P-Box (TGTAAAG) motifs in vitro, such as its homologous proteins of ZmDOF36, OsPBF and TaPBF. Meanwhile, we also discovered that SbDOF21 could bind and transactivate SbGBSSI, a key gene in sorghum amylose biosynthesis. Collectively, the results of the present study suggest that SbDOF21 acts as an important regulator in sorghum starch biosynthesis, exhibiting potential values for the improvement of starch contents in sorghum.
Collapse
|
12
|
Xiao Q, Huang T, Cao W, Ma K, Liu T, Xing F, Ma Q, Duan H, Ling M, Ni X, Liu Z. Profiling of transcriptional regulators associated with starch biosynthesis in sorghum ( Sorghum bicolor L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999747. [PMID: 36110358 PMCID: PMC9468648 DOI: 10.3389/fpls.2022.999747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Starch presents as the major component of grain endosperm of sorghum (Sorghum bicolor L.) and other cereals, serving as the main energy supplier for both plants and animals, as well as important industrial raw materials of human beings, and was intensively concerned world widely. However, few documents focused on the pathway and transcriptional regulations of starch biosynthesis in sorghum. Here we presented the RNA-sequencing profiles of 20 sorghum tissues at different developmental stages to dissect key genes associated with sorghum starch biosynthesis and potential transcriptional regulations. A total of 1,708 highly expressed genes were detected, namely, 416 in grains, 736 in inflorescence, 73 in the stalk, 215 in the root, and 268 genes in the leaf. Besides, 27 genes encoded key enzymes associated with starch biosynthesis in sorghum were identified, namely, six for ADP-glucose pyrophosphorylase (AGPase), 10 for starch synthases (SSs), four for both starch-branching enzymes (SBE) and starch-debranching enzymes (DBEs), two for starch phosphorylases (SPs), and one for Brittle-1 (BT1). In addition, 65 transcription factors (TFs) that are highly expressed in endosperm were detected to co-express with 16 out of 27 genes, and 90 cis-elements were possessed by all 27 identified genes. Four NAC TFs were cloned, and the further assay results showed that three of them could in vitro bind to the CACGCAA motif within the promoters of SbBt1 and SbGBSSI, two key genes associated with starch biosynthesis in sorghum, functioning in similar ways that reported in other cereals. These results confirmed that sorghum starch biosynthesis might share the same or similar transcriptional regulations documented in other cereals, and provided informative references for further regulatory mechanism dissection of TFs involved in starch biosynthesis in sorghum.
Collapse
Affiliation(s)
- Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianhui Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Wan Cao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Kuang Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tingting Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Fangyu Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Qiannan Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Hong Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Min Ling
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xianlin Ni
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, China
- Sichuan Sub Center, National Sorghum Improvement Center, Luzhou, China
| | - Zhizhai Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Liu H, Wang Y, Liu L, Wei B, Wang X, Xiao Q, Li Y, Ajayo BS, Huang Y. Pleiotropic ZmICE1 Is an Important Transcriptional Regulator of Maize Endosperm Starch Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:895763. [PMID: 35937346 PMCID: PMC9355408 DOI: 10.3389/fpls.2022.895763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Starch, the major component of cereal grains, affects crop yield and quality and is widely used in food and industrial applications. The biosynthesis of maize starch is a complex process involving a series of functional enzymes. However, the sophisticated regulatory mechanisms of starch biosynthetic genes have not been fully elaborated. The basic/helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotes and participate in many physiological processes. In this study, 202 bHLH encoding genes were identified in the maize genome by Blast method. ZmICE1 gene, which belongs to the ICE subfamily of the bHLH family, was obtained and expressed mainly in maize filling endosperm and co-expressed with 14 starch biosynthesis genes. Based on the comparative analyses across different plant species, we revealed that the gene structures and protein domains of the ICE subfamily were conserved between monocots and dicots, suggesting their functional conservation feature. Yeast activation and subcellular localization assays suggested that ZmICE1 had transcriptional activation activity and localized in the nucleus. Yeast one-hybrid assays confirmed that ZmICE1 could directly bind to the promoters of ZmSSIIa and ZmGBSSI. Transient gene expression analysis in maize endosperm revealed that ZmICE1 positively regulated the expression of ZmSSIIa, but inhibited the expression of ZmGBSSI. Our results indicated that ZmICE1 could function as a regulator of maize starch biosynthesis.
Collapse
Affiliation(s)
- Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yongbin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Lijun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Bin Wei
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Xieqin Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | | | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Apriyanto A, Compart J, Fettke J. A review of starch, a unique biopolymer - Structure, metabolism and in planta modifications. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111223. [PMID: 35351303 DOI: 10.1016/j.plantsci.2022.111223] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Starch is a complex carbohydrate polymer produced by plants and especially by crops in huge amounts. It consists of amylose and amylopectin, which have α-1,4- and α-1,6-linked glucose units. Despite this simple chemistry, the entire starch metabolism is complex, containing various (iso)enzymes/proteins. However, whose interplay is still not yet fully understood. Starch is essential for humans and animals as a source of nutrition and energy. Nowadays, starch is also commonly used in non-food industrial sectors for a variety of purposes. However, native starches do not always satisfy the needs of a wide range of (industrial) applications. This review summarizes the structural properties of starch, analytical methods for starch characterization, and in planta starch modifications.
Collapse
Affiliation(s)
- Ardha Apriyanto
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany
| | - Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
15
|
Liao Y, Ali A, Xue Z, Zhou X, Ye W, Guo D, Liao Y, Jiang P, Wu T, Zhang H, Xu P, Chen X, Zhou H, Liu Y, Wang W, Wu X. Disruption of LLM9428/ OsCATC Represses Starch Metabolism and Confers Enhanced Blast Resistance in Rice. Int J Mol Sci 2022; 23:3827. [PMID: 35409186 PMCID: PMC8998287 DOI: 10.3390/ijms23073827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Catalases (CATs) are important self-originating enzymes and are involved in many of the biological functions of plants. Multiple forms of CATs suggest their versatile role in lesion mimic mutants (LMMs), H2O2 homeostasis and abiotic and biotic stress tolerance. In the current study, we identified a large lesion mimic mutant9428 (llm9428) from Ethyl-methane-sulfonate (EMS) mutagenized population. The llm9428 showed a typical phenotype of LMMs including decreased agronomic yield traits. The histochemical assays showed decreased cell viability and increased reactive oxygen species (ROS) in the leaves of llm9428 compared to its wild type (WT). The llm9428 showed enhanced blast disease resistance and increased relative expression of pathogenesis-related (PR) genes. Studies of the sub-cellular structure of the leaf and quantification of starch contents revealed a significant decrease in starch granule formation in llm9428. Genetic analysis revealed a single nucleotide change (C > T) that altered an amino acid (Ala > Val) in the candidate gene (Os03g0131200) encoding a CATALASE C in llm9428. CRISPR-Cas9 targetted knockout lines of LLM9428/OsCATC showed the phenotype of LMMs and reduced starch metabolism. Taken together, the current study results revealed a novel role of OsCATC in starch metabolism in addition to validating previously studied functions of CATs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (A.A.); (Z.X.); (X.Z.); (W.Y.); (D.G.); (Y.L.); (P.J.); (T.W.); (H.Z.); (P.X.); (X.C.); (H.Z.); (Y.L.)
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (A.A.); (Z.X.); (X.Z.); (W.Y.); (D.G.); (Y.L.); (P.J.); (T.W.); (H.Z.); (P.X.); (X.C.); (H.Z.); (Y.L.)
| |
Collapse
|
16
|
Crofts N, Domon A, Miura S, Hosaka Y, Oitome NF, Itoh A, Noge K, Fujita N. Starch synthases SSIIa and GBSSI control starch structure but do not determine starch granule morphology in the absence of SSIIIa and SSIVb. PLANT MOLECULAR BIOLOGY 2022; 108:379-398. [PMID: 34671919 DOI: 10.1007/s11103-021-01197-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/20/2021] [Indexed: 05/21/2023]
Abstract
High levels of two major starch synthases, SSIIa and GBSSI, in ss3a ss4b double mutant rice alter the starch structure but fail to recover the polygonal starch granule morphology. The endosperm starch granule is polygonal in wild-type rice but spherical in double mutant japonica rice lacking genes encoding two of the five major Starch synthase (SS) isozymes expressed in endosperm, SSIIIa and SSIVb. Japonica rice naturally has low levels of SSIIa and Granule-bound SSI (GBSSI). Therefore, introduction of active SSIIa allele and/or high-expressing GBSSI allele from indica rice into the japonica rice mutant lacking SS isozymes can help elucidate the compensatory roles of SS isozymes in starch biosynthesis. In this study, we crossed the ss3a ss4a double mutant japonica rice with the indica rice to generate three new rice lines with high and/or low SSIIa and GBSSI levels, and examined their starch structure, physicochemical properties, and levels of other starch biosynthetic enzymes. Lines with high SSIIa levels showed more SSI and SSIIa bound to starch granule, reduced levels of short amylopectin chains (7 ≤ DP ≤ 12), increased levels of amylopectin chains with DP > 13, and consequently higher gelatinization temperature. Lines with high GBSSI levels showed an increase in amylose content. The ADP-glucose content of the crude extract was high in lines with low or high SSIIa and low GBSSI levels, but was low in lines with high GBSSI. Addition of high SSIIa and GBSSI altered the starch structure and physicochemical properties but did not affect the starch granule morphology, confirming that SSIIIa and SSIVb are key enzymes affecting starch granule morphology in rice. The relationship among SS isozymes and its effect on the amount of substrate (ADP-glucose) is discussed.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Asaka Domon
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko F Oitome
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Ayaka Itoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
17
|
Crofts N, Satoh Y, Miura S, Hosaka Y, Abe M, Fujita N. Active-type starch synthase (SS) IIa from indica rice partially complements the sugary-1 phenotype in japonica rice endosperm. PLANT MOLECULAR BIOLOGY 2022; 108:325-342. [PMID: 34287741 DOI: 10.1007/s11103-021-01161-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/03/2021] [Indexed: 05/21/2023]
Abstract
Introduction of higher SSIIa activity to mild-type isa1 mutant by crossing results in restoration of crystallinity, starch granule structure, and production of plump seeds. Isoamylase 1 (ISA1) removes improper α-1, 6 glycosidic branches of amylopectin generated by starch branching enzymes and is essential for the formation of proper amylopectin structure. Rice isa1 (sug-1) mutants in japonica cultivar with less-active starch synthase IIa (SSIIa) and low granule-bound SSI (GBSSI) expression display wrinkled seed phenotype by accumulating water-soluble phytoglycogen instead of insoluble amylopectin. Expression of active SSIIa in transgenic rice produced with a severe-type isa1 mutant accumulated some insoluble glucan with weak B-type crystallinity at the periphery of seeds but their seeds remained wrinkled. To see whether introduction of high levels of SSIIa and/or GBSSI can restore the grain filling of the mild-type sug-1 mutant (EM653), new rice lines (SS2a gbss1L isa1, ss2aL GBSS1 isa1, and SS2a GBSS1 isa1) were generated by crossing japonica isa1 mutant (ss2aL gbss1L isa1) with wild type indica rice (SS2a GBSS1 ISA1). The results showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 lines generated chalky plump seeds accumulating insoluble amylopectin-like glucans with an increase in DP 13-35, while ss2aL GBSS1 isa1 generated wrinkly seeds and accumulated soluble glucans enriched with DP < 13. Scanning electron microscopic observation of cross-section of the seeds showed that SS2a gbss1L isa1 and SS2a GBSS1 isa1 produced wild type-like polygonal starch granules. These starches showed the A-type crystallinity comparable to the wild type, while the japonica isa1 mutant and the transgenic rice do not show any or little crystallinity, respectively. These results indicate that introduction of higher SSIIa activity can mostly complements the mild-type sug-1 phenotype.
Collapse
Affiliation(s)
- Naoko Crofts
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yoshiki Satoh
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Misato Abe
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, Akita, Japan.
| |
Collapse
|
18
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Botticella E, Savatin DV, Sestili F. The Triple Jags of Dietary Fibers in Cereals: How Biotechnology Is Longing for High Fiber Grains. FRONTIERS IN PLANT SCIENCE 2021; 12:745579. [PMID: 34594354 PMCID: PMC8477015 DOI: 10.3389/fpls.2021.745579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 05/03/2023]
Abstract
Cereals represent an important source of beneficial compounds for human health, such as macro- and micronutrients, vitamins, and bioactive molecules. Generally, the consumption of whole-grain products is associated with significant health benefits, due to the elevated amount of dietary fiber (DF). However, the consumption of whole-grain foods is still modest compared to more refined products. In this sense, it is worth focusing on the increase of DF fractions inside the inner compartment of the seed, the endosperm, which represents the main part of the derived flour. The main components of the grain fiber are arabinoxylan (AX), β-glucan (βG), and resistant starch (RS). These three components are differently distributed in grains, however, all of them are represented in the endosperm. AX and βG, classified as non-starch polysaccharides (NSP), are in cell walls, whereas, RS is in the endosperm, being a starch fraction. As the chemical structure of DFs influences their digestibility, the identification of key actors involved in their metabolism can pave the way to improve their function in human health. Here, we reviewed the main achievements of plant biotechnologies in DFs manipulation in cereals, highlighting new genetic targets to be exploited, and main issues to face to increase the potential of cereals in fighting malnutrition.
Collapse
Affiliation(s)
- Ermelinda Botticella
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Lecce, Italy
| | | | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
20
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Yu B, Xiang D, Mahfuz H, Patterson N, Bing D. Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization. Int J Mol Sci 2021; 22:8972. [PMID: 34445676 PMCID: PMC8396644 DOI: 10.3390/ijms22168972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review outlines the understanding of starch metabolism with a particular focus on peas and highlights the knowledge of pea starch granule structure and its relationship with functional properties, and industrial applications. Using the currently available pea genetics and genomics knowledge and breakthroughs in omics technologies, we discuss the perspectives and possible avenues to advance our understanding of starch metabolism in peas at an unprecedented level, to ultimately enable the molecular design of multi-functional native pea starch and to create value-added utilization.
Collapse
Affiliation(s)
- Bianyun Yu
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Daoquan Xiang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Humaira Mahfuz
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
- Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Nii Patterson
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; (D.X.); (H.M.); (N.P.)
| | - Dengjin Bing
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| |
Collapse
|
22
|
Mérida A, Fettke J. Starch granule initiation in Arabidopsis thaliana chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:688-697. [PMID: 34051021 DOI: 10.1111/tpj.15359] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.
Collapse
Affiliation(s)
- Angel Mérida
- Institute of Plant Biochemistry and Photosynthesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla (US), Avda Américo Vespucio, 49, Sevilla, 41092, Spain
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm, 14476, Germany
| |
Collapse
|
23
|
Chhabra R, Muthusamy V, Gain N, Katral A, Prakash NR, Zunjare RU, Hossain F. Allelic variation in sugary1 gene affecting kernel sweetness among diverse-mutant and -wild-type maize inbreds. Mol Genet Genomics 2021; 296:1085-1102. [PMID: 34159441 DOI: 10.1007/s00438-021-01807-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022]
Abstract
Sweet corn is popular worldwide as vegetable. Though large numbers of sugary1 (su1)-based sweet corn germplasm are available, allelic diversity in su1 gene encoding SU1 isoamylase among diverse maize inbreds has not been analyzed. Here, we characterized the su1 gene in maize and compared with allied species. The entire su1 gene (11,720 bp) was sequenced among six mutant (su1) and five wild (Su1) maize inbreds. Fifteen InDels of 2-45 bp were selected to develop markers for studying allelic diversity in su1 gene among 19 mutant- (su1) and 29 wild-type (Su1) inbreds. PIC ranged from 0.15 (SU-InDel7) to 0.37 (SU-InDel13). Major allele frequency varied from 0.52 to 0.90, while gene diversity ranged from 0.16 to 0.49. Phylogenetic tree categorized 48 maize inbreds in two clusters each for wild- type (Su1) and mutant (su1) types. 44 haplotypes of su1 were observed, with three haplotypes (Hap6, Hap22 and Hap29) sharing more than one genotype. Further, comparisons were made with 23 orthologues of su1 from 16 grasses and Arabidopsis. Maize possessed 15-19 exons in su1, while it was 11-24 exons among orthologues. Introns among the orthologues were longer (77-2206 bp) than maize (859-1718 bp). SU1 protein of maize and orthologues had conserved α-amylase and CBM_48 domains. The study also provided physicochemical properties and secondary structure of SU1 protein in maize and its orthologues. Phylogenetic analysis showed closer relationship of maize SU1 protein with P. hallii, S. bicolor and E. tef than Triticum sp. and Oryza sp. The study showed that presence of high allelic diversity in su1 gene which can be utilized in the sweet corn breeding program. This is the first report of comprehensive characterization of su1 gene and its allelic forms in diverse maize and related orthologues.
Collapse
Affiliation(s)
- Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nisrita Gain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Nitish R Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
24
|
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay JE, Fahy B, Hartley M, Warren FJ, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. THE NEW PHYTOLOGIST 2021; 230:2371-2386. [PMID: 33714222 DOI: 10.1111/nph.17342] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/05/2021] [Indexed: 05/26/2023]
Abstract
Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.
Collapse
Affiliation(s)
- Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew Hartley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
25
|
Wang R, Ren Y, Yan H, Teng X, Zhu X, Wang Y, Zhang X, Guo X, Lin Q, Cheng Z, Lei C, Wang J, Jiang L, Wang Y, Wan J. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110831. [PMID: 33691965 DOI: 10.1016/j.plantsci.2021.110831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Cereal crops accumulate large amounts of starch which is synthesized and stored in amyloplasts in the form of starch grains (SGs). Despite significant progress in deciphering starch biosynthesis, our understanding of amyloplast development in rice (Oryza sativa) endosperm remains largely unknown. Here, we report a novel rice floury mutant named enlarged starch grain1 (esg1). The mutant has decreased starch content, altered starch physicochemical properties, slower grain-filling rate and reduced 1000-grain weight. A distinctive feature in esg1 endosperm is that SGs are much larger, mainly due to an increased number of starch granules per SG. Spherical and loosely assembled granules, together with those weakly stained SGs may account for decreased starch content in esg1. Map-based cloning revealed that ESG1 encodes a putative permease subunit of a bacterial-type ABC (ATP-binding cassette) lipid transporter. ESG1 is constitutively expressed in various tissues. It encodes a protein localized to the chloroplast and amyloplast membranes. Mutation of ESG1 causes defective galactolipid synthesis. The overall study indicates that ESG1 is a newly identified protein affecting SG development and subsequent starch biosynthesis, which provides novel insights into amyloplast development in rice.
Collapse
Affiliation(s)
- Rongqi Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haigang Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Teng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
26
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
27
|
Transcriptome analysis of genes involved in starch biosynthesis in developing Chinese chestnut (Castanea mollissima Blume) seed kernels. Sci Rep 2021; 11:3570. [PMID: 33574357 PMCID: PMC7878784 DOI: 10.1038/s41598-021-82130-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chinese chestnut (Castanea mollissima Blume) seed kernels (CCSK) with high quality and quantity of starch has emerged as a potential raw material for food industry, but the molecular regulatory mechanism of starch accumulation in developing CCSK is still unclear. In this study, we firstly analyzed the fruit development, starch accumulation, and microscopic observation of dynamic accumulation of starch granules of developing CCSK from 10 days after flowering (DAF) to 100 DAF, of which six representative CCSK samples (50–100 DAF) were selected for transcriptome sequencing analysis. Approximately 40 million valid reads were obtained, with an average length of 124.95 bp, which were searched against a reference genome, returning 38,146 unigenes (mean size = 1164.19 bp). Using the DESeq method, 1968, 1573, 1187, 1274, and 1494 differentially expressed unigenes were identified at 60:50, 70:60, 80:70, 90:80 and 100:90 DAF, respectively. The relationship between the unigene transcriptional profiles and starch dynamic patterns in developing CCSK was comparatively analyzed, and the specific unigenes encoding for metabolic enzymes (SUSY2, PGM, PGI, GPT, NTT, AGP3, AGP2, GBSS1, SS1, SBE1, SBE2.1, SBE2.2, ISA1, ISA2, ISA3, and PHO) were characterized to be involved potentially in the biosynthesis of G-1-P, ADPG, and starch. Finally, the temporal transcript profiles of genes encoding key enzymes (susy2, pgi2, gpt1, agp2, agp3, gbss1, ss1, sbe1, sbe2.1, sbe2.2, isa1, isa2, isa3, and pho) were validated by quantitative real-time PCR (qRT-PCR). Our findings could help to reveal the molecular regulatory mechanism of starch accumulation in developing CCSK and may also provide potential candidate genes for increasing starch content in Chinese chestnut or other starchy crops.
Collapse
|
28
|
Xue J, Luo Y. Properties and applications of natural dendritic nanostructures: Phytoglycogen and its derivatives. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Impact of Drought on Soluble Sugars and Free Proline Content in Selected Arabidopsis Mutants. BIOLOGY 2020; 9:biology9110367. [PMID: 33137965 PMCID: PMC7692697 DOI: 10.3390/biology9110367] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Simple Summary Drought has severe effects on plants, negatively impacting economic, agricultural and environmental processes. Depending on the duration and the strength of water stress conditions, plants adjust a series of physiological, cellular, and molecular mechanisms aimed at providing a correct stress response and, if possible, at establishing stress tolerance. The model plant Arabidopsis thaliana is one of the best tools for analyzing the involvement of specific genes in the response to drought. Thanks to this tool, the role of two genes encoding enzymes involved in sugars metabolism, and one gene encoding an enzyme involved in proline synthesis, have been investigated. In addition to suggesting an interaction between the metabolism of proline and that of soluble sugars, results broaden our understanding of the predominant role played by the accumulation of soluble sugars in counteracting mild osmotic stress. Abstract Water shortage is an increasing problem affecting crop yield. Accumulation of compatible osmolytes is a typical plant response to overcome water stress. Sucrose synthase 1 (SUS1), and glucan, water dikinase 2 (GWD2) and δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) are members of small protein families whose role in the response of Arabidopsis thaliana plants to mild osmotic stress has been studied in this work. Comparative analysis between wild-type and single loss-of-function T-DNA plants at increasing times following exposure to drought showed no differences in the content of water-insoluble carbohydrate (i.e., transitory starch and cell wall carbohydrates) and in the total amount of amino acids. On the contrary, water-soluble sugars and proline contents were significantly reduced compared to wild-type plants regardless of the metabolic pathway affected by the mutation. The present results contribute to assigning a physiological role to GWD2, the least studied member of the GWD family; strengthening the involvement of SUS1 in the response to osmotic stress; showing a greater contribution of soluble sugars than proline in osmotic adjustment of Arabidopsis in response to drought. Finally, an interaction between proline and soluble sugars emerged, albeit its nature remains speculative and further investigations will be required for complete comprehension.
Collapse
|
30
|
Dendrimer-like glucan nanoparticulate system improves the solubility and cellular antioxidant activity of coenzyme Q10. Food Chem 2020; 333:127510. [PMID: 32673958 DOI: 10.1016/j.foodchem.2020.127510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
Aqueous coenzyme Q10 (CoQ10) dispersions were prepared using sugary maize dendrimer-like glucan (SMDG) with solid-dispersion treatment. After measuring solubility, recovery rate and loading rate, the initial weight ratio of CoQ10:SMDG was optimized to be 1:27, with the solubility markedly increasing up 188.8-folds compared to pure CoQ10 solution. The structural characterizations of CoQ10-SMDG formulation showed crystal CoQ10 was entrapped in SMDG matrix for amorphous state, associated with the strong interactions with glucan chains. The antioxidant activity of CoQ10-SMDG was assessed via DPPH and FRAP assay. DPPH scavenging activity and FRAP value of it were as high as 95.1% and 0.87 mM, respectively. The cellular uptake of CoQ10 in CoQ10-SMDG group was significantly higher than that of natural CoQ10. CoQ10-SMDG also exhibited significant protective effects against cellular damage in H2O2-induced HaCaT cell model. The results indicated that dendrimer-like glucan is an excellent platform to encapsulate and improve biological activity of hydropholic compounds.
Collapse
|
31
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
32
|
Abt MR, Zeeman SC. Evolutionary innovations in starch metabolism. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:109-117. [PMID: 32428846 DOI: 10.1016/j.pbi.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
The traditional view of starch metabolism has focused on the multiplicity of enzymes and enzyme isoforms contributing to the production of the constituent polymers, amylopectin and amylose. However, knowledge of these enzymes has not provided a full insight into many aspects of starch biosynthesis. This enzyme-centered view has recently been augmented by the discovery and characterization of novel proteins with proposed regulatory, scaffolding, and interactive roles. This begins to reveal an unprecedented level of complexity beyond mere glucan biosynthesis, enabling us to envisage how starch granules are initiated and grow into specific forms, allowing it to serve biological roles beyond just carbohydrate storage. This review focuses on very recent findings in this vibrant field, highlighting the evolutionary novelty.
Collapse
Affiliation(s)
- Melanie R Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
33
|
Lloyd JR. The A to B of starch granule formation in wheat endosperm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1-3. [PMID: 31841166 PMCID: PMC6913706 DOI: 10.1093/jxb/erz414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This article comments on: Chia T, Chirico M, King R et al. 2019. A carbohydrate-binding protein, B-granule content 1 influences starch granule-size distribution in a dose dependent manner in polyploid wheat. Journal of Experimental Botany 70, 105–115.
Collapse
Affiliation(s)
- James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
- Correspondence:
| |
Collapse
|
34
|
Takahashi S, Kumagai Y, Igarashi H, Horimai K, Ito H, Shimada T, Kato Y, Hamada S. Biochemical analysis of a new sugary-type rice mutant, Hemisugary1, carrying a novel allele of the sugary-1 gene. PLANTA 2019; 251:29. [PMID: 31802247 DOI: 10.1007/s00425-019-03321-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
A novel allele of the sugary-1 rice mutant was isolated. The single amino acid change led to isoamylase activity reduction and accumulation of high-molecular-weight phytoglycogen in seeds. A new sugary rice variety with an improved seed appearance has been isolated and designated Hemisugary1. This mutant, which was derived from Japonica-type cultivar Tsugaruroman treated with sodium azide, has about half the isoamylase activity of seeds in the original Tsugaruroman. The mutant also accumulates significant phytoglycogen, albeit approximately 40% of the total phytoglycogen in the existing sugary cultivar Ayunohikari which is defective in its most isoamylase activity. The site of mutation was identified using a re-sequence of the whole genome and a cleaved amplified polymorphic sequence (CAPS) marker. The hemisugary phenotypes of the F2 progeny were entirely consistent with the results of genotyping using the CAPS marker. Segregation analysis of the F2 population showed that the hemisugary phenotype was controlled by a single recessive gene, which was produced by a G → A single nucleotide polymorphism in the sugary-1 gene, resulting in a missense mutation from glycine to aspartic acid at amino acid position 333. Zymogram showed that this amino acid replacement resulted in a decrease in isoamylase activity with a concomitant reduction in the formation of isoamylase complexes. Phytoglycogen molecules from Hemisugary1 seeds were 3.5 times larger and contained more short glucan chains than did Ayunohikari seeds. Our data provide new insights into the relationship between isoamylase structure and phytoglycogen formation.
Collapse
Affiliation(s)
- Sumire Takahashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Yu Kumagai
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hidenari Igarashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Karin Horimai
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Hiroyuki Ito
- Department of Chemical and Biological Engineering, National Institute of Technology, Akita College, 1-1 Iijima-Bunkyo-cho, Akita, 011-8511, Japan
| | - Toru Shimada
- Faculty of Education, Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori, 036-8560, Japan
| | - Yoji Kato
- Faculty of Education, Hirosaki University, 1 Bunkyo-cho, Hirosaki, Aomori, 036-8560, Japan
| | - Shigeki Hamada
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
35
|
Cuesta-Seijo JA, De Porcellinis AJ, Valente AH, Striebeck A, Voss C, Marri L, Hansson A, Jansson AM, Dinesen MH, Fangel JU, Harholt J, Popovic M, Thieme M, Hochmuth A, Zeeman SC, Mikkelsen TN, J�rgensen RB, Roitsch TG, M�ller BL, Braumann I. Amylopectin Chain Length Dynamics and Activity Signatures of Key Carbon Metabolic Enzymes Highlight Early Maturation as Culprit for Yield Reduction of Barley Endosperm Starch after Heat Stress. PLANT & CELL PHYSIOLOGY 2019; 60:2692-2706. [PMID: 31397873 PMCID: PMC6896705 DOI: 10.1093/pcp/pcz155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/30/2019] [Indexed: 05/30/2023]
Abstract
Abiotic environmental stresses have a negative impact on the yield and quality of crops. Understanding these stresses is an essential enabler for mitigating breeding strategies and it becomes more important as the frequency of extreme weather conditions increases due to climate change. This study analyses the response of barley (Hordeum vulgare L.) to a heat wave during grain filling in three distinct stages: the heat wave itself, the return to a normal temperature regime, and the process of maturation and desiccation. The properties and structure of the starch produced were followed throughout the maturational stages. Furthermore, the key enzymes involved in the carbohydrate supply to the grain were monitored. We observed differences in starch structure with well-separated effects because of heat stress and during senescence. Heat stress produced marked effects on sucrolytic enzymes in source and sink tissues. Early cessation of plant development as an indirect consequence of the heat wave was identified as the major contributor to final yield loss from the stress, highlighting the importance for functional stay-green traits for the development of heat-resistant cereals.
Collapse
Affiliation(s)
| | | | | | - Alexander Striebeck
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Lucia Marri
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Andreas Hansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Anita M Jansson
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Jonatan Ulrik Fangel
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Milan Popovic
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Mercedes Thieme
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Anton Hochmuth
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Teis N�rgaard Mikkelsen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Rikke Bagger J�rgensen
- Atmospheric Environment, DTU Environmental engineering, Technical University of Denmark, Building 115, 2800 Kgs, Lyngby, Denmark
| | - Thomas Georg Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Hojbakkegard Alle, 2630 Taastrup, Denmark
| | - Birger Lindberg M�ller
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C, Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| |
Collapse
|
36
|
Zhao Q, Du X, Han Z, Ye Y, Pan G, Asad MAU, Zhou Q, Cheng F. Suppression of starch synthase I (SSI) by RNA interference alters starch biosynthesis and amylopectin chain distribution in rice plants subjected to high temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: a Review. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01581-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Structure, bioactivity and applications of natural hyperbranched polysaccharides. Carbohydr Polym 2019; 223:115076. [PMID: 31427017 DOI: 10.1016/j.carbpol.2019.115076] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
Abstract
In recent years, hyperbranched polymers, especially the natural hyperbranched polysaccharides (HBPSs), are receiving much attention due to their diverse biological activities and applications. With high degree of branching (DB), HBPSs mainly exist in the form of either a comb-brush shape, dendrimer-like particulate, or globular particle. HBPSs also possess some unique properties, such as high density, large spatial cavities, and numerous terminal functional groups, which distinguish them from other polymers. As a natural biopolymer, HBPS has excellent bioavailability, biocompatibility, and biodegradability, which have versatile applications in the fields of food, medicine, cosmetic, and nanomaterials. In this review, the source and structure of HBPSs from plant, animal, microbial and fungal origins as well as their biological functions and applications are covered, with the aim of further advancing the research of their structure and bioactivity.
Collapse
|
39
|
Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:407-415. [PMID: 31128711 DOI: 10.1016/j.plantsci.2019.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 05/23/2023]
Abstract
Starch content and composition are major determinants of yield and quality in maize. In recent years, the major genes for starch metabolism have been cloned in this species. However, the role of transcription factors in regulating the starch metabolism pathway remains unclear. The ZmbZIP22 gene encodes a bZIP transcription factor. In our study, plants overexpressing ZmbZIP22 showed reductions in the size of starch granules, the size and weight of seeds, reduced amylose content, and alterations in the chemical structure of starch granules. Also, overexpression of ZmbZIP22 resulted in increases in the contents of soluble sugars and reducing sugars in transgenic rice and maize. ZmbZIP22 promotes the transcription of starch metabolism genes by binding to their promoters. Screening by yeast one-hybrid assays indicated a possible interaction between ZmbZIP22 and the promoters of eight key starch enzyme genes. Collectively, our results indicated that ZmbZIP22 functions as a negative regulator of starch synthesis, and suggest that this occurs through the regulation of key sugar and starch metabolism genes in maize.
Collapse
Affiliation(s)
- Qing Dong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China; Maize Research Center, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qianqian Xu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jingjing Kong
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaojian Peng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Zhou
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Long Chen
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Jiandong Wu
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistence, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
40
|
Seung D, Smith AM. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:771-784. [PMID: 30452691 DOI: 10.1093/jxb/ery412] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/06/2018] [Indexed: 05/13/2023]
Abstract
Starch, the major storage carbohydrate in plants, is synthesized in plastids as semi-crystalline, insoluble granules. Many organs and cell types accumulate starch at some point during their development and maturation. The biosynthesis of the starch polymers, amylopectin and amylose, is relatively well understood and mostly conserved between organs and species. However, we are only beginning to understand the mechanism by which starch granules are initiated, and the factors that control the number of granules per plastid and the size/shape of granules. Here, we review recent progress in understanding starch granule initiation and morphogenesis. In Arabidopsis, granule initiation requires several newly discovered proteins with specific locations within the chloroplast, and also on the availability of maltooligosaccharides which act as primers for initiation. We also describe progress in understanding granule biogenesis in the endosperm of cereal grains-within which there is large interspecies variation in granule initiation patterns and morphology. Investigating whether this diversity results from differences between species in the functions of known proteins, and/or from the presence of novel, unidentified proteins, is a promising area of future research. Expanding our knowledge in these areas will lead to new strategies for improving the quality of cereal crops by modifying starch granule size and shape in vivo.
Collapse
Affiliation(s)
- David Seung
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
41
|
Tappiban P, Smith DR, Triwitayakorn K, Bao J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
43
|
Panpetch P, Field RA, Limpaseni T. Cloning of the full-length isoamylase3 gene from cassava Manihot esculenta Crantz 'KU50' and its heterologous expression in E. coli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:281-286. [PMID: 30240990 DOI: 10.1016/j.plaphy.2018.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Isoamylase (EC.3.2.1.68), an essential enzyme in starch metabolism, catalyses the cleavage of α-1,6 glucosidic linkages of branched α-polyglucans such as beta-limit dextrin and amylopectin, but not pullulan. Three different isoamylase isoforms have been reported in plants and algae. We herein report on the first success in preparation of full-length isoamylase3 gene (MeISA3) of cassava Manihot esculenta Crantz 'KU50' from 5' Rapid Amplification of cDNA Ends (5' RACE). The MeISA3 was cloned to pET21b and expressed in E. coli. The HistrapTM-purified rMeISA3 appeared as a single band protein with approximate molecular size of 75 kDa on SDS-PAGE and Western blot, while 80 kDa was shown by gel filtration chromatography. This indicated the existence of a monomeric enzyme. Biochemical characterisation of rMeISA3 showed that the enzyme was specific towards beta-limit dextrin, with optimal activity at 37 °C pH 6.0. Activity of rMeISA3 could be significantly promoted by Mg2+ and Co2+. rMeISA3 debranched glucan chains of amylopectin were confirmed by HPAEC-PAD analysis.
Collapse
Affiliation(s)
- Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Tipaporn Limpaseni
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
44
|
Du L, Xu F, Fang J, Gao S, Tang J, Fang S, Wang H, Tong H, Zhang F, Chu J, Wang G, Chu C. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:545-556. [PMID: 29775500 DOI: 10.1111/tpj.13970] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 05/18/2023]
Abstract
Pre-harvest sprouting (PHS) is an unfavorable trait in cereal crops that could seriously decrease grain yield and quality. Although some PHS-associated quantitative trait loci or genes in cereals have been reported, the molecular mechanism underlying PHS remains largely elusive. Here, we characterized a rice mutant, phs8, which exhibits PHS phenotype accompanied by sugary endosperm. Map-based cloning revealed that PHS8 encodes a starch debranching enzyme named isoamylase1. Mutation in PHS8 resulted in the phytoglycogen breakdown and sugar accumulation in the endosperm. Intriguingly, with increase of sugar contents, decreased expression of OsABI3 and OsABI5 as well as reduced sensitivity to abscisic acid (ABA) were found in the phs8 mutant. Using rice suspension cell system, we confirmed that exogenous sugar is sufficient to suppress the expression of both OsABI3 and OsABI5. Furthermore, overexpression of OsABI3 or OsABI5 could partially rescue the PHS phenotype of phs8. Therefore, our study presents important evidence supporting that endosperm sugar not only acts as an essential energy source for seed germination but also determines seed dormancy and germination by affecting ABA signaling.
Collapse
Affiliation(s)
- Lin Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Xu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaopei Gao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongning Tong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
45
|
Wang F, Ren G, Li F, Wang B, Yang Y, Ma X, Niu Y, Ye Y, Chen X, Fan S, Wang T, Zhou Q. Overexpression of GmSnRK1, a soybean sucrose non-fermenting-1 related protein kinase 1 gene, results in directional alteration of carbohydrate metabolism in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1469431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Gaolei Ren
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Fengsheng Li
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Bowen Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yulin Yang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xiaowei Ma
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuan Niu
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Song Fan
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Tailin Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| | - Qing Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, PR China
| |
Collapse
|
46
|
Panpetch P, Field RA, Limpaseni T. Heterologous co-expression in E. coli of isoamylase genes from cassava Manihot esculenta Crantz 'KU50' achieves enzyme-active heteromeric complex formation. PLANT MOLECULAR BIOLOGY 2018; 96:417-427. [PMID: 29380100 DOI: 10.1007/s11103-018-0707-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/20/2018] [Indexed: 06/07/2023]
Abstract
Cloning of two isoamylase genes, MeISA1 and MeISA2, from cassava (Manihot esculenta Crantz) tubers, accompanied by their co-expression in E. coli demonstrates a requirement for heteromeric complex formation to achieve debranching activity. Starch debranching enzyme (DBE) or isoamylase (ISA) (EC.3.2.1.68), an important enzyme in starch metabolism, catalyses the hydrolysis of α-1,6 glycosidic linkages of amylopectin. Isoforms of ISAs have been reported in higher plants and algae (Fujita et al. in Planta 208:283-293, 1999; Hussain et al. in Plant Cell 15:133-149, 2003; Ishizaki et al. in Agric Biol Chem 47:771-779, 1983; Mouille et al. in Plant Cell 8:1353-1366, 1996). In the current work, cassava ISA genes were isolated from cDNA generated from total RNA from tubers of Manihot esculanta Crantz cultivar KU50. MeISA1 and MeISA2 were successfully amplified and cloned into a pETDuet1 vector. The putative MeISA1 and MeISA2 proteins comprised 763 and 882 amino acids, with substantial similarity to StISA1 and StISA2 from potato (84.4% and 68.9%, respectively). Recombinant MeISA1 and MeISA2 were co-expressed in Escherichia coli SoluBL21 (DE3). HistrapTM-Purified rMeISA1 and rMeISA2 showed approximate molecular weights of 87 and 99 kDa, respectively, by SDS-PAGE. Debranching activity was only detectable in the column fractions where both recombinant ISA isoforms were present. The heteromeric DBE from crude extracts of 4-5 h induced cultures analysed by gel filtration chromatography and western blot showed combinations of rMeISA1 and rMeISA2 at ratios of 1:1 to 4:1. Pooled fractions with DBE activity were used for enzyme characterisation, which showed that the enzyme was specific for amylopectin, with optimum activity at 37 °C and pH 7.0. Enzyme activity was enhanced by Co2+, Mg2+ and Ca2+, but was strongly inhibited by Cu2+. Debranched amylopectin products showed chain length distributions typical of plant DBE.
Collapse
Affiliation(s)
- Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Tipaporn Limpaseni
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
47
|
Saito M, Tanaka T, Sato K, Vrinten P, Nakamura T. A single nucleotide polymorphism in the "Fra" gene results in fractured starch granules in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:353-364. [PMID: 29098311 DOI: 10.1007/s00122-017-3006-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/26/2017] [Indexed: 05/23/2023]
Abstract
We report here that the mutation causing fractured starch granules in the barley line "Franubet" results from a point mutation in the barley gene corresponding to the rice FLO6 gene. The "fra" mutation in barley, which was originally isolated and characterized over 30 years ago, results in fractured starch granules and an opaque phenotype. This mutation has been used in breeding programs, since it appears to be useful in the production of pearled barley for human consumption. However, selection for this phenotype is difficult, since wild-type and heterozygous kernels cannot be distinguished phenotypically, and until now, the gene involved in this mutation has not been determined. Here, we used a map-based cloning approach using nanopore sequencing to obtain long reads from a BAC clone carrying markers on either side of the fra locus. By fine mapping followed by aligning RNA-seq reads to four genes within the mapped region, we were able to determine that the fra mutation is caused by the introduction of a stop codon in the barley homologue of the rice FLOURY ENDOSPERM 6 (FLO6) gene. This gene has a CBM48 domain that binds to starch, and may act through interactions with isoamylase1 (ISA1), assisting in the binding of ISA1 to starch granules. Perfect markers able to distinguish all genotypes were designed and tested in several large populations; in all cases, the markers were able to distinguish wild-type, heterozygous, and mutant genotypes.
Collapse
Affiliation(s)
- Mika Saito
- NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan
| | | | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Patricia Vrinten
- Bioriginal Food and Science Corporation, Saskatoon, S7J 0R1, Canada
| | - Toshiki Nakamura
- NARO Tohoku Agricultural Research Center, Morioka, 020-0198, Japan.
| |
Collapse
|
48
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
49
|
Nada S, Gilbert RG. On the Role of Catabolic Enzymes in Biosynthetic Models of Glycogen Molecular Weight Distributions. ACS OMEGA 2017; 2:5221-5227. [PMID: 31457793 PMCID: PMC6641748 DOI: 10.1021/acsomega.7b00922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/16/2017] [Indexed: 06/10/2023]
Abstract
Glycogen and starch are complex branched polymers of glucose that serve as units of glucose storage in animals and plants, respectively. Changes in the structure of these molecules have been linked to changes in their respective functional properties. Enzymatic models of starch synthesis have provided valuable insights into the biosynthetic origins of starch structure and functional properties but have not successfully been applied to glycogen despite the structural similarities between the two polymers. Modifications to biosynthetic models of starch structure were tested for applicability to glycogen. Mathematical evidence is provided showing the necessity (which has hitherto been in doubt) of considering the effects of catabolic (degradative) enzymes in biosynthesis-based approaches that seek to accurately describe the molecular weight distributions of individual chains of glycogen formed in vivo through glycogenesis. This finding also provides future direction for inferring the dependence of enzyme activities on substrate chain length from in vivo data.
Collapse
Affiliation(s)
- Sharif
S. Nada
- Joint
International Research Laboratory of Agriculture and Agri-Product
Safety, College of Agriculture, Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Centre
for Nutrition and Food Sciences, Queensland Alliance for Agriculture
and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert G. Gilbert
- Joint
International Research Laboratory of Agriculture and Agri-Product
Safety, College of Agriculture, Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Centre
for Nutrition and Food Sciences, Queensland Alliance for Agriculture
and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
50
|
Simultaneous silencing of isoamylases ISA1, ISA2 and ISA3 by multi-target RNAi in potato tubers leads to decreased starch content and an early sprouting phenotype. PLoS One 2017; 12:e0181444. [PMID: 28708852 PMCID: PMC5510849 DOI: 10.1371/journal.pone.0181444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/02/2017] [Indexed: 01/16/2023] Open
Abstract
Isoamylases hydrolyse (1–6)-alpha-D-glucosidic linkages in starch and are involved in both starch granule formation and starch degradation. In plants, three isoamylase isoforms with distinct functions in starch synthesis (ISA1 and ISA2) and degradation (ISA3) have been described. Here, we created transgenic potato plants with simultaneously decreased expression of all three isoamylases using a chimeric RNAi construct targeting all three isoforms. Constitutive expression of the hairpin RNA using the 35S CaMV promoter resulted in efficient silencing of all three isoforms in leaves, growing tubers, and sprouting tubers. Neither plant growth nor tuber yield was effected in isoamylase-deficient potato lines. Interestingly, starch metabolism was found to be impaired in a tissue-specific manner. While leaf starch content was unaffected, tuber starch was significantly reduced. The reduction in tuber starch content in the transgenic plants was accompanied by a decrease in starch granules size, an increased sucrose content and decreased hexose levels. Despite the effects on granule size, only little changes in chain length composition of soluble and insoluble glucose polymers were detected. The transgenic tubers displayed an early sprouting phenotype that was accompanied by an increased level of sucrose in parenchyma cells below the outgrowing bud. Since high sucrose levels promote sprouting, we propose that the increased number of small starch granules may cause an accelerated turnover of glucan chains and hence a more rapid synthesis of sucrose. This observation links alterations in starch structure/degradation with developmental processes like meristem activation and sprout outgrowth in potato tubers.
Collapse
|