1
|
Wald J, Marlovits TC. Holliday junction branch migration driven by AAA+ ATPase motors. Curr Opin Struct Biol 2023; 82:102650. [PMID: 37604043 DOI: 10.1016/j.sbi.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 08/23/2023]
Abstract
Holliday junctions are key intermediate DNA structures during genetic recombination. One of the first Holliday junction-processing protein complexes to be discovered was the well conserved RuvAB branch migration complex present in bacteria that mediates an ATP-dependent movement of the Holliday junction (branch migration). Although the RuvAB complex served as a paradigm for the processing of the Holliday junction, due to technical limitations the detailed structure and underlying mechanism of the RuvAB branch migration complex has until now remained unclear. Recently, structures of a reconstituted RuvAB complex actively-processing a Holliday junction were resolved using time-resolved cryo-electron microscopy. These structures showed distinct conformational states at different stages of the migration process. These structures made it possible to propose an integrated model for RuvAB Holliday junction branch migration. Furthermore, they revealed unexpected insights into the highly coordinated and regulated mechanisms of the nucleotide cycle powering substrate translocation in the hexameric AAA+ RuvB ATPase. Here, we review these latest advances and describe areas for future research.
Collapse
Affiliation(s)
- Jiri Wald
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
2
|
Bandyopadhyay D, Mishra PP. Revealing the DNA Unwinding Activity and Mechanism of Fork Reversal by RecG While Exposed to Variants of Stalled Replication-fork at Single-Molecular Resolution. J Mol Biol 2022; 434:167822. [PMID: 36108776 DOI: 10.1016/j.jmb.2022.167822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
RecG, belonging to the category of Superfamily-2 plays a vital role in rescuing different kinds of stalled fork. The elemental mechanism of the helicase activity of RecG with several non-homologous stalled fork structures resembling intermediates formed during the process of DNA repair has been investigated in the present study to capture the dynamic stages of genetic rearrangement. The functional characterization has been exemplified through quantifying the response of the substrate in terms of their molecular heterogeneity and dynamical response by employing single-molecule fluorescence methods. An elevated processivity of RecG is observed for the stalled fork where progression of lagging daughter strand is ahead as compared to that of the leading strand. Through precise alteration of its function in terms of unwinding, depending upon the substrate DNA, RecG catalyzes the formation of Holliday junction from a stalled fork DNA. RecG is found to adopt an asymmetric mode of locomotion to unwind the lagging daughter strand for facilitating formation of Holliday junction that acts as a suitable intermediate for recombinational repair pathway. Our results emphasize the mechanism adopted by RecG during its 'sliding back' mode along the lagging daughter strand to be 'active translocation and passive unwinding'. This also provide clues as to how this helicase decides and controls the mode of translocation along the DNA to unwind.
Collapse
Affiliation(s)
- Debolina Bandyopadhyay
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India. https://twitter.com/DebolinaBandyo2
| | - Padmaja Prasad Mishra
- Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
3
|
Spinnato MC, Lo Sciuto A, Mercolino J, Lucidi M, Leoni L, Rampioni G, Visca P, Imperi F. Effect of a Defective Clamp Loader Complex of DNA Polymerase III on Growth and SOS Response in Pseudomonas aeruginosa. Microorganisms 2022; 10:423. [PMID: 35208877 PMCID: PMC8879598 DOI: 10.3390/microorganisms10020423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
DNA polymerase III (Pol III) is the replicative enzyme in bacteria. It consists of three subcomplexes, the catalytic core, the β clamp, and the clamp loader. While this complex has been thoroughly characterized in the model organism Escherichia coli, much less is known about its functioning and/or its specific properties in other bacteria. Biochemical studies highlighted specific features in the clamp loader subunit ψ of Pseudomonas aeruginosa as compared to its E. coli counterpart, and transposon mutagenesis projects identified the ψ-encoding gene holD among the strictly essential core genes of P. aeruginosa. By generating a P. aeruginosa holD conditional mutant, here we demonstrate that, as previously observed for E. coli holD mutants, HolD-depleted P. aeruginosa cells show strongly decreased growth, induction of the SOS response, and emergence of suppressor mutants at high frequency. However, differently from what was observed in E. coli, the growth of P. aeruginosa cells lacking HolD cannot be rescued by the deletion of genes for specialized DNA polymerases. We also observed that the residual growth of HolD-depleted cells is strictly dependent on homologous recombination functions, suggesting that recombination-mediated rescue of stalled replication forks is crucial to support replication by a ψ-deficient Pol III enzyme in P. aeruginosa.
Collapse
Affiliation(s)
- Maria Concetta Spinnato
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Alessandra Lo Sciuto
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Jessica Mercolino
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Massimiliano Lucidi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Livia Leoni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (M.C.S.); (A.L.S.); (J.M.); (M.L.); (L.L.); (G.R.); (P.V.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
4
|
Mechanistic insights into Lhr helicase function in DNA repair. Biochem J 2021; 477:2935-2947. [PMID: 32706021 PMCID: PMC7437997 DOI: 10.1042/bcj20200379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.
Collapse
|
5
|
Romero ZJ, Chen SH, Armstrong T, Wood EA, van Oijen A, Robinson A, Cox MM. Resolving Toxic DNA repair intermediates in every E. coli replication cycle: critical roles for RecG, Uup and RadD. Nucleic Acids Res 2020; 48:8445-8460. [PMID: 32644157 PMCID: PMC7470958 DOI: 10.1093/nar/gkaa579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/31/2023] Open
Abstract
DNA lesions or other barriers frequently compromise replisome progress. The SF2 helicase RecG is a key enzyme in the processing of postreplication gaps or regressed forks in Escherichia coli. A deletion of the recG gene renders cells highly sensitive to a range of DNA damaging agents. Here, we demonstrate that RecG function is at least partially complemented by another SF2 helicase, RadD. A ΔrecGΔradD double mutant exhibits an almost complete growth defect, even in the absence of stress. Suppressors appear quickly, primarily mutations that compromise priA helicase function or recA promoter mutations that reduce recA expression. Deletions of uup (encoding the UvrA-like ABC system Uup), recO, or recF also suppress the ΔrecGΔradD growth phenotype. RadD and RecG appear to avoid toxic situations in DNA metabolism, either resolving or preventing the appearance of DNA repair intermediates produced by RecA or RecA-independent template switching at stalled forks or postreplication gaps. Barriers to replisome progress that require intervention by RadD or RecG occur in virtually every replication cycle. The results highlight the importance of the RadD protein for general chromosome maintenance and repair. They also implicate Uup as a new modulator of RecG function.
Collapse
Affiliation(s)
- Zachary J Romero
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stefanie H Chen
- Biotechnology Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Thomas Armstrong
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Antoine van Oijen
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute, Wollongong, Australia
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
6
|
Draft Genome Sequence from a Putative New Genus and Species in the Family Methanoregulaceae Isolated from the Anoxic Basin of Lake Untersee in East Antarctica. Microbiol Resour Announc 2019; 8:8/18/e00271-19. [PMID: 31048378 PMCID: PMC6498233 DOI: 10.1128/mra.00271-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Here, we report the draft genome sequence for a new putative genus and species in the Methanoregulaceae family, whose members are generally slow-growing rod-shaped or coccoid methanogenic archaea. The information on this sediment-dwelling organism sheds light on the prokaryotes inhabiting isolated, deep, and extremely cold methane-rich environments.
Collapse
|
7
|
Klein HL, Bačinskaja G, Che J, Cheblal A, Elango R, Epshtein A, Fitzgerald DM, Gómez-González B, Khan SR, Kumar S, Leland BA, Marie L, Mei Q, Miné-Hattab J, Piotrowska A, Polleys EJ, Putnam CD, Radchenko EA, Saada AA, Sakofsky CJ, Shim EY, Stracy M, Xia J, Yan Z, Yin Y, Aguilera A, Argueso JL, Freudenreich CH, Gasser SM, Gordenin DA, Haber JE, Ira G, Jinks-Robertson S, King MC, Kolodner RD, Kuzminov A, Lambert SAE, Lee SE, Miller KM, Mirkin SM, Petes TD, Rosenberg SM, Rothstein R, Symington LS, Zawadzki P, Kim N, Lisby M, Malkova A. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. MICROBIAL CELL (GRAZ, AUSTRIA) 2019; 6:1-64. [PMID: 30652105 PMCID: PMC6334234 DOI: 10.15698/mic2019.01.664] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/29/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022]
Abstract
Understanding the plasticity of genomes has been greatly aided by assays for recombination, repair and mutagenesis. These assays have been developed in microbial systems that provide the advantages of genetic and molecular reporters that can readily be manipulated. Cellular assays comprise genetic, molecular, and cytological reporters. The assays are powerful tools but each comes with its particular advantages and limitations. Here the most commonly used assays are reviewed, discussed, and presented as the guidelines for future studies.
Collapse
Affiliation(s)
- Hannah L. Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Giedrė Bačinskaja
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jun Che
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Anais Cheblal
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Rajula Elango
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Anastasiya Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Devon M. Fitzgerald
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Belén Gómez-González
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Sharik R. Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Léa Marie
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Qian Mei
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Judith Miné-Hattab
- Institut Curie, PSL Research University, CNRS, UMR3664, F-75005 Paris, France
- Sorbonne Université, Institut Curie, CNRS, UMR3664, F-75005 Paris, France
| | - Alicja Piotrowska
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | | | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | | | - Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Cynthia J. Sakofsky
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Mathew Stracy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Jun Xia
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Zhenxin Yan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Andrés Aguilera
- Centro Andaluz de BIología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Seville, Spain
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Catherine H. Freudenreich
- Department of Biology, Tufts University, Medford, MA USA
- Program in Genetics, Tufts University, Boston, MA, USA
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - James E. Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center Brandeis University, Waltham, MA, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC USA
| | | | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, CA, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sarah AE Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348 F-91405, Orsay, France
- University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405, Orsay, France
| | - Sang Eun Lee
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Kyle M. Miller
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Thomas D. Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC USA
| | - Susan M. Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Pawel Zawadzki
- NanoBioMedical Centre, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Xia J, Chen LT, Mei Q, Ma CH, Halliday JA, Lin HY, Magnan D, Pribis JP, Fitzgerald DM, Hamilton HM, Richters M, Nehring RB, Shen X, Li L, Bates D, Hastings PJ, Herman C, Jayaram M, Rosenberg SM. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. SCIENCE ADVANCES 2016; 2:e1601605. [PMID: 28090586 PMCID: PMC5222578 DOI: 10.1126/sciadv.1601605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 05/05/2023]
Abstract
DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.
Collapse
Affiliation(s)
- Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Tzu Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Jennifer A. Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Magnan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly M. Hamilton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Richters
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
9
|
Patent Highlight. Pharm Pat Anal 2016. [DOI: 10.4155/ppa.15.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
10
|
Gupta S, Yeeles JTP, Marians KJ. Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. J Biol Chem 2014; 289:28376-87. [PMID: 25138216 DOI: 10.1074/jbc.m114.587881] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The orderly progression of replication forks formed at the origin of replication in Escherichia coli is challenged by encounters with template damage, slow moving RNA polymerases, and frozen DNA-protein complexes that stall the fork. These stalled forks are foci for genomic instability and must be reactivated. Many models of replication fork reactivation invoke nascent strand regression as an intermediate in the processing of the stalled fork. We have investigated the replication fork regression activity of RecG and RuvAB, two proteins commonly thought to be involved in the process, using a reconstituted DNA replication system where the replisome is stalled by collision with leading-strand template damage. We find that both RecG and RuvAB can regress the stalled fork in the presence of the replisome and SSB; however, RuvAB generates a completely unwound product consisting of the paired nascent leading and lagging strands, whereas RuvC cleaves the Holliday junction generated by RecG-catalyzed fork regression. We also find that RecG stimulates RuvAB-catalyzed regression, presumably because it is more efficient at generating the initial Holliday junction from the stalled fork.
Collapse
Affiliation(s)
- Sankalp Gupta
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Joseph T P Yeeles
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kenneth J Marians
- From the Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
11
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
12
|
Malhotra S, Sowdhamini R. Genome-wide survey of DNA-binding proteins in Arabidopsis thaliana: analysis of distribution and functions. Nucleic Acids Res 2013; 41:7212-9. [PMID: 23775796 PMCID: PMC3753632 DOI: 10.1093/nar/gkt505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The interaction of proteins with their respective DNA targets is known to control many high-fidelity cellular processes. Performing a comprehensive survey of the sequenced genomes for DNA-binding proteins (DBPs) will help in understanding their distribution and the associated functions in a particular genome. Availability of fully sequenced genome of Arabidopsis thaliana enables the review of distribution of DBPs in this model plant genome. We used profiles of both structure and sequence-based DNA-binding families, derived from PDB and PFam databases, to perform the survey. This resulted in 4471 proteins, identified as DNA-binding in Arabidopsis genome, which are distributed across 300 different PFam families. Apart from several plant-specific DNA-binding families, certain RING fingers and leucine zippers also had high representation. Our search protocol helped to assign DNA-binding property to several proteins that were previously marked as unknown, putative or hypothetical in function. The distribution of Arabidopsis genes having a role in plant DNA repair were particularly studied and noted for their functional mapping. The functions observed to be overrepresented in the plant genome harbour DNA-3-methyladenine glycosylase activity, alkylbase DNA N-glycosylase activity and DNA-(apurinic or apyrimidinic site) lyase activity, suggesting their role in specialized functions such as gene regulation and DNA repair.
Collapse
Affiliation(s)
- Sony Malhotra
- National Centre for Biological Sciences (TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560 065, India
| | | |
Collapse
|
13
|
Mandal PK, Venkadesh S, Gautham N. Structure of d(CGGGTACCCG)4 as a four-way Holliday junction. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1506-10. [PMID: 22139153 PMCID: PMC3232126 DOI: 10.1107/s1744309111046616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
The crystal structure of the decamer sequence d(CGGGTACCCG)(4) as a four-way Holliday junction has been determined at 2.35 Å resolution. The sequence was designed in order to understand the principles that govern the relationship between sequence and branching structure. It crystallized as a four-way junction structure with an overall geometry similar to those of previously determined Holliday junction structures.
Collapse
Affiliation(s)
- P K Mandal
- CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | | | | |
Collapse
|
14
|
Hong Y, Chu M, Li Y, Ni J, Sheng D, Hou G, She Q, Shen Y. Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair (Amst) 2011; 11:102-11. [PMID: 22062475 DOI: 10.1016/j.dnarep.2011.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHjm) and its truncated derivatives, and characterization of the StoHjm proteins revealed that the N-terminal module (residues 1-431) alone was capable of ATP hydrolysis and DNA binding, while the C-terminal one (residues 415-704) was responsible for regulating the helicase activity. The region involved in StoHjm-StoHjc (Hjc from S. tokodaii) interaction was identified as part of domain II, domain III (Winged Helix motif), and domain IV (residues 366-645) for StoHjm. We present evidence supporting that StoHjc regulates the helicase activity of StoHjm by inducing conformation change of the enzyme. Furthermore, StoHjm is able to prevent the formation of Hjc/HJ high complex, suggesting a regulation mechanism of Hjm to the activity of Hjc. We show that Hjm is essential for cell viability using recently developed genetic system and mutant propagation assay, suggesting that Hjm/Hjc mediated resolution of stalled replication forks is of crucial importance in archaea. A tentative pathway with which Hjm/Hjc interaction could have occurred at stalled replication forks is discussed.
Collapse
Affiliation(s)
- Ye Hong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bichara M, Meier M, Wagner J, Cordonnier A, Lambert IB. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 727:104-22. [DOI: 10.1016/j.mrrev.2011.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 02/02/2023]
|
16
|
Bradley AS, Baharoglu Z, Niewiarowski A, Michel B, Tsaneva IR. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. J Biol Chem 2011; 286:22372-83. [PMID: 21531731 DOI: 10.1074/jbc.m111.233908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.
Collapse
Affiliation(s)
- Alison S Bradley
- Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Williams AB, Hetrick KM, Foster PL. Interplay of DNA repair, homologous recombination, and DNA polymerases in resistance to the DNA damaging agent 4-nitroquinoline-1-oxide in Escherichia coli. DNA Repair (Amst) 2010; 9:1090-7. [PMID: 20724226 DOI: 10.1016/j.dnarep.2010.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/18/2022]
Abstract
Escherichia coli has three DNA damage-inducible DNA polymerases: DNA polymerase II (Pol II), DNA polymerase IV (Pol IV), and DNA polymerase V (Pol V). While the in vivo function of Pol V is well understood, the precise roles of Pol IV and Pol II in DNA replication and repair are not as clear. Study of these polymerases has largely focused on their participation in the recovery of failed replication forks, translesion DNA synthesis, and origin-independent DNA replication. However, their roles in other repair and recombination pathways in E. coli have not been extensively examined. This study investigated how E. coli's inducible DNA polymerases and various DNA repair and recombination pathways function together to convey resistance to 4-nitroquinoline-1-oxide (NQO), a DNA damaging agent that produces replication blocking DNA base adducts. The data suggest that full resistance to this compound depends upon an intricate interplay among the activities of the inducible DNA polymerases and recombination. The data also suggest new relationships between the different pathways that process recombination intermediates.
Collapse
Affiliation(s)
- Ashley B Williams
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | | | | |
Collapse
|
18
|
Khuu P, Ho PS. A rare nucleotide base tautomer in the structure of an asymmetric DNA junction. Biochemistry 2009; 48:7824-32. [PMID: 19580331 PMCID: PMC2761035 DOI: 10.1021/bi900829b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The single-crystal structure of a DNA Holliday junction assembled from four unique sequences shows a structure that conforms to the general features of models derived from similar constructs in solution. The structure is a compact stacked-X form junction with two sets of stacked B-DNA-type arms that coaxially stack to form semicontinuous duplexes interrupted only by the crossing of the junction. These semicontinuous helices are related by a right-handed rotation angle of 56.5 degrees, which is nearly identical to the 60 degree angle in the solution model but differs from the more shallow value of approximately 40 degrees for previous crystal structures of symmetric junctions that self-assemble from single identical inverted-repeat sequences. This supports the model in which the unique set of intramolecular interactions at the trinucleotide core of the crossing strands, which are not present in the current asymmetric junction, affects both the stability and geometry of the symmetric junctions. An unexpected result, however, is that a highly wobbled A.T base pair, which is ascribed here to a rare enol tautomer form of the thymine, was observed at the end of a CCCC/GGGG sequence within the stacked B-DNA arms of this 1.9 A resolution structure. We suggest that the junction itself is not responsible for this unusual conformation but served as a vehicle for the study of this CG-rich sequence as a B-DNA duplex, mimicking the form that would be present in a replication complex. The existence of this unusual base lends credence to and defines a sequence context for the "rare tautomer hypothesis" as a mechanism for inducing transition mutations during DNA replication.
Collapse
Affiliation(s)
- Patricia Khuu
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331
| | - P. Shing Ho
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331
- Department of Biochemistry and Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
19
|
Prabu JR, Thamotharan S, Khanduja JS, Chandra NR, Muniyappa K, Vijayan M. Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA Additional role of RuvB-binding domain and inter species variability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1001-9. [PMID: 19374958 DOI: 10.1016/j.bbapap.2009.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/06/2009] [Accepted: 04/06/2009] [Indexed: 11/28/2022]
Abstract
RuvA, along with RuvB, is involved in branch migration of heteroduplex DNA in homologous recombination. The structures of three new crystal forms of RuvA from Mycobacterium tuberculosis (MtRuvA) have been determined. The RuvB-binding domain is cleaved off in one of them. Detailed models of the complexes of octameric RuvA from different species with the Holliday junction have also been constructed. A thorough examination of the structures presented here and those reported earlier brings to light the hitherto unappreciated role of the RuvB-binding domain in determining inter-domain orientation and oligomerization. These structures also permit an exploration of the interspecies variability of structural features such as oligomerization and the conformation of the loop that carries the acidic pin, in terms of amino acid substitutions. These models emphasize the additional role of the RuvB-binding domain in Holliday junction binding. This role along with its role in oligomerization could have important biological implications.
Collapse
Affiliation(s)
- J Rajan Prabu
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | | | | | | | |
Collapse
|
20
|
Mayanagi K, Fujiwara Y, Miyata T, Morikawa K. Electron microscopic single particle analysis of a tetrameric RuvA/RuvB/Holliday junction DNA complex. Biochem Biophys Res Commun 2007; 365:273-8. [PMID: 17981150 DOI: 10.1016/j.bbrc.2007.10.165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 11/30/2022]
Abstract
During the late stage of homologous recombination in prokaryotes, RuvA binds to the Holliday junction intermediate and executes branch migration in association with RuvB. The RuvA subunits form two distinct complexes with the Holliday junction: complex I with the single RuvA tetramer on one side of the four way junction DNA, and complex II with two tetramers on both sides. To investigate the functional roles of complexes I and II, we mutated two residues of RuvA (L125D and E126K) to prevent octamer formation. An electron microscopic analysis indicated that the mutant RuvA/RuvB/Holliday junction DNA complex formed the characteristic tripartite structure, with only one RuvA tetramer bound to one side of the Holliday junction, demonstrating the unexpected stability of this complex. The novel bent images of the complex revealed an intriguing morphological similarity to the structure of SV40 large T antigen, which belongs to the same AAA+ family as RuvB.
Collapse
Affiliation(s)
- Kouta Mayanagi
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan.
| | | | | | | |
Collapse
|
21
|
Luo Q, Groh JL, Ballard JD, Krumholz LR. Identification of genes that confer sediment fitness to Desulfovibrio desulfuricans G20. Appl Environ Microbiol 2007; 73:6305-12. [PMID: 17704273 PMCID: PMC2074997 DOI: 10.1128/aem.00715-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signature-tagged mutants of Desulfovibrio desulfuricans G20 were screened, and 97 genes crucial for sediment fitness were identified. These genes belong to functional categories including signal transduction, binding and transport, insertion elements, and others. Mutants with mutations in genes encoding proteins involved in amino acid biosynthesis, hydrogenase activity, and DNA repair were further characterized.
Collapse
Affiliation(s)
- Qingwei Luo
- University of Oklahoma, Department of Botany and Microbiology, 770 Van Vleet Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
22
|
Donaldson JR, Courcelle CT, Courcelle J. RuvABC is required to resolve holliday junctions that accumulate following replication on damaged templates in Escherichia coli. J Biol Chem 2006; 281:28811-21. [PMID: 16895921 DOI: 10.1074/jbc.m603933200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RuvABC is a complex that promotes branch migration and resolution of Holliday junctions. Although ruv mutants are hypersensitive to UV irradiation, the molecular event(s) that necessitate RuvABC processing in vivo are not known. Here, we used a combination of two-dimensional gel analysis and electron microscopy to reveal that although ruvAB and ruvC mutants are able to resume replication following arrest at UV-induced lesions, molecules that replicate in the presence of DNA damage accumulate unresolved Holliday junctions. The failure to resolve the Holliday junctions on the fully replicated molecules correlates with a delayed loss of genomic integrity that is likely to account for the loss of viability in these cells. The strand exchange intermediates that accumulate in ruv mutants are distinct from those observed at arrested replication forks and are not subject to resolution by RecG. These results indicate that the Holliday junctions observed in ruv mutants are intermediates of a repair pathway that is distinct from that of the recovery of arrested replication forks. A model is proposed in which RuvABC is required to resolve junctions that arise during the repair of a subset of nonarresting lesions after replication has passed through the template.
Collapse
Affiliation(s)
- Janet R Donaldson
- Department of Biology, Portland State University, Portland, Oregon 97207, USA.
| | | | | |
Collapse
|
23
|
Sukhodolets VV. The function of recombinations occurring in the process of DNA replication in Escherichia coli. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406070015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Paul JH, Williamson SJ, Long A, Authement RN, John D, Segall AM, Rohwer FL, Androlewicz M, Patterson S. Complete genome sequence of phiHSIC, a pseudotemperate marine phage of Listonella pelagia. Appl Environ Microbiol 2005; 71:3311-20. [PMID: 15933034 PMCID: PMC1151857 DOI: 10.1128/aem.71.6.3311-3320.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome for the marine pseudotemperate member of the Siphoviridae phiHSIC has been sequenced using a combination of linker amplification library construction, restriction digest library construction, and primer walking. phiHSIC enters into a pseudolysogenic relationship with its host, Listonella pelagia, characterized by sigmoidal growth curves producing >10(9) cells/ml and >10(11) phage/ml. The genome (37,966 bp; G+C content, 44%) contained 47 putative open reading frames (ORFs), 17 of which had significant BLASTP hits in GenBank, including a beta subunit of DNA polymerase III, a helicase, a helicase-like subunit of a resolvasome complex, a terminase, a tail tape measure protein, several phage-like structural proteins, and 1 ORF that may assist in host pathogenicity (an ADP ribosyltransferase). The genome was circularly permuted, with no physical ends detected by sequencing or restriction enzyme digestion analysis, and lacked a cos site. This evidence is consistent with a headful packaging mechanism similar to that of Salmonella phage P22 and Shigella phage Sf6. Because none of the phage-like ORFs were closely related to any existing phage sequences in GenBank (i.e., none more than 62% identical and most <25% identical at the amino acid level), phiHSIC is unique among phages that have been sequenced to date. These results further emphasize the need to sequence phages from the marine environment, perhaps the largest reservoir of untapped genetic information.
Collapse
Affiliation(s)
- John H Paul
- College of Marine Science, University of South Florida, 140 7th Ave. South, St. Petersburg, Florida 33701.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamada K, Ariyoshi M, Morikawa K. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Curr Opin Struct Biol 2005; 14:130-7. [PMID: 15093826 DOI: 10.1016/j.sbi.2004.03.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The processing of the Holliday junction by various proteins is a major event in DNA homologous recombination and is crucial to the maintenance of genome stability and biological diversity. The proteins RuvA, RuvB and RuvC play central roles in the late stage of recombination in prokaryotes. Recent atomic views of these proteins, including protein-protein and protein-junction DNA complexes, provide new insights into branch migration mechanisms: RuvA is likely to be responsible for base-pair rearrangements, whereas RuvB, classified as a member of the AAA(+) family, functions as a pump to pull DNA duplex arms without segmental unwinding. The mechanism of junction resolution by RuvC in the RuvABC resolvasome remains to be elucidated.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | | | |
Collapse
|
26
|
Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 2005; 187:1392-404. [PMID: 15687204 PMCID: PMC545617 DOI: 10.1128/jb.187.4.1392-1404.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180(T)). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble alpha(2)beta(2)gamma(2)-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.
Collapse
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. The role of RuvA octamerization for RuvAB function in vitro and in vivo. J Biol Chem 2004; 280:3365-75. [PMID: 15556943 DOI: 10.1074/jbc.m409256200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RuvA plays an essential role in branch migration of the Holliday junction by RuvAB as part of the RuvABC pathway for processing Holliday junctions in Escherichia coli. Two types of RuvA-Holliday junction complexes have been characterized: 1) complex I containing a single RuvA tetramer and 2) complex II in which the junction is sandwiched between two RuvA tetramers. The functional differences between the two forms are still not clear. To investigate the role of RuvA octamerization, we introduced three amino acid substitutions designed to disrupt the E. coli RuvA tetramer-tetramer interface as identified by structural studies. The mutant RuvA was tetrameric and interacted with both RuvB and junction DNA but, as predicted, formed complex I only at protein concentrations up to 500 nm. We present biochemical and surface plasmon resonance evidence for functional and physical interactions of the mutant RuvA with RuvB and RuvC on synthetic junctions. The mutant RuvA with RuvB showed DNA helicase activity and could support branch migration of synthetic four-way and three-way junctions. However, junction binding and the efficiency of branch migration of four-way junctions were affected. The activity of the RuvA mutant was consistent with a RuvAB complex driven by one RuvB hexamer only and lead us to propose that one RuvA tetramer can only support the activity of one RuvB hexamer. Significantly, the mutant failed to complement the UV sensitivity of E. coli DeltaruvA cells. These results indicate strongly that RuvA octamerization is essential for the full biological activity of RuvABC.
Collapse
Affiliation(s)
- Cyril V Privezentzev
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
28
|
Turlan C, Loot C, Chandler M. IS911 partial transposition products and their processing by the Escherichia coli RecG helicase. Mol Microbiol 2004; 53:1021-33. [PMID: 15306008 DOI: 10.1111/j.1365-2958.2004.04165.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.
Collapse
Affiliation(s)
- Catherine Turlan
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR5100, 118 Rte de Narbonne, F31062 Toulouse Cedex, France.
| | | | | |
Collapse
|
29
|
Hays FA, Jones ZJR, Ho PS. Influence of minor groove substituents on the structure of DNA Holliday junctions. Biochemistry 2004; 43:9813-22. [PMID: 15274635 DOI: 10.1021/bi049461d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inosine-containing sequence d(CCIGTACm(5)CGG) is shown to crystallize as a four-stranded DNA junction. This structure is nearly identical to the antiparallel junction formed by the parent d(CCGGTACm(5)()CGG) sequence [Vargason, J. M., and Ho, P. S. (2002) J. Biol. Chem. 277, 21041-21049] in terms of its conformational geometry, and inter- and intramolecular interactions within the DNA and between the DNA and solvent, even though the 2-amino group in the minor groove of the important G(3).m(5)C(8) base pair of the junction core trinucleotide (italicized) has been removed. In contrast, the analogous 2,6-diaminopurine sequence d(CCDGTACTGG) crystallizes as resolved duplex DNAs, just like its parent sequence d(CCAGTACTGG) [Hays, F. A., Vargason, J. M., and Ho, P. S. (2003) Biochemistry 42, 9586-9597]. These results demonstrate that it is not the presence or absence of the 2-amino group in the minor groove of the R(3).Y(8) base pair that specifies whether a sequence forms a junction, but the positions of the extracyclic amino and keto groups in the major groove. Finally, the study shows that the arms of the junction can accommodate perturbations to the B-DNA conformation of the stacked duplex arms associated with the loss of the 2-amino substituent, and that two hydrogen bonding interactions from the C(7) and Y(8) pyrimidine nucleotides to phosphate oxygens of the junction crossover specify the geometry of the Holliday junction.
Collapse
Affiliation(s)
- Franklin A Hays
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
30
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
31
|
Dawid A, Croquette V, Grigoriev M, Heslot F. Single-molecule study of RuvAB-mediated Holliday-junction migration. Proc Natl Acad Sci U S A 2004; 101:11611-6. [PMID: 15292508 PMCID: PMC511028 DOI: 10.1073/pnas.0404369101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Branch migration of Holliday junctions is an important step of genetic recombination and DNA repair. In Escherichia coli, this process is driven by the RuvAB complex acting as a molecular motor. Using magnetic tweezers, we studied the RuvAB-directed migration of individual Holliday junctions formed between two approximately 6-kb DNA molecules of identical sequence, and we measured the migration rate at 37 degrees C and 1 mM ATP. We directly demonstrate that RuvAB is a highly processive DNA motor protein that is able to drive continuous and unidirectional branch migration of Holliday junctions at a well defined average speed over several kilobases through homologous sequences. We observed directional inversions of the migration at the DNA molecule boundaries leading to forth-and-back migration of the branch point and allowing us to measure the migration rate in the presence of negative or positive loads. The average migration rate at zero load was found to be approximately 43 bp/sec. Furthermore, the load dependence of the migration rate is small, within the force range of -3.4 pN (hindering force) to +3.4 pN (assisting force).
Collapse
Affiliation(s)
- A Dawid
- Laboratoire Pierre Aigrain, Unité Mixte de Recherche 8551, Ecole Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|
32
|
Watson J, Hays FA, Ho PS. Definitions and analysis of DNA Holliday junction geometry. Nucleic Acids Res 2004; 32:3017-27. [PMID: 15173384 PMCID: PMC434437 DOI: 10.1093/nar/gkh631] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/14/2022] Open
Abstract
A number of single-crystal structures have now been solved of the four-stranded antiparallel stacked-X form of the Holliday junction. These structures demonstrate how base sequence, substituents, and drug and ion interactions affect the general conformation of this recombination intermediate. The geometry of junctions had previously been described in terms of a specific set of parameters that include: (i) the angle relating the ends of DNA duplexes arms of the junction (interduplex angle); (ii) the relative rotation of the duplexes about the helix axes of the stacked duplex arms (J(roll)); and (iii) the translation of the duplexes along these helix axes (J(slide)). Here, we present a consistent set of definitions and methods to accurately calculate each of these parameters based on the helical features of the stacked duplex arms in the single-crystal structures of the stacked-X junction, and demonstrate how each of these parameters contributes to an overall conformational feature of the structure. We show that the values for these parameters derived from global rather than local helical axes through the stacked bases of the duplex arms are the most representative of the stacked-X junction conformation. In addition, a very specific parameter (J(twist)) is introduced which relates the relative orientation of the stacked duplex arms across the junction which, unlike the interduplex angle, is length independent. The results from this study provide a general means to relate the geometric features seen in the crystal structures to those determined in solution.
Collapse
Affiliation(s)
- Jeffrey Watson
- Department of Biochemistry and Biophysics, ALS 2011, Oregon State University, Corvallis, OR 97331-7305, USA
| | | | | |
Collapse
|
33
|
Pysz MA, Ward DE, Shockley KR, Montero CI, Conners SB, Johnson MR, Kelly RM. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles 2004; 8:209-17. [PMID: 14991425 DOI: 10.1007/s00792-004-0379-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 01/22/2004] [Indexed: 10/26/2022]
Abstract
The thermal stress response of the hyperthermophilic bacterium Thermotoga maritima was characterized using a 407-open reading frame-targeted cDNA microarray. Transient gene expression was followed for 90 min, following a shift from 80 degrees C to 90 degrees C. While some aspects of mesophilic heat-shock response were conserved in T. maritima, genome content suggested differentiating features that were borne out by transcriptional analysis. Early induction of predicted heat-shock operons hrcA-grpE-dnaJ (TM0851-TM0850-TM0849), groES-groEL (TM0505-TM0506), and dnaK-sHSP (TM0373-TM0374) was consistent with conserved CIRCE elements upstream of hrcA and groES. Induction of the T. maritima rpoE/ sigW and rpoD/ sigA homologs suggests a mechanism for global heat-shock response in the absence of an identifiable ortholog to a major heat-shock sigma factor. In contrast to heat-shock response in Escherichia coli, the majority of genes encoding ATP-dependent proteases were downregulated, including clpP (TM0695), clpQ (TM0521), clpY (TM0522), lonA (TM1633), and lonB (TM1869). Notably, T. maritima showed indications of a late heat-shock response with the induction of a marR homolog (TM0816), several other putative transcriptional regulators (TM1023, TM1069), and two alpha-glucosidases (TM0434 and TM1068). Taken together, the results reported here indicate that, while T. maritima shares core elements of the bacterial heat-shock response with mesophiles, the thermal stress regulatory strategies of this organism differ significantly. However, it remains to be elucidated whether these differences are related to thermophilicity or phylogenetic placement.
Collapse
Affiliation(s)
- Marybeth A Pysz
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Hays FA, Watson J, Ho PS. Caution! DNA crossing: crystal structures of Holliday junctions. J Biol Chem 2003; 278:49663-6. [PMID: 14563836 DOI: 10.1074/jbc.r300033200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Franklin A Hays
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| | | | | |
Collapse
|
35
|
Lee YC, Flora R, McCafferty JA, Gor J, Tsaneva IR, Perkins SJ. A Tetramer–Octamer Equilibrium in Mycobacterium leprae and Escherichia coli RuvA by Analytical Ultracentrifugation. J Mol Biol 2003; 333:677-82. [PMID: 14568529 DOI: 10.1016/j.jmb.2003.08.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.2-0.5 mg/ml in 0.1 M NaCl with a dissociation constant of 4 muM, and is octameric at higher concentrations. The same experiments in 0.3 M NaCl showed that MleRuvA is a tetramer up to 3.5 mg/ml, indicating that salt bridges are involved in octamer formation. Sedimentation equilibrium experiments with EcoRuvA showed that it was tetrameric at low concentration in both salt buffers but the protein was insoluble at high-protein concentrations in 0.1 M NaCl. It is concluded that free RuvA exists in an equilibrium between tetrameric and octameric forms in the typical concentration range and buffer found in bacterial cells.
Collapse
Affiliation(s)
- Yie Chia Lee
- Department of Biochemistry and Molecular Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|