1
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Asano T, Kaneko MK, Kato Y. RIEDL tag: A novel pentapeptide tagging system for transmembrane protein purification. Biochem Biophys Rep 2020; 23:100780. [PMID: 32715101 PMCID: PMC7369347 DOI: 10.1016/j.bbrep.2020.100780] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Affinity tag systems are an essential tool in biochemistry, biophysics, and molecular biology. Although several different tag systems have been developed, the epitope tag system, composed of a polypeptide “tag” and an anti-tag antibody, is especially useful for protein purification. However, almost all tag sequences, such as the FLAG tag, are added to the N- or C-termini of target proteins, as tags inserted in loops tend to disrupt the functional structure of multi-pass transmembrane proteins. In this study, we developed a novel “RIEDL tag system,” which is composed of a peptide with only five amino acids (RIEDL) and an anti-RIEDL monoclonal antibody (mAb), LpMab-7. To investigate whether the RIEDL tag system is applicable for protein purification, we conducted the purification of two kinds of RIEDL-tagged proteins using affinity column chromatography: whale podoplanin (wPDPN) with an N-terminal RIEDL tag (RIEDL-wPDPN) and human CD20 with an internal RIEDL tag insertion (CD20-169RIEDL170). Using an LpMab-7-Sepharose column, RIEDL-wPDPN and CD20-169RIEDL170 were efficiently purified in one-step purification procedures, and were strongly detected by LpMab-7 using Western blot and flow cytometry. These results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins. We established a novel RIEDL tag system, composed of RIEDL peptide and LpMab-7 mAb. The RIEDL tag system is applicable for protein purification, as well as FCM and WB. The RIEDL tag, inserted into a loop structure of CD20, was detected by LpMab-7. RIEDL-tagged proteins were efficiently purified using 2 × RIEDL peptide.
Collapse
Affiliation(s)
- Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
3
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
4
|
Abstract
KdpD is a four-spanning membrane protein that has two large cytoplasmic domains at the amino- and at the carboxyterminus, respectively. During its biogenesis KdpD binds to the signal recognition particle (SRP) of Escherichia coli that consists of a 48-kDa protein Ffh and a 4.5S RNA. The protein is targeted to the inner membrane surface and is released after contacting the SRP receptor protein FtsY. The information within the KdpD protein that confers SRP interaction was found in the amino-terminal cytoplasmic domain of KdpD, particularly at residues 22–48. Within this sequence a Walker A motif is present at residues 30–38. To determine the actual sequence specificity to SRP, a collection of mutants was constructed. When the KdpD peptides (residues 22–48) were fused to sfGFP the targeting to the membrane was observed by fluorescence microscopy. Further, nascent chains of KdpD bound to ribosomes were purified and their binding to SRP was analysed by microscale thermophoresis. We found that the amino acid residues R22, K24 and K26 are important for SRP interaction, whereas the residues G30, G34 and G36, essential for a functional Walker A motif, can be replaced with alanines without affecting the affinity to SRP-FtsY and membrane targeting.
Collapse
|
5
|
Brown ZP, Takagi J. Advances in domain and subunit localization technology for electron microscopy. Biophys Rev 2019; 11:149-155. [PMID: 30834502 DOI: 10.1007/s12551-019-00513-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
The award of the 2017 Nobel Prize in chemistry, 'for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution', was recognition that this method, and electron microscopy more generally, represent powerful techniques in the scientific armamentarium for atomic level structural assessment. Technical advances in equipment, software, and sample preparation, have allowed for high-resolution structural determination of a range of complex biological machinery such that the position of individual atoms within these mega-structures can be determined. However, not all targets are amenable to attaining such high-resolution structures and some may only be resolved at so-called intermediate resolutions. In these cases, other tools are needed to correctly characterize the domain or subunit orientation and architecture. In this review, we will outline various methods that can provide additional information to help understand the macro-level organization of proteins/biomolecular complexes when high-resolution structural description is not available. In particular, we will discuss the recent development and use of a novel protein purification approach, known as the the PA tag/NZ-1 antibody system, which provides numberous beneficial properties, when used in electron microscopy experimentation.
Collapse
Affiliation(s)
- Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
6
|
Shanmugam SK, Backes N, Chen Y, Belardo A, Phillips GJ, Dalbey RE. New Insights into Amino-Terminal Translocation as Revealed by the Use of YidC and Sec Depletion Strains. J Mol Biol 2019; 431:1025-1037. [DOI: 10.1016/j.jmb.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/24/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023]
|
7
|
Brown ZP, Takagi J. The PA Tag: A Versatile Peptide Tagging System in the Era of Integrative Structural Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1105:59-76. [PMID: 30617824 DOI: 10.1007/978-981-13-2200-6_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We have recently developed a novel protein tagging system based on the high affinity interaction between an antibody NZ-1 and its antigen PA peptide, a dodecapeptide that forms a β-turn in the binding pocket of NZ-1. This unique conformation allows for the PA peptide to be inserted into turn-forming loops within a folded protein domain and the system has been variously used in general applications including protein purification, Western blotting and flow cytometry, or in more specialized applications such as reporting protein conformational change, and identifying subunits of macromolecular complexes with electron microscopy. Thus the small and "portable" nature of the PA tag system offers a versatile and powerful tool that can be implemented in various aspects of integrative structural biology.
Collapse
Affiliation(s)
- Zuben P Brown
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Brown ZP, Arimori T, Iwasaki K, Takagi J. Development of a new protein labeling system to map subunits and domains of macromolecular complexes for electron microscopy. J Struct Biol 2017; 201:247-251. [PMID: 29170031 DOI: 10.1016/j.jsb.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/25/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
Abstract
Several gene fusion technologies have been successfully applied to label particular subunits or domains within macromolecular complexes to enable positional mapping of electron microscopy (EM) density maps, but exogenous fusion of a protein domain into the target polypeptide can cause unwanted structural and functional outcomes. Fab fragments from antibodies can be used as labeling reagents during EM visualization without gene manipulation of the target protein, but this method requires a panel of high-affinity antibodies that recognize a wide variety of epitopes. Linear peptide tags and their anti-tag antibodies can be used but they have a limited mapping ability as their placement is usually limited to the terminal regions of a protein. The PA dodecapeptide epitope tag (GVAMPGAEDDVV), forms a tight β-turn in the antigen binding pocket of its antibody (NZ-1). This capability allows for insertion of the PA tag into various surface-exposed loops within a multi-domain cell adhesion receptor, αIIbβ3 integrin. We confirmed that the purified PA-tagged integrin ectodomain fragments can form a stable complex with NZ-1 Fab. Negative stain EM of the various integrin-NZ-1 complexes revealed that a majority of the particles exhibited a clear density corresponding to the NZ-1 Fab; and the positions of the bound Fab were in good agreement with the predicted location of the inserted PA tag. The high-affinity and insertion-compatibility of the PA tag system allowed us to develop a new EM labeling methodology applicable to proteins for which good antibodies are not available.
Collapse
Affiliation(s)
- Zuben P Brown
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
9
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
10
|
Fujii Y, Matsunaga Y, Arimori T, Kitago Y, Ogasawara S, Kaneko MK, Kato Y, Takagi J. Tailored placement of a turn-forming PA tag into the structured domain of a protein to probe its conformational state. J Cell Sci 2016; 129:1512-22. [DOI: 10.1242/jcs.176685] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 11/20/2022] Open
Abstract
Placement of a tag sequence is usually limited to either terminal of the target protein, reducing the potential of epitope tags for various labeling applications. The PA tag is a dodecapeptide (GVAMPGAEDDVV) that is recognized by a high-affinity antibody NZ-1. We determined the crystal structure of the PA tag/NZ-1 complex and found that NZ-1 recognized a central segment of the PA tag peptide in a tight β-turn configuration, suggesting its compatibility with the insertion into a loop. This possibility was tested and confirmed using multiple integrin subunits and semaphorin. More specifically, the PA tag can be inserted at multiple locations within the αIIb subunit of the fibrinogen receptor αIIbβ3 integrin without affecting the structural and functional integrity, while maintaining its high affinity toward NZ-1. The large choice of the sites for "epitope grafting" enabled the placement of the PA tag at a location whose accessibility is modulated during the biological action of the receptor. Thus, we succeeded in converting a general anti-tag antibody into a special reporter/activator anti-β1 integrin antibody that can be classified as a ligand-induced binding site antibody.
Collapse
Affiliation(s)
- Yuki Fujii
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukiko Matsunaga
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Arimori
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu Kitago
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Rawat S, Zhu L, Lindner E, Dalbey RE, White SH. SecA drives transmembrane insertion of RodZ, an unusual single-span membrane protein. J Mol Biol 2015; 427:1023-37. [PMID: 24846669 PMCID: PMC4233018 DOI: 10.1016/j.jmb.2014.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/16/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
The transmembrane (TM) helices of most type II single-span membrane proteins (S-SMPs) of Escherichia coli occur near the N-terminus, where the cell's targeting mechanisms can readily identify it as it emerges from the ribosome. However, the TM helices of a few S-SMPs, such as RodZ, occur a hundred or more residues downstream from the N-terminus, which raises fundamental questions about targeting and assembly. Because of RodZ's novelty and potential usefulness for understanding TM helix insertion in vivo, we examined its membrane targeting and assembly. We used RodZ constructs containing immunotags before the TM domain to assess membrane insertion using proteinase K digestion. We confirmed the N(in)-C(out) (type II) topology of RodZ and established the absence of a targeting signal other than the TM domain. RodZ was not inserted into the membrane under SecA depletion conditions or in the presence of sodium azide, which is known to inhibit SecA. Insertion failed when the TM proton gradient was abolished with Carbonyl cyanide m-chlorophenyl hydrazone. Insertion also failed when RodZ was expressed in SecE-depleted E. coli, indicating that the SecYEG translocon is required for RodZ assembly. Protease accessibility assays of RodZ in other E. coli depletion strains revealed that insertion is independent of SecB, YidC, and SecD/F. Insertion was found to be only weakly dependent on the signal recognition particle pathway: insertion was weakly dependent on the Ffh but independent of FtsY. We conclude that membrane insertion of RodZ requires only the SecYEG translocon, the SecA ATPase motor, and the TM proton motive force.
Collapse
Affiliation(s)
- Swati Rawat
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | - Lu Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Lindner
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems, University of California at Irvine, Irvine, CA 92697-4560, USA.
| |
Collapse
|
12
|
Cymer F, von Heijne G, White SH. Mechanisms of integral membrane protein insertion and folding. J Mol Biol 2014; 427:999-1022. [PMID: 25277655 DOI: 10.1016/j.jmb.2014.09.014] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
Abstract
The biogenesis, folding, and structure of α-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons--often referred to as protein-conducting channels--for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion.
Collapse
Affiliation(s)
- Florian Cymer
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm.,Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| | - Stephen H White
- Department of Physiology and Biophysics and the Center for Biomembrane Systems University of California, Irvine Irvine, CA 92697
| |
Collapse
|
13
|
Zhu L, Wasey A, White SH, Dalbey RE. Charge composition features of model single-span membrane proteins that determine selection of YidC and SecYEG translocase pathways in Escherichia coli. J Biol Chem 2013; 288:7704-7716. [PMID: 23355473 DOI: 10.1074/jbc.m112.429431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane.
Collapse
Affiliation(s)
- Lu Zhu
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Abdul Wasey
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560
| | - Ross E Dalbey
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
14
|
Zhu L, Klenner C, Kuhn A, Dalbey RE. Both YidC and SecYEG Are Required for Translocation of the Periplasmic Loops 1 and 2 of the Multispanning Membrane Protein TatC. J Mol Biol 2012; 424:354-67. [DOI: 10.1016/j.jmb.2012.09.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/28/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|
15
|
Neugebauer SA, Baulig A, Kuhn A, Facey SJ. Membrane Protein Insertion of Variant MscL Proteins Occurs at YidC and SecYEG of Escherichia coli. J Mol Biol 2012; 417:375-86. [DOI: 10.1016/j.jmb.2012.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/23/2011] [Accepted: 01/26/2012] [Indexed: 10/14/2022]
|
16
|
YidC-Driven Membrane Insertion of Single Fluorescent Pf3 Coat Proteins. J Mol Biol 2011; 412:165-75. [DOI: 10.1016/j.jmb.2011.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/13/2011] [Accepted: 07/13/2011] [Indexed: 11/24/2022]
|
17
|
Fontaine F, Fuchs RT, Storz G. Membrane localization of small proteins in Escherichia coli. J Biol Chem 2011; 286:32464-74. [PMID: 21778229 DOI: 10.1074/jbc.m111.245696] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli synthesize over 60 poorly understood small proteins of less than 50 amino acids. A striking feature of these proteins is that 65% contain a predicted α-helical transmembrane (TM) domain. This prompted us to examine the localization, topology, and membrane insertion of the small proteins. Biochemical fractionation showed that, consistent with the predicted TM helix, the small proteins generally are most abundant in the inner membrane fraction. Examples of both N(in)-C(out) and N(out)-C(in) orientations were found in assays of topology-reporter fusions to representative small TM proteins. Interestingly, however, three of nine tested proteins display dual topology. Positive residues close to the transmembrane domains are conserved, and mutational analysis of one small protein, YohP, showed that the positive inside rule applies for single transmembrane domain proteins as has been observed for larger proteins. Finally, fractionation analysis of small protein localization in strains depleted of the Sec or YidC membrane insertion pathways uncovered differential requirements. Some small proteins appear to be affected by both Sec and YidC depletion, others showed more dependence on one or the other insertion pathway, whereas one protein was not affected by depletion of either Sec or YidC. Thus, despite their diminutive size, small proteins display considerable diversity in topology, biochemical features, and insertion pathways.
Collapse
Affiliation(s)
- Fanette Fontaine
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
18
|
Facey SJ, Kuhn A. Biogenesis of bacterial inner-membrane proteins. Cell Mol Life Sci 2010; 67:2343-62. [PMID: 20204450 PMCID: PMC11115511 DOI: 10.1007/s00018-010-0303-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/26/2022]
Abstract
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.
Collapse
Affiliation(s)
- Sandra J. Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Andreas Kuhn
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
19
|
Pop OI, Soprova Z, Koningstein G, Scheffers DJ, van Ulsen P, Wickström D, de Gier JW, Luirink J. YidC is required for the assembly of the MscL homopentameric pore. FEBS J 2009; 276:4891-9. [DOI: 10.1111/j.1742-4658.2009.07188.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Severi E, Javelle A, Merrick M. The conserved carboxy-terminal region of the ammonia channel AmtB plays a critical role in channel function. Mol Membr Biol 2009; 24:161-71. [PMID: 17453422 DOI: 10.1080/09687860601129420] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The ammonium transport (Amt) proteins are a highly conserved family of integral membrane proteins found in eubacteria, archaea, fungi and plants. Genetic, biochemical and bioinformatic analyses suggest that they have a common tertiary structure comprising eleven trans-membrane helices with an N-out, C-in topology. The cytoplasmic C-terminus is variable in length but includes a core region of some 22 residues with considerable sequence conservation. Previous studies have indicated that this C-terminus is not absolutely required for Amt activity but that mutations that alter C-terminal residues can have very marked effects. Using the Escherichia coli AmtB protein as a model system for Amt proteins, we have carried out an extensive site-directed mutagenesis study to investigate the possible role of this region of the protein. Our data indicate that nearly all mutations fall into two phenotypic classes that are best explained in terms of two distinct effects of the C-terminal region on AmtB activity. Residues within the C-terminus play a significant role in normal AmtB function and the C-terminal region might also mediate co-operativity between the three subunits of AmtB.
Collapse
|
21
|
Bonnefoy N, Fiumera HL, Dujardin G, Fox TD. Roles of Oxa1-related inner-membrane translocases in assembly of respiratory chain complexes. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:60-70. [PMID: 18522806 PMCID: PMC2658530 DOI: 10.1016/j.bbamcr.2008.05.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 11/28/2022]
Abstract
Members of the family of the polytopic inner membrane proteins are related to Saccharomyces cerevisiae Oxa1 function in the assembly of energy transducing complexes of mitochondria and chloroplasts. Here we focus on the two mitochondrial members of this family, Oxa1 and Cox18, reviewing studies on their biogenesis as well as their functions, reflected in the phenotypic consequences of their absence in various organisms. In yeast, cytochrome c oxidase subunit II (Cox2) is a key substrate of these proteins. Oxa1 is required for co-translational translocation and insertion of Cox2, while Cox18 is necessary for the export of its C-terminal domain. Genetic and biochemical strategies have been used to investigate the functions of distinct domains of Oxa1 and to identify its partners in protein insertion/translocation. Recent work on the related bacterial protein YidC strongly indicates that it is capable of functioning alone as a translocase for hydrophilic domains and an insertase for TM domains. Thus, the Oxa1 and Cox18 probably catalyze these reactions directly in a co- and/or posttranslational way. In various species, Oxa1 appears to assist in the assembly of different substrate proteins, although it is still unclear how Oxa1 recognizes its substrates, and whether additional factors participate in this beyond its direct interaction with mitochondrial ribosomes, demonstrated in S. cerevisiae. Oxa1 is capable of assisting posttranslational insertion and translocation in isolated mitochondria, and Cox18 may posttranslationally translocate its only known substrate, the Cox2 C-terminal domain, in vivo. Detailed understanding of the mechanisms of action of these two proteins must await the resolution of their structure in the membrane and the development of a true in vitro mitochondrial translation system.
Collapse
Affiliation(s)
- Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Heather L. Fiumera
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | - Geneviève Dujardin
- Centre de Génétique Moléculaire, CNRS UPR 2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thomas D. Fox
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
22
|
Maier KS, Hubich S, Liebhart H, Krauss S, Kuhn A, Facey SJ. An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane. Mol Microbiol 2008; 68:1471-84. [PMID: 18433452 PMCID: PMC2440551 DOI: 10.1111/j.1365-2958.2008.06246.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sensor protein KdpD of Escherichia coli is composed of a large N-terminal hydrophilic region (aa 1–400), four transmembrane regions (aa 401–498) and a large hydrophilic region (aa 499–894) at the C-terminus. KdpD requires the signal recognition particle (SRP) for its targeting to the membrane. Deletions within KdpD show that the first 50 residues are required for SRP-driven membrane insertion. A fusion protein of the green fluorescent protein (GFP) with KdpD is found localized at the membrane only when SRP is present. The membrane targeting of GFP was not observed when the first 50 KdpD residues were deleted. A truncated mutant of KdpD containing only the first 25 amino acids fused to GFP lost its ability to specifically interact with SRP, whereas a specific interaction between SRP and the first 48 amino acids of KdpD fused to GFP was confirmed by pull-down experiments. Conclusively, a small amphiphilic region of 27 residues within the amino-terminal domain of KdpD (aa 22–48) is recognized by SRP and targets the protein to the membrane. This shows that membrane proteins with a large N-terminal region in the cytoplasm can be membrane-targeted early on to allow co-translational membrane insertion of their distant transmembrane regions.
Collapse
Affiliation(s)
- Katja S Maier
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Effects of SecE depletion on the inner and outer membrane proteomes of Escherichia coli. J Bacteriol 2008; 190:3505-25. [PMID: 18296516 DOI: 10.1128/jb.01631-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sec translocon is a protein-conducting channel that allows polypeptides to be transferred across or integrated into a membrane. Although protein translocation and insertion in Escherichia coli have been studied using only a small set of specific model substrates, it is generally assumed that most secretory proteins and inner membrane proteins use the Sec translocon. Therefore, we have studied the role of the Sec translocon using subproteome analysis of cells depleted of the essential translocon component SecE. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and extensive immunoblotting. The analysis showed that upon SecE depletion (i) secretory proteins aggregated in the cytoplasm and the cytoplasmic sigma(32) stress response was induced, (ii) the accumulation of outer membrane proteins was reduced, with the exception of OmpA, Pal, and FadL, and (iii) the accumulation of a surprisingly large number of inner membrane proteins appeared to be unaffected or increased. These proteins lacked large translocated domains and/or consisted of only one or two transmembrane segments. Our study suggests that several secretory and inner membrane proteins can use Sec translocon-independent pathways or have superior access to the remaining Sec translocons present in SecE-depleted cells.
Collapse
|
24
|
Isolation of cold-sensitive yidC mutants provides insights into the substrate profile of the YidC insertase and the importance of transmembrane 3 in YidC function. J Bacteriol 2007; 189:8961-72. [PMID: 17933892 DOI: 10.1128/jb.01365-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YidC, a 60-kDa integral membrane protein, plays an important role in membrane protein insertion in bacteria. YidC can function together with the SecYEG machinery or operate independently as a membrane protein insertase. In this paper, we describe two new yidC mutants that lead to a cold-sensitive phenotype in bacterial cell growth. Both alleles impart a cold-sensitive phenotype and result from point mutations localized to the third transmembrane (TM3) segment of YidC, indicating that this region is crucial for YidC function. We found that the yidC(C423R) mutant confers a weak phenotype on membrane protein insertion while a yidC(P431L) mutant leads to a stronger phenotype. In both cases, the affected substrates include the Pf3 coat protein and ATP synthase F(1)F(o) subunit c (F(o)C), while CyoA (the quinol binding subunit of the cytochrome bo3 quinol oxidase complex) and wild-type procoat are slightly affected or not affected in either cold-sensitive mutant. To determine if the different substrates require various levels of YidC activity for membrane insertion, we performed studies where YidC was depleted using an arabinose-dependent expression system. We found that -3M-PC-Lep (a construct with three negatively charged residues inserted into the middle of the procoat-Lep [PC-Lep] protein) and Pf3 P2 (a construct with the Lep P2 domain added at the C terminus of Pf3 coat) required the highest amount of YidC and that CyoA-N-P2 (a construct with the amino-terminal part of CyoA fused to the Lep P2 soluble domain) and PC-Lep required the least, while F(o)C required moderate YidC levels. Although the cold-sensitive mutations can preferentially affect one substrate over another, our results indicate that different substrates require different levels of YidC activity for membrane insertion. Finally, we obtained several intragenic suppressors that overcame the cold sensitivity of the C423R mutation. One pair of mutations suggests an interaction between TM2 and TM3 of YidC. The studies reveal the critical regions of the YidC protein and provide insight into the substrate profile of the YidC insertase.
Collapse
|
25
|
van Bloois E, ten Hagen-Jongman CM, Luirink J. Flexibility in targeting and insertion during bacterial membrane protein biogenesis. Biochem Biophys Res Commun 2007; 362:727-33. [PMID: 17727816 DOI: 10.1016/j.bbrc.2007.08.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 08/10/2007] [Indexed: 11/19/2022]
Abstract
The biogenesis of Escherichia coli inner membrane proteins (IMPs) is assisted by targeting and insertion factors such as the signal recognition particle (SRP), the Sec-translocon and YidC with translocation of (large) periplasmic domains energized by SecA and the proton motive force (pmf). The use of these factors and forces is probably primarily determined by specific structural features of an IMP. To analyze these features we have engineered a set of model IMPs based on endogenous E. coli IMPs known to follow distinct targeting and insertion pathways. The modified model IMPs were analyzed for altered routing using an in vivo protease mapping approach. The data suggest a facultative use of different combinations of factors.
Collapse
Affiliation(s)
- Edwin van Bloois
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
26
|
Facey SJ, Neugebauer SA, Krauss S, Kuhn A. The Mechanosensitive Channel Protein MscL Is Targeted by the SRP to The Novel YidC Membrane Insertion Pathway of Escherichia coli. J Mol Biol 2007; 365:995-1004. [PMID: 17113597 DOI: 10.1016/j.jmb.2006.10.083] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Sandra J Facey
- Institute of Microbiology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
27
|
Rothenbücher MC, Facey SJ, Kiefer D, Kossmann M, Kuhn A. The cytoplasmic C-terminal domain of the Escherichia coli KdpD protein functions as a K+ sensor. J Bacteriol 2006; 188:1950-8. [PMID: 16484207 PMCID: PMC1426542 DOI: 10.1128/jb.188.5.1950-1958.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The KdpD protein is a K(+) sensor kinase located in the cytoplasmic membrane of Escherichia coli. It contains four transmembrane stretches and two short periplasmic loops of 4 and 10 amino acid residues, respectively. To determine which part of KdpD functions as a K(+) sensor, genetic variants were constructed with truncations or altered arrangements of the transmembrane segments. All KdpD constructs were tested by complementation of an E. coli kdpD deletion strain for their ability to grow at a K(+) concentration of 0.1 mM in the medium. A soluble protein composed of the C-terminal cytoplasmic domain was able to complement the kdpD deletion strain. In addition, analysis of the beta-galactosidase activity of an E. coli strain which carries a transcriptional fusion of the upstream region of the kdpFABC operon and a promoterless lacZ gene revealed that this soluble KdpD mutant responds to changes in the K(+) concentration in the extracellular medium. The results suggest that the sensing and response functions are both located in the C-terminal domain and might be modulated by the N-terminal domain as well as by membrane anchoring.
Collapse
|
28
|
van Dalen A, de Kruijff B. The role of lipids in membrane insertion and translocation of bacterial proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:97-109. [PMID: 15546660 DOI: 10.1016/j.bbamcr.2004.03.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 02/03/2004] [Accepted: 03/01/2004] [Indexed: 11/20/2022]
Abstract
Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process.
Collapse
Affiliation(s)
- Annemieke van Dalen
- Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Facey SJ, Kuhn A. Membrane integration of E. coli model membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:55-66. [PMID: 15546657 DOI: 10.1016/j.bbamcr.2004.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.
Collapse
Affiliation(s)
- Sandra J Facey
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
30
|
Yi L, Celebi N, Chen M, Dalbey RE. Sec/SRP Requirements and Energetics of Membrane Insertion of Subunits a, b, and c of the Escherichia coli F1F0 ATP Synthase. J Biol Chem 2004; 279:39260-7. [PMID: 15263011 DOI: 10.1074/jbc.m405490200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, the role of YidC in the membrane protein biogenesis of the F(0) sector of the Escherichia coli F(1)F(0) ATP synthase was investigated. Whereas subunits a and c of the F(1)F(0) ATP synthase were strictly dependent on YidC for membrane insertion, subunit b required YidC for efficient insertion (Yi, L., Jiang, F., Chen, M., Cain, B., Bolhuis, A., and Dalbey, R. E. (2003) Biochemistry 42, 10537-10544). In this paper, we investigated other protein components and energetics that are required in the membrane protein assembly of the F(0) sector subunits. We show here that the Sec translocase and the signal recognition particle (SRP) pathway are required for membrane insertion of subunits a and b. In contrast, subunit c required neither the Sec machinery nor the SRP pathway for insertion. While the proton motive force was not required for insertion of subunits b and c, it was required for translocation of the negatively charged periplasmic NH(2)-terminal tail of subunit a, whereas periplasmic loop 2 of subunit a could insert in a proton motive force-independent manner. Taken together, the in vivo data suggest that subunits a and b are inserted by the Sec/SRP pathway with the help of YidC, and subunit c is integrated into the membrane by the novel YidC pathway.
Collapse
Affiliation(s)
- Liang Yi
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
31
|
van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJM. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. ACTA ACUST UNITED AC 2004; 165:213-22. [PMID: 15096523 PMCID: PMC2172039 DOI: 10.1083/jcb.200402100] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro–synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.
Collapse
Affiliation(s)
- Martin van der Laan
- Dept. of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, Netherlands
| | | | | | | | | |
Collapse
|
32
|
Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 2003; 278:50128-35. [PMID: 14525982 DOI: 10.1074/jbc.m309840200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once inserted, transmembrane segments of polytopic membrane proteins are generally considered stably oriented due to the large free energy barrier to topological reorientation of adjacent extramembrane domains. However, the topology and function of the polytopic membrane protein lactose permease of Escherichia coli are dependent on the membrane phospholipid composition, revealing topological dynamics of transmembrane domains after stable membrane insertion (Bogdanov, M., Heacock, P. N., and Dowhan, W. (2002) EMBO J. 21, 2107-2116). In this study, we show that the high affinity phenylalanine permease PheP shares many similarities with lactose permease. PheP assembled in a mutant of E. coli lacking phosphatidylethanolamine (PE) exhibited significantly reduced active transport function and a complete inversion in topological orientation of the N terminus and adjoining transmembrane hairpin loop compared with PheP in a PE-containing strain. Introduction of PE following the assembly of PheP triggered a reorientation of the N terminus and adjacent hairpin to their native orientation associated with regain of wild-type transport function. The reversible orientation of these secondary transport proteins in response to a change in phospholipid composition might be a result of inherent conformational flexibility necessary for transport function or during protein assembly.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biochemistry and Molecular Biology, University of Texas, Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|