1
|
Akbarzadeh Lelekami M, Pahlevani MH, Zaynali Nezhad K, Mahdavi Mashaki K. Transcriptome and network analysis pinpoint ABA and plastid ribosomal proteins as main contributors to salinity tolerance in the rice variety, CSR28. PLoS One 2025; 20:e0321181. [PMID: 40244966 PMCID: PMC12005493 DOI: 10.1371/journal.pone.0321181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/02/2025] [Indexed: 04/19/2025] Open
Abstract
Salinity stress is a major challenge for rice production, especially at seedling stage. To gain comprehensive insight into the molecular mechanisms and potential candidate genes involved in rice salinity stress response, we integrated physiological, transcriptome and network analysis to investigate salinity tolerance in two contrasting rice genotypes. The root and shoot samples were collected at two timepoints (6 hours and 54 hours) of high salt treatment. Element assay showed that the tolerant genotype CSR28 had lower Na+/K+ ratio in both organs than in those of the sensitive genotype IR28 under salinity stress. A total of 15,483 differentially expressed genes (DEGs) were identified from the RNA-Seq analysis. The salt-specific genes were mainly involved in metabolic processes, response to stimulus, and transporter activity, and were enriched in key metabolic pathways such as, biosynthesis of secondary metabolites, plant hormone signal transduction, and carotenoid biosynthesis. Furthermore, the results showed that the differential genes involved in abscisic acid (ABA) biosynthesis were specifically up-regulated in the tolerant genotype. Network analysis revealed 50 hub genes for the salt-specific genes in the roots of CSR28 which mainly encodes ribosomal proteins (RPs). Functional validation of the nine hub genes revealed three plastid RPs (PRPs), including OsPRPL17, OsPRPS9 and OsPRPL11, which contributes to protein synthesis, chloroplast development and stress signaling. Our findings suggested that ABA and PRPs play key roles to enhance of salinity tolerance in CSR28. Our study provides valuable information for further investigations of the candidate genes associated with salt tolerance and the development of salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Mojdeh Akbarzadeh Lelekami
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Hadi Pahlevani
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Khalil Zaynali Nezhad
- Plant Breeding and Biotechnology Department, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Keyvan Mahdavi Mashaki
- Rice Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Amol, Iran
| |
Collapse
|
2
|
Stępiński D. Decoding Plant Ribosomal Proteins: Multitasking Players in Cellular Games. Cells 2025; 14:473. [PMID: 40214427 PMCID: PMC11987935 DOI: 10.3390/cells14070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosomal proteins (RPs) were traditionally considered as ribosome building blocks, serving exclusively in ribosome assembly. However, contemporary research highlights their involvement in additional translational roles, as well as diverse non-ribosomal activities. The functional diversity of RPs is further enriched by the presence of 2-7 paralogs per RP family in plants, suggesting that these proteins may perform distinct, specialized functions. The spatiotemporal expression of RP paralogs allows for the assembly of unique ribosomes (ribosome heterogeneity), enabling the selective translation of specific mRNAs, and producing specialized proteins essential for plant functioning. Additionally, RPs that operate independently of ribosomes as free molecules may regulate a wide range of physiological processes. RPs involved in protein biosynthesis within the cytosol, mitochondria, or plastids are encoded by distinct genes, which account for their functional specialization. Notably, RPs associated with plastid or mitochondrial ribosomes, beyond their canonical roles in these organelles, also contribute to overall plant development and functionality, akin to their cytosolic counterparts. This review explores the roles of RPs in different cellular compartments, the presumed molecular mechanisms underlying their functions, and the involvement of other molecular factors that cooperate with RPs in these processes. In addition to the new RP nomenclature introduced in 2022/2023, the old names are also applied.
Collapse
Affiliation(s)
- Dariusz Stępiński
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Wang X, Ji D, Ma J, Chi W. Function of plastid translation in plant temperature acclimation: Retrograde signalling or extraribosomal 'moonlighting' functions? PLANT, CELL & ENVIRONMENT 2024; 47:4908-4916. [PMID: 39101459 DOI: 10.1111/pce.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Summary StatementSpecific components of the plastid ribosome could act as pivotal limiting factors in plant temperature acclimation. We endeavour to elucidate the molecular nexus between plastid translation and temperature acclimation by incorporating the concept of extraribosomal ‘moonlighting’ functions of plastid ribosome proteins.
Collapse
Affiliation(s)
- Xiushun Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Daili Ji
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jinfang Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Chi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
5
|
Mehrez M, Lecampion C, Ke H, Gorsane F, Field B. Insights into the function of the chloroplastic ribosome-associated GTPase high frequency of lysogenization X in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e559. [PMID: 38222931 PMCID: PMC10784650 DOI: 10.1002/pld3.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Ribosome-associated GTPases are conserved enzymes that participate in ribosome biogenesis and ribosome function. In bacteria, recent studies have identified HflX as a ribosome-associated GTPase that is involved in both ribosome biogenesis and recycling under stress conditions. Plants possess a chloroplastic HflX homolog, but its function remains unknown. Here, we characterized the role of HflX in the plant Arabidopsis thaliana. Our findings show that HflX does not affect normal plant growth, nor does it play an essential role in acclimation to several different stresses, including heat, manganese, cold, and salt stress under the conditions tested. However, we found that HflX is required for plant resistance to chloroplast translational stress mediated by the antibiotic lincomycin. Our results suggest that HflX is a chloroplast ribosome-associated protein that may play a role in the surveillance of translation. These findings provide new insight into the function of HflX as a ribosome-associated GTPase in plants and highlight the importance of investigating conserved proteins in different organisms to gain a comprehensive understanding of their biological roles.
Collapse
Affiliation(s)
- Marwa Mehrez
- Aix‐Marseille Univ, CEA, CNRS, BIAM, UMR7265MarseilleFrance
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | | | - Hang Ke
- Aix‐Marseille Univ, CEA, CNRS, BIAM, UMR7265MarseilleFrance
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
- Faculty of Sciences of BizerteUniversity of CarthageZarzounaTunisia
| | - Ben Field
- Aix‐Marseille Univ, CEA, CNRS, BIAM, UMR7265MarseilleFrance
| |
Collapse
|
6
|
Chabi M, Goulas E, Galinousky D, Blervacq AS, Lucau-Danila A, Neutelings G, Grec S, Day A, Chabbert B, Haag K, Müssig J, Arribat S, Planchon S, Renaut J, Hawkins S. Identification of new potential molecular actors related to fiber quality in flax through Omics. FRONTIERS IN PLANT SCIENCE 2023; 14:1204016. [PMID: 37528984 PMCID: PMC10390313 DOI: 10.3389/fpls.2023.1204016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023]
Abstract
One of the biggest challenges for a more widespread utilization of plant fibers is to better understand the different molecular factors underlying the variability in fineness and mechanical properties of both elementary and scutched fibers. Accordingly, we analyzed genome-wide transcription profiling from bast fiber bearing tissues of seven different flax varieties (4 spring, 2 winter fiber varieties and 1 winter linseed) and identified 1041 differentially expressed genes between varieties, of which 97 were related to cell wall metabolism. KEGG analysis highlighted a number of different enriched pathways. Subsequent statistical analysis using Partial Least-Squares Discriminant Analysis showed that 73% of the total variance was explained by the first 3 X-variates corresponding to 56 differentially expressed genes. Calculation of Pearson correlations identified 5 genes showing a strong correlation between expression and morphometric data. Two-dimensional gel proteomic analysis on the two varieties showing the most discriminant and significant differences in morphometrics revealed 1490 protein spots of which 108 showed significant differential abundance. Mass spectrometry analysis successfully identified 46 proteins representing 32 non-redundant proteins. Statistical clusterization based on the expression level of genes corresponding to the 32 proteins showed clear discrimination into three separate clusters, reflecting the variety type (spring-/winter-fiber/oil). Four of the 32 proteins were also highly correlated with morphometric features. Examination of predicted functions for the 9 (5 + 4) identified genes highlighted lipid metabolism and senescence process. Calculation of Pearson correlation coefficients between expression data and retted fiber mechanical measurements (strength and maximum force) identified 3 significantly correlated genes. The genes were predicted to be connected to cell wall dynamics, either directly (Expansin-like protein), or indirectly (NAD(P)-binding Rossmann-fold superfamily protein). Taken together, our results have allowed the identification of molecular actors potentially associated with the determination of both in-planta fiber morphometrics, as well as ex-planta fiber mechanical properties, both of which are key parameters for elementary fiber and scutched fiber quality in flax.
Collapse
Affiliation(s)
- Malika Chabi
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Estelle Goulas
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Dmitry Galinousky
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Blervacq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anca Lucau-Danila
- Université de Lille, UMRT 1158 BioEcoAgro, Institut Charles Viollette, Lille, France
| | - Godfrey Neutelings
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Arnaud Day
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Fibres Recherche Développement, Technopole de l’Aube en Champagne – Hôtel de Bureaux 2, 2 rue Gustave Eiffel, CS 90601, Troyes, France
| | - Brigitte Chabbert
- Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France
| | - Katharina Haag
- Fraunhofer-Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, HSB – City University of Applied Sciences, Bremen, Germany
| | - Sandrine Arribat
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Planchon
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Jenny Renaut
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Simon Hawkins
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
7
|
Tadini L, Jeran N, Domingo G, Zambelli F, Masiero S, Calabritto A, Costantini E, Forlani S, Marsoni M, Briani F, Vannini C, Pesaresi P. Perturbation of protein homeostasis brings plastids at the crossroad between repair and dismantling. PLoS Genet 2023; 19:e1010344. [PMID: 37418499 PMCID: PMC10355426 DOI: 10.1371/journal.pgen.1010344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/09/2023] [Indexed: 07/09/2023] Open
Abstract
The chloroplast proteome is a dynamic mosaic of plastid- and nuclear-encoded proteins. Plastid protein homeostasis is maintained through the balance between de novo synthesis and proteolysis. Intracellular communication pathways, including the plastid-to-nucleus signalling and the protein homeostasis machinery, made of stromal chaperones and proteases, shape chloroplast proteome based on developmental and physiological needs. However, the maintenance of fully functional chloroplasts is costly and under specific stress conditions the degradation of damaged chloroplasts is essential to the maintenance of a healthy population of photosynthesising organelles while promoting nutrient redistribution to sink tissues. In this work, we have addressed this complex regulatory chloroplast-quality-control pathway by modulating the expression of two nuclear genes encoding plastid ribosomal proteins PRPS1 and PRPL4. By transcriptomics, proteomics and transmission electron microscopy analyses, we show that the increased expression of PRPS1 gene leads to chloroplast degradation and early flowering, as an escape strategy from stress. On the contrary, the overaccumulation of PRPL4 protein is kept under control by increasing the amount of plastid chaperones and components of the unfolded protein response (cpUPR) regulatory mechanism. This study advances our understanding of molecular mechanisms underlying chloroplast retrograde communication and provides new insight into cellular responses to impaired plastid protein homeostasis.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Guido Domingo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Anna Calabritto
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Costantini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Sara Forlani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
8
|
Yogadasan N, Doxey AC, Chuong SDX. A Machine Learning Framework Identifies Plastid-Encoded Proteins Harboring C3 and C4 Distinguishing Sequence Information. Genome Biol Evol 2023; 15:evad129. [PMID: 37462292 PMCID: PMC10368328 DOI: 10.1093/gbe/evad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/27/2023] Open
Abstract
C4 photosynthesis is known to have at least 61 independent origins across plant lineages making it one of the most notable examples of convergent evolution. Of the >60 independent origins, a predicted 22-24 origins, encompassing greater than 50% of all known C4 species, exist within the Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae (PACMAD) clade of the Poaceae family. This clade is therefore primed with species ideal for the study of genomic changes associated with the acquisition of the C4 photosynthetic trait. In this study, we take advantage of the growing availability of sequenced plastid genomes and employ a machine learning (ML) approach to screen for plastid genes harboring C3 and C4 distinguishing information in PACMAD species. We demonstrate that certain plastid-encoded protein sequences possess distinguishing and informative sequence information that allows them to train accurate ML C3/C4 classification models. Our RbcL-trained model, for example, informs a C3/C4 classifier with greater than 99% accuracy. Accurate prediction of photosynthetic type from individual sequences suggests biologically relevant, and potentially differing roles of these sequence products in C3 versus C4 metabolism. With this ML framework, we have identified several key sequences and sites that are most predictive of C3/C4 status, including RbcL, subunits of the NAD(P)H dehydrogenase complex, and specific residues within, further highlighting their potential significance in the evolution and/or maintenance of C4 photosynthetic machinery. This general approach can be applied to uncover intricate associations between other similar genotype-phenotype relationships.
Collapse
Affiliation(s)
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Simon D X Chuong
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
9
|
Robles P, Quesada V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:35-45. [PMID: 36041366 DOI: 10.1016/j.plaphy.2022.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
10
|
Tang X, Shi F, Wang Y, Huang S, Zhao Y, Feng H. Proteomic analysis of a plastid gene encoding RPS4 mutant in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Funct Integr Genomics 2021; 22:113-130. [PMID: 34881421 DOI: 10.1007/s10142-021-00808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/20/2021] [Accepted: 09/18/2021] [Indexed: 10/19/2022]
Abstract
Plastids are important plant cell organelles containing a genome and bacterial-type 70S ribosomes-primarily composed of plastid ribosomal proteins and ribosomal RNAs. In this study, a chlorophyll-deficient mutant (cdm) obtained from double-haploid Chinese cabbage 'FT' was identified as a plastome mutant with an A-to-C base substitution in the plastid gene encoding the ribosomal protein RPS4. To further elucidate the function and regulatory mechanisms of RPS4, a comparative proteomic analysis was conducted between cdm and its wild-type 'FT' plants by isobaric tags and a relative and absolute quantitation (iTRAQ)-based strategy. A total of 6,245 proteins were identified, 540 of which were differentially abundant proteins (DAPs) in the leaves of cdm as compared to those of 'FT'-including 233 upregulated and 307 downregulated proteins. Upregulated DAPs were mainly involved in translation, organonitrogen compound biosynthetic process, ribosomes, and spliceosomes. Meanwhile, downregulated DAPs were mainly involved in photosynthesis, photosynthetic reaction centres, photosynthetic light harvesting, carbon fixation, and chlorophyll binding. These results indicated an important role of RPS4 in the regulation of growth and development of Chinese cabbage, possibly by regulating plastid translation activity by affecting the expression of specific photosynthesis- and cold stress-related proteins. Moreover, a multiple reaction monitoring (MRM) test and quantitative real-time polymerase chain reaction analysis confirmed our iTRAQ results. Quantitative proteomic analysis allowed us to confirm diverse changes in the metabolic pathways between cdm and 'FT' plants. This work provides new insights into the regulation of chlorophyll biosynthesis and photosynthesis in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding College of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Shushan District, Hefei, China
| | - Fengyan Shi
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yiheng Wang
- Biotechnology Research Institute, Xiqing District, Tianjin Academy of Agricultural Sciences, Jinjing Road 17 km, Tianjin, 300384, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Ying Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
11
|
Riediger M, Spät P, Bilger R, Voigt K, Maček B, Hess WR. Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq). THE PLANT CELL 2021; 33:248-269. [PMID: 33793824 PMCID: PMC8136920 DOI: 10.1093/plcell/koaa017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
Although regulatory small RNAs have been reported in photosynthetic cyanobacteria, the lack of clear RNA chaperones involved in their regulation poses a conundrum. Here, we analyzed the full complement of cellular RNAs and proteins using gradient profiling by sequencing (Grad-seq) in Synechocystis 6803. Complexes with overlapping subunits such as the CpcG1-type versus the CpcL-type phycobilisomes or the PsaK1 versus PsaK2 photosystem I pre(complexes) could be distinguished, supporting the high quality of this approach. Clustering of the in-gradient distribution profiles followed by several additional criteria yielded a short list of potential RNA chaperones that include an YlxR homolog and a cyanobacterial homolog of the KhpA/B complex. The data suggest previously undetected complexes between accessory proteins and CRISPR-Cas systems, such as a Csx1-Csm6 ribonucleolytic defense complex. Moreover, the exclusive association of either RpoZ or 6S RNA with the core RNA polymerase complex and the existence of a reservoir of inactive sigma-antisigma complexes is suggested. The Synechocystis Grad-seq resource is available online at https://sunshine.biologie.uni-freiburg.de/GradSeqExplorer/ providing a comprehensive resource for the functional assignment of RNA-protein complexes and multisubunit protein complexes in a photosynthetic organism.
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Karsten Voigt
- IT Administration, Institute of Biology 3, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Westrich LD, Gotsmann VL, Herkt C, Ries F, Kazek T, Trösch R, Armbruster L, Mühlenbeck JS, Ramundo S, Nickelsen J, Finkemeier I, Wirtz M, Storchová Z, Räschle M, Willmund F. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Res 2021; 49:400-415. [PMID: 33330923 PMCID: PMC7797057 DOI: 10.1093/nar/gkaa1192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.
Collapse
Affiliation(s)
- Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Tanja Kazek
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jens Stephan Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, 600 16th St, N316, San Francisco, CA 94143, USA
| | - Jörg Nickelsen
- Department of Molecular Plant Science, University of Munich, Grosshaderner-Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
13
|
Griffin JHC, Prado K, Sutton P, Toledo-Ortiz G. Coordinating light responses between the nucleus and the chloroplast, a role for plant cryptochromes and phytochromes. PHYSIOLOGIA PLANTARUM 2020; 169:515-528. [PMID: 32519399 DOI: 10.1111/ppl.13148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
To promote photomorphogenesis, including plastid development and metabolism, the phytochrome (phy) and the cryptochrome (cry) photoreceptors orchestrate genome-wide changes in gene expression in response to Red (R)- and Blue (B)-light cues. While phys and crys have a clear role in modulating photosynthesis, their role in the coordination of the nuclear genome and the plastome, essential for functional chloroplasts, remains underexplored. Using publicly available genome datasets for WT and phyABCDE or cry1cry2 Arabidopsis seedlings, grown, respectively, under R- or B-light, we bioinformatically analyzed the influence of light inputs and photoreceptors in the control of nuclear genes with a function in the chloroplast, and evaluated the role of phyB in the modulation of plastome-encoded genes. We show gene co-induction by R-phys and B-crys for genes with a chloroplastic function, and also apparent photoreceptor-driven preferential responses. Evidence from phyB in Arabidopsis together with published evidence from CRY2 in tomato also supports the participation of both photoreceptor families in the global modulation of the plastome genes. To begin addressing how these light-sensors orchestrate changes in an organellar genome, we evaluated their effect over genes with potential functions in plastid gene-expression regulation based on their TAIR annotation. Results indicate that both crys and phys modulate 'plastome-regulatory genes' with enrichment in the contribution of crys to all processes and of phys to post-transcription and transcription. Furthermore, we identified a new role for HY5 as a relevant light-signaling component in photoreceptor-based anterograde signaling leading to plastome gene regulation.
Collapse
Affiliation(s)
| | - Karine Prado
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Phoebe Sutton
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | |
Collapse
|
14
|
Oulo MA, Yang JX, Dong X, Wanga VO, Mkala EM, Munyao JN, Onjolo VO, Rono PC, Hu GW, Wang QF. Complete Chloroplast Genome of Rhipsalis baccifera, the only Cactus with Natural Distribution in the Old World: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E979. [PMID: 32752116 PMCID: PMC7464518 DOI: 10.3390/plants9080979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 01/29/2023]
Abstract
Rhipsalis baccifera is the only cactus that naturally occurs in both the New World and the Old World, and has thus drawn the attention of most researchers. The complete chloroplast (cp) genome of R. baccifera is reported here for the first time. The cp genome of R. baccifera has 122, 333 base pairs (bp), with a large single-copy (LSC) region (81,459 bp), SSC (23,531 bp) and two inverted repeat (IR) regions each 8530 bp. The genome contains 110 genes, with 73 protein-coding genes, 31 tRNAs, 4 rRNAs and 2 pseudogenes. Twelve genes have introns, with loss of introns being observed in, rpoc1clpP and rps12 genes. 49 repeat sequences and 62 simple sequence repeats (SSRs) were found in the genome. Comparative analysis with eight species of the ACPT (Anacampserotaceae, Cactaceae, Portulacaceae, and Talinaceae) clade of the suborder Portulacineae species, showed that R. baccifera genome has higher number of rearrangements, with a 19 gene inversion in its LSC region representing the most significant structural change in terms of its size. Inversion of the SSC region seems common in subfamily Cactoideae, and another 6 kb gene inversion between rbcL- trnM was observed in R. baccifera and Carnegiea gigantea. The IRs of R. baccifera are contracted. The phylogenetic analysis among 36 complete chloroplast genomes of Caryophyllales species and two outgroup species supported monophyly of the families of the ACPT clade. R. baccifera occupied a basal position of the family Cactaceae clade in the tree. A high number of rearrangements in this cp genome suggests a larger number mutation events in the history of evolution of R. baccifera. These results provide important tools for future work on R. baccifera and in the evolutionary studies of the suborder Portulacineae.
Collapse
Affiliation(s)
- Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jacinta Ndunge Munyao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi Onjolo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (M.A.O.); (J.-X.Y.); (X.D.); (V.O.W.); (E.M.M.); (J.N.M.); (V.O.O.); (P.C.R.); (Q.-F.W.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
15
|
Liu S, Wang Z, Wang H, Su Y, Wang T. Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns. Sci Rep 2020; 10:9394. [PMID: 32523061 PMCID: PMC7287138 DOI: 10.1038/s41598-020-66219-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The trans-splicing rps12 gene of fern plastomes (plastid genomes) exhibits a unique structure owing to its variations in intragenic exon location and intron content, and thus, it provides an excellent model system for examining the effect of plastid gene structure on rates and patterns of molecular evolution. In this study, 16 complete fern plastome sequences were newly generated via the Illumina HiSeq sequencing platform. We reconstructed the phylogeny of ferns and inferred the patterns and rates of plastid rps12 gene evolution in a phylogenetic context by combining these plastome data with those of previously published fern species. We uncovered the diversity of fern plastome evolution by characterizing the structures of these genomes and obtained a highly supported phylogenetic framework for ferns. Furthermore, our results revealed molecular evolutionary patterns that were completely different from the patterns revealed in previous studies. There were significant differences in the patterns and rates of nucleotide substitutions in both intron-containing and intron-less rps12 alleles. Rate heterogeneity between single-copy (SC) and inverted repeat (IR) exons was evident. Unexpectedly, however, IR exons exhibited significantly higher synonymous substitution rates (dS) than SC exons, a pattern that contrasts the regional effect responsible for decreased rates of nucleotide substitutions in IRs. Our results reveal that structural changes in plastid genes have important effects on evolutionary rates, and we propose possible mechanisms to explain the variations in the nucleotide substitution rates of this unusual gene.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hui Wang
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen, 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Zou M, Mu Y, Chai X, Ouyang M, Yu LJ, Zhang L, Meurer J, Chi W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res 2020; 48:3195-3210. [PMID: 32095829 PMCID: PMC7102989 DOI: 10.1093/nar/gkaa129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.
Collapse
Affiliation(s)
- Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Mu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Liu P, Luo J, Zheng Q, Chen Q, Zhai N, Xu S, Xu Y, Jin L, Xu G, Lu X, Xu G, Wang G, Shao J, Xu H, Cao P, Zhou H, Wang X. Integrating transcriptome and metabolome reveals molecular networks involved in genetic and environmental variation in tobacco. DNA Res 2020; 27:dsaa006. [PMID: 32324848 PMCID: PMC7320822 DOI: 10.1093/dnares/dsaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Tobacco (Nicotiana tabacum) is one of the most widely cultivated commercial non-food crops with significant social and economic impacts. Here we profiled transcriptome and metabolome from 54 tobacco samples (2-3 replicates; n = 151 in total) collected from three varieties (i.e. genetic factor), three locations (i.e. environmental factor), and six developmental stages (i.e. developmental process). We identified 3,405 differentially expressed (DE) genes (DEGs) and 371 DE metabolites, respectively. We used quantitative real-time PCR to validate 20 DEGs, and confirmed 18/20 (90%) DEGs between three locations and 16/20 (80%) with the same trend across developmental stages. We then constructed nine co-expression gene modules and four co-expression metabolite modules , and defined seven de novo regulatory networks, including nicotine- and carotenoid-related regulatory networks. A novel two-way Pearson correlation approach was further proposed to integrate co-expression gene and metabolite modules to identify joint gene-metabolite relations. Finally, we further integrated DE and network results to prioritize genes by its functional importance and identified a top-ranked novel gene, LOC107773232, as a potential regulator involved in the carotenoid metabolism pathway. Thus, the results and systems-biology approaches provide a new avenue to understand the molecular mechanisms underlying complex genetic and environmental perturbations in tobacco.
Collapse
Affiliation(s)
- Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Jie Luo
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shengchun Xu
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Lu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guowang Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gangjun Wang
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianfeng Shao
- Central Laboratory of Zhejiang Academy of Agricultural Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hai‐Ming Xu
- Institute of Crop Science and Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xusheng Wang
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| |
Collapse
|
18
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
19
|
Trösch R, Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol Chem 2020; 400:879-893. [PMID: 30653464 DOI: 10.1515/hsz-2018-0436] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/21/2022]
Abstract
Cells are highly adaptive systems that respond and adapt to changing environmental conditions such as temperature fluctuations or altered nutrient availability. Such acclimation processes involve reprogramming of the cellular gene expression profile, tuning of protein synthesis, remodeling of metabolic pathways and morphological changes of the cell shape. Nutrient starvation can lead to limited energy supply and consequently, remodeling of protein synthesis is one of the key steps of regulation since the translation of the genetic code into functional polypeptides may consume up to 40% of a cell's energy during proliferation. In eukaryotic cells, downregulation of protein synthesis during stress is mainly mediated by modification of the translation initiation factors. Prokaryotic cells suppress protein synthesis by the active formation of dimeric so-called 'hibernating' 100S ribosome complexes. Such a transition involves a number of proteins which are found in various forms in prokaryotes but also in chloroplasts of plants. Here, we review the current understanding of these hibernation factors and elaborate conserved principles which are shared between species.
Collapse
Affiliation(s)
- Raphael Trösch
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| | - Felix Willmund
- Department of Biology, Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Qiu Z, Chen D, He L, Zhang S, Yang Z, Zhang Y, Wang Z, Ren D, Qian Q, Guo L, Zhu L. The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. RICE (NEW YORK, N.Y.) 2018; 11:39. [PMID: 29995230 PMCID: PMC6041223 DOI: 10.1186/s12284-018-0233-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plastid ribosomal proteins (PRPs) play important roles in the translation of key proteins involved in chloroplast development and photosynthesis. PRPs have been widely studied in many plant species; however, few studies have investigated their roles in rice. RESULT In the present study, we used ethyl methane sulfonate mutagenesis and obtained a novel rice mutant called white green leaf 2 (wgl2). The wgl2 mutants exhibited an albino phenotype from germination through the three-leaf stage, and then gradually transitioned to green through the later developmental stages. Consistent with this albino phenotype, wgl2 mutants had abnormal chloroplasts and lower levels of photosynthetic pigments. Map-based cloning and DNA sequencing analyses of wgl2 revealed a single-nucleotide substitution (G to T) in the first exon of LOC_Os03g55930, which resulted in a substitution of glycine 92 to valine (G92 V). WGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. Complementation and targeted deletion experiments confirmed that the point mutation in WGL2 is responsible for the wgl2 mutant phenotype. WGL2 is preferentially expressed in the leaf, and mutating WGL2 led to obvious changes in the expression of genes related to chlorophyll biosynthesis, photosynthesis, chloroplast development, and ribosome development compared with wild-type. CONCLUSIONS WGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. WGL2 is essential for early chloroplast development in rice. These results facilitate research that will further uncover the molecular mechanism of chloroplast development.
Collapse
Affiliation(s)
- Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Sen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zenan Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
21
|
van de Waterbeemd M, Tamara S, Fort KL, Damoc E, Franc V, Bieri P, Itten M, Makarov A, Ban N, Heck AJR. Dissecting ribosomal particles throughout the kingdoms of life using advanced hybrid mass spectrometry methods. Nat Commun 2018; 9:2493. [PMID: 29950687 PMCID: PMC6021402 DOI: 10.1038/s41467-018-04853-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/28/2018] [Indexed: 11/08/2022] Open
Abstract
Biomolecular mass spectrometry has matured strongly over the past decades and has now reached a stage where it can provide deep insights into the structure and composition of large cellular assemblies. Here, we describe a three-tiered hybrid mass spectrometry approach that enables the dissection of macromolecular complexes in order to complement structural studies. To demonstrate the capabilities of the approach, we investigate ribosomes, large ribonucleoprotein particles consisting of a multitude of protein and RNA subunits. We identify sites of sequence processing, protein post-translational modifications, and the assembly and stoichiometry of individual ribosomal proteins in four distinct ribosomal particles of bacterial, plant and human origin. Amongst others, we report extensive cysteine methylation in the zinc finger domain of the human S27 protein, the heptameric stoichiometry of the chloroplastic stalk complex, the heterogeneous composition of human 40S ribosomal subunits and their association to the CrPV, and HCV internal ribosome entry site RNAs.
Collapse
Affiliation(s)
- Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
| | - Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
| | - Kyle L Fort
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
- Thermo Fisher Scientific, 28199, Bremen, Germany
| | - Eugen Damoc
- Thermo Fisher Scientific, 28199, Bremen, Germany
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Martin Itten
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexander Makarov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands
- Thermo Fisher Scientific, 28199, Bremen, Germany
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584CH, The Netherlands.
- Netherlands Proteomics Center, 3584CH, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Abstract
Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.
Collapse
|
23
|
Huang W, Ma HY, Huang Y, Li Y, Wang GL, Jiang Q, Wang F, Xiong AS. Comparative proteomic analysis provides novel insights into chlorophyll biosynthesis in celery under temperature stress. PHYSIOLOGIA PLANTARUM 2017; 161:468-485. [PMID: 28767140 DOI: 10.1111/ppl.12609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 05/03/2023]
Abstract
Chlorophyll (Chl) is essential for light harvesting and energy transduction in photosynthesis. A proper amount of Chl within plant cells is important to celery (Apium graveolens) yield and quality. Temperature stress is an influential abiotic stress affecting Chl biosynthesis and plant growth. There are limited proteomic studies regarding Chl accumulation under temperature stress in celery leaves. Here, the proteins from celery leaves under different temperature treatments (4, 25 and 38°C) were analyzed using a proteomic approach. There were 71 proteins identified through MALDI-TOF-TOF analysis. The relative abundance of proteins involved in carbohydrate and energy metabolism, protein metabolism, amino acid metabolism, antioxidant and polyamine biosynthesis were enhanced under cold stress. These temperature stress-responsive proteins may establish a new homeostasis to enhance temperature tolerance. Magnesium chelatase (Mg-chelatase) and glutamate-1-semialdehyde aminotransferase (GSAT), related to Chl biosynthesis, showed increased abundances under cold stress. Meanwhile, the Chl contents were decreased in heat- and cold-stressed celery leaves. The inhibition of Chl biosynthesis may be due to the downregulated mRNA levels of 15 genes involved in Chl biosynthesis. The study will expand our knowledge on Chl biosynthesis and the temperature tolerance mechanisms in celery leaves.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
24
|
Jeon Y, Ahn HK, Kang YW, Pai HS. Functional characterization of chloroplast-targeted RbgA GTPase in higher plants. PLANT MOLECULAR BIOLOGY 2017; 95:463-479. [PMID: 29038916 DOI: 10.1007/s11103-017-0664-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis. Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea
| | - Yong Won Kang
- R&D Center, Morechem Co., Ltd., Yongin, Gyeonggi-do, 16954, South Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
25
|
Meurer J, Schmid LM, Stoppel R, Leister D, Brachmann A, Manavski N. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:400-413. [PMID: 28805278 DOI: 10.1111/tpj.13662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/11/2023]
Abstract
The plant-specific PALE CRESS (PAC) protein has previously been shown to be essential for photoautotrophic growth. Here we further investigated the molecular function of the PAC protein. PAC localizes to plastid nucleoids and forms large proteinaceous and RNA-containing megadalton complexes. It co-immunoprecipitates with a specific subset of chloroplast RNAs including psbK-psbI, ndhF, ndhD, and 23S ribosomal RNA (rRNA), as demonstrated by RNA immunoprecipitation in combination with high throughput RNA sequencing (RIP-seq) analyses. Furthermore, it co-migrates with premature 50S ribosomal particles and specifically binds to 23S rRNA in vitro. This coincides with severely reduced levels of 23S rRNA in pac leading to translational deficiencies and related alterations of plastid transcript patterns and abundance similar to plants treated with the translation inhibitor lincomycin. Thus, we conclude that deficiency in plastid ribosomes accounts for the pac phenotype. Moreover, the absence or reduction of PAC levels in the corresponding mutants induces structural changes of the 23S rRNA, as demonstrated by in vivo RNA structure probing. Our results indicate that PAC binds to the 23S rRNA to promote the biogenesis of the 50S subunit.
Collapse
Affiliation(s)
- Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Rhea Stoppel
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Ahmed T, Shi J, Bhushan S. Unique localization of the plastid-specific ribosomal proteins in the chloroplast ribosome small subunit provides mechanistic insights into the chloroplastic translation. Nucleic Acids Res 2017; 45:8581-8595. [PMID: 28582576 PMCID: PMC5737520 DOI: 10.1093/nar/gkx499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Chloroplastic translation is mediated by a bacterial-type 70S chloroplast ribosome. During the evolution, chloroplast ribosomes have acquired five plastid-specific ribosomal proteins or PSRPs (cS22, cS23, bTHXc, cL37 and cL38) which have been suggested to play important regulatory roles in translation. However, their exact locations on the chloroplast ribosome remain elusive due to lack of a high-resolution structure, hindering our progress to understand their possible roles. Here we present a cryo-EM structure of the 70S chloroplast ribosome from spinach resolved to 3.4 Å and focus our discussion mainly on the architecture of the 30S small subunit (SSU) which is resolved to 3.7 Å. cS22 localizes at the SSU foot where it seems to compensate for the deletions in 16S rRNA. The mRNA exit site is highly remodeled due to the presence of cS23 suggesting an alternative mode of translation initiation. bTHXc is positioned at the SSU head and appears to stabilize the intersubunit bridge B1b during thermal fluctuations. The translation factor plastid pY binds to the SSU on the intersubunit side and interacts with the conserved nucleotide bases involved in decoding. Most of the intersubunit bridges are conserved compared to the bacteria, except for a new bridge involving uL2c and bS6c.
Collapse
Affiliation(s)
- Tofayel Ahmed
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Jian Shi
- Center for BioImaging Sciences, National University of Singapore, 117546, Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
27
|
Graf M, Arenz S, Huter P, Dönhöfer A, Novácek J, Wilson DN. Cryo-EM structure of the spinach chloroplast ribosome reveals the location of plastid-specific ribosomal proteins and extensions. Nucleic Acids Res 2017; 45:2887-2896. [PMID: 27986857 PMCID: PMC5389730 DOI: 10.1093/nar/gkw1272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/06/2016] [Indexed: 11/30/2022] Open
Abstract
Ribosomes are the protein synthesizing machines of the cell. Recent advances in cryo-EM have led to the determination of structures from a variety of species, including bacterial 70S and eukaryotic 80S ribosomes as well as mitoribosomes from eukaryotic mitochondria, however, to date high resolution structures of plastid 70S ribosomes have been lacking. Here we present a cryo-EM structure of the spinach chloroplast 70S ribosome, with an average resolution of 5.4 Å for the small 30S subunit and 3.6 Å for the large 50S ribosomal subunit. The structure reveals the location of the plastid-specific ribosomal proteins (RPs) PSRP1, PSRP4, PSRP5 and PSRP6 as well as the numerous plastid-specific extensions of the RPs. We discover many features by which the plastid-specific extensions stabilize the ribosome via establishing additional interactions with surrounding ribosomal RNA and RPs. Moreover, we identify a large conglomerate of plastid-specific protein mass adjacent to the tunnel exit site that could facilitate interaction of the chloroplast ribosome with the thylakoid membrane and the protein-targeting machinery. Comparing the Escherichia coli 70S ribosome with that of the spinach chloroplast ribosome provides detailed insight into the co-evolution of RP and rRNA.
Collapse
Affiliation(s)
- Michael Graf
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Stefan Arenz
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Paul Huter
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Alexandra Dönhöfer
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany
| | - Jirí Novácek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Daniel N Wilson
- Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, 81377 Munich, Germany.,Department of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
28
|
Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Deng M, Cao Y. Quantitative proteome-level analysis of paulownia witches' broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 2017; 5:e3495. [PMID: 28690927 PMCID: PMC5497676 DOI: 10.7717/peerj.3495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
Paulownia witches' broom (PaWB) disease caused by phytoplasma is a fatal disease that leads to considerable economic losses. Although there are a few reports describing studies of PaWB pathogenesis, the molecular mechanisms underlying phytoplasma pathogenicity in Paulownia trees remain uncharacterized. In this study, after building a transcriptome database containing 67,177 sequences, we used isobaric tags for relative and absolute quantification (iTRAQ) to quantify and analyze the proteome-level changes among healthy P. fortunei (PF), PaWB-infected P. fortunei (PFI), and PaWB-infected P. fortunei treated with 20 mg L-1 or 60 mg L-1 methyl methane sulfonate (MMS) (PFI-20 and PFI-60, respectively). A total of 2,358 proteins were identified. We investigated the proteins profiles in PF vs. PFI (infected process) and PFI-20 vs. PFI-60 (recovered process), and further found that many of the MMS-response proteins mapped to "photosynthesis" and "ribosome" pathways. Based on our comparison scheme, 36 PaWB-related proteins were revealed. Among them, 32 proteins were classified into three functional groups: (1) carbohydrate and energy metabolism, (2) protein synthesis and degradation, and (3) stress resistance. We then investigated the PaWB-related proteins involved in the infected and recovered processes, and discovered that carbohydrate and energy metabolism was inhibited, and protein synthesis and degradation decreased, as the plant responded to PaWB. Our observations may be useful for characterizing the proteome-level changes that occur at different stages of PaWB disease. The data generated in this study may serve as a valuable resource for elucidating the pathogenesis of PaWB disease during phytoplasma infection and recovery stages.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| | - Wenshan Liu
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Guoqiang Fan
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | | | - Zhenli Zhao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Dong
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Minjie Deng
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Yabing Cao
- Institute of Paulownia, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
29
|
Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ. The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:1-11. [PMID: 28483049 DOI: 10.1016/j.plantsci.2017.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 05/20/2023]
Abstract
Plastid ribosome proteins (PRPs) are important components for chloroplast biogenesis and early chloroplast development. Although it has been known that chloroplast ribosomes are similar to bacterial ones, the precise molecular function of ribosomal proteins remains to be elucidated in rice. Here, we identified a novel rice mutant, designated tcd11 (thermo-sensitive chlorophyll-deficient mutant 11), characterized by the albino phenotype until it died at 20°C, while displaying normal phenotype at 32°C. The alteration of leaf color in tcd11 mutants was aligned with chlorophyll (Chl) content and chloroplast development. The map-based cloning and molecular complementation showed that TCD11 encodes the ribosomal small subunit protein S6 in chloroplasts (RPS6). TCD11 was abundantly expressed in leaves, suggesting its different expressions in tissues. In addition, the disruption of TCD11 greatly reduced the transcript levels of certain chloroplasts-associated genes and prevented the assembly of ribosome in chloroplasts at low temperature (20°C), whereas they recovered to nearly normal levels at high temperature (32°C). Thus, our data indicate that TCD11 plays an important role in chloroplast development at low temperature. Upon our knowledge, the observations from this study provide a first glimpse into the importance of RPS6 function in rice chloroplast development.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kai-Lun Zheng
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Di Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 10010, China
| | - Jian-Long Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing 100081, China; Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ji-Rong Huang
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong-Zhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yan-Jun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
30
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
31
|
Bieri P, Leibundgut M, Saurer M, Boehringer D, Ban N. The complete structure of the chloroplast 70S ribosome in complex with translation factor pY. EMBO J 2016; 36:475-486. [PMID: 28007896 PMCID: PMC5694952 DOI: 10.15252/embj.201695959] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo‐EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid‐specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid‐specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light‐ and temperature‐dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A‐site and P‐site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non‐rotated state, in which the intersubunit bridges to the large subunit are stabilized.
Collapse
Affiliation(s)
- Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Saurer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Sci Rep 2016; 6:35793. [PMID: 27762343 PMCID: PMC5071890 DOI: 10.1038/srep35793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features.
Collapse
|
33
|
Isolation of Plastid Ribosomes. Methods Mol Biol 2016. [PMID: 27730617 DOI: 10.1007/978-1-4939-6533-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Plastid ribosomes are responsible for a large part of the protein synthesis in plant leaves, green algal cells, and the vast majority in the thalli of red algae. Plastid translation is necessary not only for photosynthesis but also for development/differentiation of plants and algae. While some isolated plastid ribosomes from a few green lineages have been characterized by biochemical and proteomic approaches, in-depth proteomics including analyses of posttranslational modifications and processing, comparative proteomics of plastid ribosomes isolated from the cells grown under different conditions, and those from different taxa are still to be carried out. Establishment of isolation methods for pure plastid ribosomes from a wider range of species would be beneficial to study the relationship between structure, function, and evolution of plastid ribosomes. Here I describe methodologies and provide example protocols for extraction and isolation of plastid ribosomes from a unicellular green alga (Chlamydomonas reinhardtii), a land plant (Arabidopsis thaliana), and a marine red macroalga (Pyropia yezoensis).
Collapse
|
34
|
Yerramsetty P, Stata M, Siford R, Sage TL, Sage RF, Wong GKS, Albert VA, Berry JO. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. BMC Evol Biol 2016; 16:141. [PMID: 27356975 PMCID: PMC4928308 DOI: 10.1186/s12862-016-0713-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Results Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in grasses, highlighting the possible importance of maintaining this gene and its surrounding genomic regions. Conclusions Findings presented here indicate that the RLSB family originated as a unique gene in land plant evolution, perhaps in the common ancestor of charophytes and higher plants. Purifying selection has maintained this as a highly conserved single- or two-copy gene across most extant species, with several conserved gene duplications. Together with previous findings, this study suggests that RLSB has been sustained as an important regulatory protein throughout the course of land plant evolution. While only RLSB-a has been directly implicated in rbcL regulation in maize, RLSB-b could have an overlapping function in the co-regulation of rbcL, or may have diverged as a regulator of one or more other plastid-encoded mRNAs. This analysis confirms that RLSB is an important and unique photosynthetic regulatory protein that has been continuously expressed in land plants as they emerged and diversified from their ancient common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0713-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rebecca Siford
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
35
|
Moore M, Gossmann N, Dietz KJ. Redox Regulation of Cytosolic Translation in Plants. TRENDS IN PLANT SCIENCE 2016; 21:388-397. [PMID: 26706442 DOI: 10.1016/j.tplants.2015.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 05/19/2023]
Abstract
Control of protein homeostasis is crucial for environmental acclimation of plants. In this context, translational control is receiving increasing attention, particularly since post-translational modifications of the translational apparatus allow very fast and highly effective control of protein synthesis. Reduction and oxidation (redox) reactions decisively control translation by modifying initiation, elongation, and termination of translation. This opinion article compiles information on the redox sensitivity of cytosolic translation factors and the significance of redox regulation as a key modulator of translation for efficient acclimation to changing environmental conditions.
Collapse
Affiliation(s)
- Marten Moore
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Nikolaj Gossmann
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Bielefeld University, 33501 Bielefeld, Germany.
| |
Collapse
|
36
|
Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ. A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. PLANT MOLECULAR BIOLOGY 2016; 91:161-77. [PMID: 26873698 DOI: 10.1007/s11103-016-0453-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
The plastid ribosome is essential for chloroplast biogenesis as well as seedling formation. As the plastid ribosome closely resembles the prokaryotic 70S ribosome, many plastid ribosomal proteins (PRPs) have been identified in higher plants. However, their assembly in the chloroplast ribosome in rice remains unclear. In the present study, we identified a novel rice mutant, albino lethal 1 (al1), from a chromosome segment substitution line population. The al1 mutant displayed an albino phenotype at the seedling stage and did not survive past the three-leaf stage. No other apparent differences in plant morphology were observed in the al1 mutant. The albino phenotype of the al1 mutant was associated with decreased chlorophyll content and abnormal chloroplast morphology. Using fine mapping, AL1 was shown to encode the PRPL12, a protein localized in the chloroplasts of rice, and a spontaneous single-nucleotide mutation (C/T), resulting in a residue substitution from leucine in AL1 to phenylalanine in al1, was found to be responsible for the early seedling lethality. This point mutation is located at the L10 interface feature of the L12/AL1 protein. Yeast two-hybrid analysis showed that there was no physical interaction between al1 and PRPL10. In addition, the mutation had little effect on the transcript abundance of al1, but had a remarkable effect on the protein abundance of al1 and transcript abundance of chloroplast biogenesis-related and photosynthesis-related genes. These results provide a first glimpse into the molecular details of L12's function in rice.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
37
|
Córdoba J, Molina-Cano JL, Martínez-Carrasco R, Morcuende R, Pérez P. Functional and transcriptional characterization of a barley mutant with impaired photosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 244:19-30. [PMID: 26810450 DOI: 10.1016/j.plantsci.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
Chemical mutagenesis induces variations that may assist in the identification of targets for adaptation to growth under atmospheric CO2 enrichment. The aim of this work was to characterize the limitations causing reduced photosynthetic capacity in G132 mutagenized barley (Hordeum vulgare L. cv. Graphic) grown in a glasshouse. Compared to the wild type (WT) G132 showed increased transcript levels for the PSII light harvesting complex, but lower levels of chlorophyll, transcripts for protochlorophyllide oxidoreductase A and psbQ, and PSII quantum efficiency in young leaves. Rubisco limitation had an overriding influence on G132 photosynthesis, and was due to strong and selective decreases in Rubisco protein and activity. These reductions were accompanied by enhanced Rubisco transcripts, but increased levels of a Rubisco degradation product. G132 showed lower levels of carbohydrates, amino acids and corresponding transcripts, and proteins, but not of nitrate. Many of the measured parameters recovered in the mutant as development progressed, or decreased less than in the WT, indicating that senescence was delayed. G132 had a longer growth period than the WT and similar final plant dry matter. The reduced resource investment in Rubisco of G132 may prove useful for studies on barley adaptation to elevated CO2 and climate change.
Collapse
Affiliation(s)
- Javier Córdoba
- Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; IRTA (Institute for Food and Agricultural Research and Technology), Field Crops, Av. Alcalde Rovira i Roure, 191, E-25198 Lérida, Spain
| | - José-Luis Molina-Cano
- IRTA (Institute for Food and Agricultural Research and Technology), Field Crops, Av. Alcalde Rovira i Roure, 191, E-25198 Lérida, Spain
| | - Rafael Martínez-Carrasco
- Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain
| | - Rosa Morcuende
- Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain
| | - Pilar Pérez
- Institute of Natural Resources and Agrobiology of Salamanca, IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain.
| |
Collapse
|
38
|
Ma Z, Wu W, Huang W, Huang J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. PHOTOSYNTHESIS RESEARCH 2015; 126:301-310. [PMID: 25733183 DOI: 10.1007/s11120-015-0101-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Chloroplast development is regulated by many biological processes. However, these processes are not fully understood. Leaf variegation mutants have been used as powerful models to elucidate the genetic network of chloroplast development since the degree of leaf variegation is regulated by developmental and environmental cues. The thylakoid formation 1 (thf1) mutant is unique for its variegation in both leaves and cotyledons. Here, we reported a new suppressor gene of thf1 leaf variegation, designated sot8. Map-based cloning and DNA sequencing results showed that a single nucleotide mutation from G to A was detected in the second exon of the gene encoding the ribosomal protein small subunit 9 (PRPS9) in sot8-1, resulting in an amino acid change and a partial loss of PRPS9 function. However, sot8-1 was unable to rescue the thf1 phenotype in low photosystem II activity (Fv/Fm). In addition, we identified two T-DNA insertion mutants defective in plastid-specific ribosomal proteins (PSRPs), psrp2-1, and psrp5-1. Genetic analysis showed that knockdown of PSRP5 expression but not PSRP2 expression suppressed leaf variegation. Northern blotting results showed that precursors of plastid rRNAs over-accumulated in prps9-1 and psrp5-1, indicating that mutations in PRPS9 and PSRP5 cause a defect in rRNA processing. Consistently, inhibition of plastid protein synthesis by spectinomycin led to increased levels of plastid rRNA precursors in wild-type plants, suggesting that rRNA processing and plastid ribosomal assembly are coupled. Taken together, our data indicate that downregulating the expression of specific plastid ribosomal proteins suppresses thf1 leaf variegation, and provide new insights into a role of THF1 in plastid gene expression.
Collapse
Affiliation(s)
- Zhaoxue Ma
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihua Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
39
|
Bagheri R, Bashir H, Ahmad J, Iqbal M, Qureshi MI. Spinach (Spinacia oleracea L.) modulates its proteome differentially in response to salinity, cadmium and their combination stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:235-45. [PMID: 26497449 DOI: 10.1016/j.plaphy.2015.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 05/20/2023]
Abstract
Cadmium (Cd) contamination and salinity are common stressors in agricultural soils all over the globe. Sensitivity and modulation of plant proteome lead to proper signal execution and adaptation to abiotic stress via molecular responses, which strengthen plant defence system. A comparative proteomic study, employing 2DE-MALDI TOF/TOF MS, of Spinacia oleracea plants exposed to cadmium (50 μg CdCl2 g(-1) soil), salinity (10 mg NaCl g(-1) soil) and their combination (NaCl + Cd) was conducted to understand the minimum common adaptation to multiple stress. Analysis of 2D gel maps showed significant increase and decrease in relative abundance of 14 and 39 proteins by Cd; 11 and 46 by salinity and 22 and 37 by combined stress of Cd and salinity, respectively. Peptide mass fingerprinting (PMF) helped in the identification of maturase K and PPD4 with increased relative abundance under all stresses; whereas salinity stress and combination stress silenced the presence of one protein (polycomb protein EZ2) and two proteins (cellulose synthase-like protein and ubiquitin conjugation factor E4), respectively. The identified proteins were functionally associated with signal transduction (15%), protein synthesis (16%), stress response and defence (33%), photosynthesis (13%), plant growth/cell division (9%), energy generation (4%), transport (4%), secondary metabolism (3%), and cell death (3%); clearly indicating the importance and necessity of keeping a higher ratio of defence and disease-responsive proteins. The results suggest that plant may increase the abundance of defence proteins and may also lower the abundance of catabolic proteins. Proteins with altered ratios of abundance belonged to different functional categories, suggesting that plants have differential mechanisms to respond to Cd, salinity, and their combined stress, but with unique sets of proteins.
Collapse
Affiliation(s)
- Rita Bagheri
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Humayra Bashir
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Javed Ahmad
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Muhammad Iqbal
- Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi 110062, India
| | - M Irfan Qureshi
- Proteomics & Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
40
|
Nesbit AD, Whippo C, Hangarter RP, Kehoe DM. Translation initiation factor 3 families: what are their roles in regulating cyanobacterial and chloroplast gene expression? PHOTOSYNTHESIS RESEARCH 2015; 126:147-59. [PMID: 25630975 DOI: 10.1007/s11120-015-0074-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/02/2015] [Indexed: 05/09/2023]
Abstract
Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.
Collapse
Affiliation(s)
- April D Nesbit
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Biology/Chemistry, Purdue University North Central, 1401 S. US 421, Westville, IN, 46391, USA
| | - Craig Whippo
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Natural Science, Dickinson State University, Dickinson, ND, 58601, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
- Indiana Molecular Biology Institute, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
41
|
Chen F, Zhang X, Zhang N, Wang S, Yin G, Dong Z, Cui D. Combined Small RNA and Degradome Sequencing Reveals Novel MiRNAs and Their Targets in the High-Yield Mutant Wheat Strain Yunong 3114. PLoS One 2015; 10:e0137773. [PMID: 26372220 PMCID: PMC4570824 DOI: 10.1371/journal.pone.0137773] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/20/2015] [Indexed: 01/13/2023] Open
Abstract
Wheat is one of the main food sources worldwide; large amount studies have been conducted to improve wheat production. MicroRNAs (miRNAs) with about 20-30 nucleotide are a class of regulatory small RNAs (sRNAs), which could regulate gene expression through sequence-specific base pairing with target mRNAs, playing important roles in plant growth. An ideal plant architecture (IPA) is crucial to enhance yield in bread wheat. In this study, the high-yield wheat strain Yunong 3114 was EMS-mutagenesis from the wild-type strain Yunong 201, exhibiting a preferable plant structure compared with the wild-type strain. We constructed small RNA and degradome libraries from Yunong 201 and Yunong 3114, and performed small RNA sequencing of these libraries in order identify miRNAs and their targets related to IPA in wheat. Totally, we identified 488 known and 837 novel miRNAs from Yunong 3114 and 391 known and 533 novel miRNAs from Yunong 201. The number of miRNAs in the mutant increased. A total of 37 known and 432 putative novel miRNAs were specifically expressed in the mutant strain; furthermore, 23 known and 159 putative novel miRNAs were specifically expressed in the wild-type strain. A total of 150 known and 100 novel miRNAs were differentially expressed between mutant and wild-type strains. Among these differentially expressed novel miRNAs, 4 and 8 predict novel miRNAs were evidenced by degradome sequencing and showed up-regulated and down-regulated expressions in the mutant strain Yunong 3114, respectively. Targeted gene annotation and previous results indicated that this set of miRNAs is related to plant structure. Our results further suggested that miRNAs may be necessary to obtain an optimal wheat structure.
Collapse
Affiliation(s)
- Feng Chen
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- * E-mail: (FC); (DC)
| | - Xiangfen Zhang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Zhang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shasha Wang
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Guihong Yin
- Zhoukou Academy of Agricultural Sciences, Zhoukou, China
| | - Zhongdong Dong
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Dangqun Cui
- Agronomy College/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- * E-mail: (FC); (DC)
| |
Collapse
|
42
|
Han JH, Lee K, Lee KH, Jung S, Jeon Y, Pai HS, Kang H. A nuclear-encoded chloroplast-targeted S1 RNA-binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:277-89. [PMID: 26031782 DOI: 10.1111/tpj.12889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 05/22/2023]
Abstract
Despite the fact that a variety of nuclear-encoded RNA-binding proteins (RBPs) are targeted to the chloroplast and play essential roles during post-transcriptional RNA metabolism in the chloroplast, the physiological roles of the majority of chloroplast-targeted RBPs remain elusive. Here, we investigated the functional role of a nuclear-encoded S1 domain-containing RBP, designated SDP, in the growth and development of Arabidopsis thaliana. Confocal analysis of the SDP-green fluorescent protein revealed that SDP was localized to the chloroplast. The loss-of-function sdp mutant displayed retarded seed germination and pale-green phenotypes, and grew smaller than the wild-type plants. Chlorophyll a content and photosynthetic activity of the sdp mutant were much lower than those of wild-type plants, and the structures of the chloroplast and the prolamellar body were abnormal in the sdp mutant. The processing of rRNAs in the chloroplast was defective in the sdp mutant, and SDP was able to bind chloroplast 23S, 16S, 5S and 4.5S rRNAs. Notably, SDP possesses RNA chaperone activity. Transcript levels of the nuclear genes involved in chlorophyll biosynthesis were altered in the sdp mutant. Collectively, these results suggest that chloroplast-targeted SDP harboring RNA chaperone activity affects rRNA processing, chloroplast biogenesis and photosynthetic activity, which is crucial for normal growth of Arabidopsis.
Collapse
Affiliation(s)
- Ji Hoon Han
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Kwanuk Lee
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Kwang Ho Lee
- Department of Wood Science and Landscape Architecture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, 702-701, Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 120-749, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
43
|
Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y. Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:599-607. [PMID: 25280352 DOI: 10.1111/plb.12271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/22/2014] [Indexed: 05/19/2023]
Abstract
The plastid ribosome proteins (PRPs) play important roles in plastid protein biosynthesis, chloroplast differentiation and early chloroplast development. However, the specialised functions of individual protein components of the chloroplast ribosome in rice (Oryza sativa) remain unresolved. In this paper, we identified a novel rice PRP mutant named asl2 (Albino seedling lethality 2) exhibiting an albino, seedling death phenotype. In asl2 mutants, the alteration of leaf colour was associated with chlorophyll (Chl) content and abnormal chloroplast development. Through map-based cloning and complementation, the mutated ASL2 gene was isolated and found to encode the chloroplast 50S ribosome protein L21 (RPL21c), a component of the chloroplast ribosome large subunit, which was localised in chloroplasts. ASL2 was expressed at a higher level in the plumule and leaves, implying its tissue-specific expression. Additionally, the expression of ASL2 was regulated by light. The transcript levels of the majority of genes for Chl biosynthesis, photosynthesis and chloroplast development were strongly affected in asl2 mutants. Collectively, the absence of functional ASL2 caused chloroplast developmental defects and seedling death. This report establishes the important role of RPL21c in chloroplast development in rice.
Collapse
Affiliation(s)
- D Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Uberegui E, Hall M, Lorenzo Ó, Schröder WP, Balsera M. An Arabidopsis soluble chloroplast proteomic analysis reveals the participation of the Executer pathway in response to increased light conditions. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2067-77. [PMID: 25740923 PMCID: PMC4378640 DOI: 10.1093/jxb/erv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 05/18/2023]
Abstract
The Executer1 and Executer2 proteins have a fundamental role in the signalling pathway mediated by singlet oxygen in chloroplast; nonetheless, not much is known yet about their specific activity and features. Herein, we have followed a differential-expression proteomics approach to analyse the impact of Executer on the soluble chloroplast protein abundance in Arabidopsis. Because singlet oxygen plays a significant role in signalling the oxidative response of plants to light, our analysis also included the soluble chloroplast proteome of plants exposed to a moderate light intensity in the time frame of hours. A number of light- and genotype-responsive proteins were detected, and mass-spectrometry identification showed changes in abundance of several photosynthesis- and carbon metabolism-related proteins as well as proteins involved in plastid mRNA processing. Our results support the participation of the Executer proteins in signalling and control of chloroplast metabolism, and in the regulation of plant response to environmental changes.
Collapse
Affiliation(s)
- Estefanía Uberegui
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), 37008-Salamanca, Spain Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Michael Hall
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Óscar Lorenzo
- Centro Hispano Luso de Investigaciones Agrarias (CIALE), Universidad de Salamanca, 37185 Salamanca, Spain
| | | | - Mónica Balsera
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), 37008-Salamanca, Spain
| |
Collapse
|
45
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
46
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
47
|
Xu T, Lee K, Gu L, Kim JI, Kang H. Functional characterization of a plastid-specific ribosomal protein PSRP2 in Arabidopsis thaliana under abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:405-411. [PMID: 24220572 DOI: 10.1016/j.plaphy.2013.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
Plastids possess a small set of proteins unique to plastid ribosome, named plastid-specific ribosomal proteins (PSRPs). Among the six PSRPs found in Arabidopsis thaliana, PSRP2 is unique in that it harbors two RNA-recognition motifs found in diverse RNA-binding proteins. A recent report demonstrated that PSRP2 is not essential for ribosome function and plant growth under standard greenhouse conditions. Here, we investigated the functional role of PSRP2 during Arabidopsis seed germination and seedling growth under different light environments and various stress conditions, including high salinity, dehydration, and low temperature. The transgenic Arabidopsis plants overexpressing PSRP2 showed delayed germination compared with that of the wild-type plants under salt, dehydration, or low temperature stress conditions. The T-DNA insertion psrp2 mutant displayed better seedling growth but PSRP2-overexpressing transgenic plants showed poorer seedling growth than that of the wild-type plants under salt stress conditions. No noticeable differences in seedling growth were observed between the genotypes when grown under different light environments including dark, red, far-red, and blue light. Interestingly, the PSRP2 protein possessed RNA chaperone activity. Taken together, these results suggest that PSRP2 harboring RNA chaperone activity plays a role as a negative regulator in seed germination under all three abiotic stress conditions tested and in seedling growth of Arabidopsis under salt stress but not under cold or dehydration stress conditions.
Collapse
Affiliation(s)
- Tao Xu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
48
|
Ueta M, Wada C, Daifuku T, Sako Y, Bessho Y, Kitamura A, Ohniwa RL, Morikawa K, Yoshida H, Kato T, Miyata T, Namba K, Wada A. Conservation of two distinct types of 100S ribosome in bacteria. Genes Cells 2013; 18:554-74. [PMID: 23663662 DOI: 10.1111/gtc.12057] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/19/2013] [Indexed: 11/29/2022]
Abstract
In bacteria, 70S ribosomes (consisting of 30S and 50S subunits) dimerize to form 100S ribosomes, which were first discovered in Escherichia coli. Ribosome modulation factor (RMF) and hibernation promoting factor (HPF) mediate this dimerization in stationary phase. The 100S ribosome is translationally inactive, but it dissociates into two translationally active 70S ribosomes after transfer from starvation to fresh medium. Therefore, the 100S ribosome is called the 'hibernating ribosome'. The gene encoding RMF is found widely throughout the Gammaproteobacteria class, but is not present in any other bacteria. In this study, 100S ribosome formation in six species of Gammaproteobacteria and eight species belonging to other bacterial classes was compared. There were several marked differences between the two groups: (i) Formation of 100S ribosomes was mediated by RMF and short HPF in Gammaproteobacteria species, similar to E. coli, whereas it was mediated only by long HPF in the other bacterial species; (ii) RMF/short HPF-mediated 100S ribosome formation occurred specifically in stationary phase, whereas long HPF-mediated 100S ribosome formation occurred in all growth phases; and (iii) 100S ribosomes formed by long HPF were much more stable than those formed by RMF and short HPF.
Collapse
Affiliation(s)
- Masami Ueta
- Yoshida Biological Laboratory, Yamashina, Kyoto 607-8081, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Folgado R, Panis B, Sergeant K, Renaut J, Swennen R, Hausman JF. Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L. Int J Mol Sci 2013; 14:4912-33. [PMID: 23455465 PMCID: PMC3634427 DOI: 10.3390/ijms14034912] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 01/05/2023] Open
Abstract
Better knowledge on responses to dehydration stress could help to improve the existing cryopreservation protocols for potato, since plant tissues processed for cryopreservation are often submitted to similar in vitro stress conditions. Cryopreservation (the best method of conservation for vegetatively propagated plants) of potato still needs to be standardized to make it available and to conserve the wide diversity of this crop. In the present work, the response to osmotic stress and chilling temperature was investigated in two potato species, Solanum tuberosum and its relative, frost-tolerant S. commersonii. After 14 days of exposure, different growth parameters, such as shoot length and number of leaves, were measured. Furthermore, differentially abundant proteins were identified after performing 2-fluorescence difference gel electrophoresis (2-DIGE) experiments, and soluble carbohydrates were analyzed by High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). The results show different responses in both species depending on the stress treatment. Focusing on the differences in growth parameters during the treatments, Solanum commersonii seems to be more affected than S. tuberosum cv. Désirée. At the molecular level, there are some differences and similarities between the two potato species studied that are dependent on the type of stressor.
Collapse
Affiliation(s)
- Raquel Folgado
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
| | - Bart Panis
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
| | - Kjell Sergeant
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| | - Jenny Renaut
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium; E-Mails: (B.P.); (R.S.)
- Bioversity International, Willem de Croylaan, 42 bus 2455, B-3001 Leuven, Belgium
| | - Jean-Francois Hausman
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public—Gabriel Lippmann, 41, rue du Brill, L-4422 Belvaux, Luxembourg; E-Mails: (R.F.); (K.S.); (J.R.)
| |
Collapse
|
50
|
Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins. PLoS One 2012; 7:e36972. [PMID: 22615861 PMCID: PMC3353972 DOI: 10.1371/journal.pone.0036972] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 11/29/2022] Open
Abstract
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pere Puigbò
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|