1
|
Ye P, Duan W, Leng YQ, Wang YK, Tan X, Wang WZ. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front Cardiovasc Med 2022; 9:974035. [PMID: 36312232 PMCID: PMC9605584 DOI: 10.3389/fcvm.2022.974035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Xing Tan
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Wei-Zhong Wang
| |
Collapse
|
2
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
3
|
Kazazić S, Karačić Z, Sabljić I, Agić D, Tomin M, Abramić M, Dadlez M, Tomić A, Tomić S. Conservation of the conformational dynamics and ligand binding within M49 enzyme family. RSC Adv 2018; 8:13310-13322. [PMID: 35542530 PMCID: PMC9079729 DOI: 10.1039/c7ra13059g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/25/2022] Open
Abstract
The hydrogen deuterium exchange (HDX) mass spectrometry combined with molecular dynamics (MD) simulations was employed to investigate conformational dynamics and ligand binding within the M49 family (dipeptidyl peptidase III family). Six dipeptidyl peptidase III (DPP III) orthologues, human, yeast, three bacterial and one plant (moss) were studied. According to the results, all orthologues seem to be quite compact wherein DPP III from the thermophile Caldithrix abyssi seems to be the most compact. The protected regions are located within the two domains core and the overall flexibility profile consistent with semi-closed conformation as the dominant protein form in solution. Besides conservation of conformational dynamics within the M49 family, we also investigated the ligand, pentapeptide tynorphin, binding. By comparing HDX data obtained for unliganded protein with those obtained for its complex with tynorphin it was found that the ligand binding mode is conserved within the family. Tynorphin binds within inter-domain cleft, close to the lower domain β-core and induces its stabilization in all orthologues. Docking combined with MD simulations revealed details of the protein flexibility as well as of the enzyme–ligand interactions. The hydrogen deuterium exchange (HDX) mass spectrometry combined with molecular dynamics (MD) simulations was employed to investigate conformational dynamics and ligand binding within the M49 family (dipeptidyl peptidase III family).![]()
Collapse
Affiliation(s)
- Saša Kazazić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Zrinka Karačić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Igor Sabljić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Dejan Agić
- Josip Juraj Strossmayer University of Osijek
- Faculty of Agriculture
- Croatia
| | - Marko Tomin
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Marija Abramić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Poland
| | - Antonija Tomić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| | - Sanja Tomić
- Ruđer Bošković Institute
- Institute of Biochemistry and Biophysics Polish Academy of Sciences
- Croatia
| |
Collapse
|
4
|
Agić D, Brkić H, Tomić S, Karačić Z, Špoljarević M, Lisjak M, Bešlo D, Abramić M. Validation of flavonoids as potential dipeptidyl peptidase III inhibitors: Experimental and computational approach. Chem Biol Drug Des 2016; 89:619-627. [DOI: 10.1111/cbdd.12887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Dejan Agić
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Hrvoje Brkić
- Faculty of Medicine; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | | | | | - Marija Špoljarević
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Miroslav Lisjak
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | - Drago Bešlo
- Faculty of Agriculture in Osijek; Josip Juraj Strossmayer University of Osijek; Osijek Croatia
| | | |
Collapse
|
5
|
Pang X, Shimizu A, Kurita S, Zankov DP, Takeuchi K, Yasuda-Yamahara M, Kume S, Ishida T, Ogita H. Novel Therapeutic Role for Dipeptidyl Peptidase III in the Treatment of Hypertension. Hypertension 2016; 68:630-41. [PMID: 27456521 DOI: 10.1161/hypertensionaha.116.07357] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
Dipeptidyl peptidase III (DPP III) cleaves dipeptide residues from the N terminus of polypeptides ranging from 3 to 10 amino acids in length and is implicated in pathophysiological processes through the breakdown of certain oligopeptides or their fragments. In this study, we newly identified the biochemical properties of DPP III for angiotensin II (Ang II), which consists of 8 amino acids. DPP III quickly and effectively digested Ang II with Km = 3.7×10(-6) mol/L. In the in vivo experiments, DPP III remarkably reduced blood pressure in Ang II-infused hypertensive mice without alteration of heart rate. DPP III did not affect hemodynamics in noradrenalin-induced hypertensive mice or normotensive mice, suggesting specificity for Ang II. When DPP III was intravenously injected every other day for 4 weeks after Ang II osmotic minipump implantation in mice, Ang II-induced cardiac fibrosis and hypertrophy were significantly attenuated. This DPP III effect was at least similar to that caused by an angiotensin receptor blocker candesartan. Furthermore, administration of DPP III dramatically reduced the increase in urine albumin excretion and kidney injury and inflammation markers caused by Ang II infusion. Both DPP III and candesartan administration showed slight additive inhibition in the albumin excretion. These results reveal a novel potential use of DPP III in the treatment of hypertension and its protective effects on hypertension-sensitive organs, such as the heart and kidneys.
Collapse
Affiliation(s)
- Xiaoling Pang
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Akio Shimizu
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Souichi Kurita
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Dimitar P Zankov
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Keisuke Takeuchi
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Mako Yasuda-Yamahara
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Shinji Kume
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Tetsuo Ishida
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.)
| | - Hisakazu Ogita
- From the Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology (X.P., A.S., S.Kurita, D.P.Z., K.T., H.O.), Division of Diabetology, Endocrinology, Nephrology, and Neurology, Department of Medicine, Shiga University of Medical Science, Otsu, Japan (M.Y-Y., S.Kume); Chemistry Division, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Japan (T.I.); and Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China (X.P.).
| |
Collapse
|
6
|
Kumar P, Reithofer V, Reisinger M, Wallner S, Pavkov-Keller T, Macheroux P, Gruber K. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition. Sci Rep 2016; 6:23787. [PMID: 27025154 PMCID: PMC4824452 DOI: 10.1038/srep23787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/15/2016] [Indexed: 02/02/2023] Open
Abstract
Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors.
Collapse
Affiliation(s)
- Prashant Kumar
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Viktoria Reithofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Manuel Reisinger
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010 Graz, Austria
| | - Tea Pavkov-Keller
- ACIB - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010 Graz, Austria.,BioTechMed-Graz, Austria
| | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Humboldtstraße 50/3, 8010 Graz, Austria.,BioTechMed-Graz, Austria
| |
Collapse
|
7
|
Jodha D, Attri P, Khaket TP, Singh J. Isolation, purification and biochemical characterization of dipeptidyl peptidase-III from germinated Vigna radiata seeds. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III. Proc Natl Acad Sci U S A 2012; 109:6525-30. [PMID: 22493238 DOI: 10.1073/pnas.1118005109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft ("entropy reservoir") as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies.
Collapse
|
9
|
Cardoen D, Ernst UR, Boerjan B, Bogaerts A, Formesyn E, de Graaf DC, Wenseleers T, Schoofs L, Verleyen P. Worker Honeybee Sterility: A Proteomic Analysis of Suppressed Ovary Activation. J Proteome Res 2012; 11:2838-50. [DOI: 10.1021/pr201222s] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dries Cardoen
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Belgium
| | - Ulrich R. Ernst
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Belgium
| | - Bart Boerjan
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | - Annelies Bogaerts
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | | | | | | | - Liliane Schoofs
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| | - Peter Verleyen
- Research group of Functional
Genomics and Proteomics, KU Leuven, Belgium
| |
Collapse
|
10
|
Tomić A, Abramić M, Spoljarić J, Agić D, Smith DM, Tomić S. Human dipeptidyl peptidase III: insights into ligand binding from a combined experimental and computational approach. J Mol Recognit 2012; 24:804-14. [PMID: 21812054 DOI: 10.1002/jmr.1115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human dipeptidyl peptidase III (DPP III) is a zinc-exopeptidase with implied roles in protein catabolism, pain modulation, and defense against oxidative stress. To understand the mode of ligand binding into its active site, we performed molecular modeling, site-directed mutagenesis, and biochemical analyses. Using the recently determined crystal structure of the human DPP III we built complexes between both, the wild-type (WT) protein and its mutant H568N with the preferred substrate Arg-Arg-2-naphthylamide (RRNA) and a competitive inhibitor Tyr-Phe-hydroxamate (Tyr-Phe-NHOH). The mutation of the conserved His568, structurally equivalent to catalytically important His231 in thermolysin, to Asn, resulted in a 1300-fold decrease of k(cat) for RRNA hydrolysis and in significantly lowered affinity for the inhibitor. Molecular dynamics simulations revealed the key protein-ligand interactions as well as the ligand-induced reorganization of the binding site and its partial closure. Simultaneously, the non-catalytic domain was observed to stretch and the opening at the wide side of the inter-domain cleft became enhanced. The driving force for these changes was the formation of the hydrogen bond between Asp372 and the bound ligand. The structural and dynamical differences, found for the ligand binding to the WT enzyme and the H568N mutant, and the calculated binding free energies, agree well with the measured affinities. On the basis of the obtained results we suggest a possible reaction mechanism. In addition, this work provides a foundation for further site-directed mutagenesis experiments, as well as for modeling the reaction itself.
Collapse
Affiliation(s)
- Antonija Tomić
- Division of Physical Chemistry, Rudjer Bošković Institute Bijenička 54,10002 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
11
|
Prajapati SC, Chauhan SS. Dipeptidyl peptidase III: a multifaceted oligopeptide N-end cutter. FEBS J 2011; 278:3256-76. [DOI: 10.1111/j.1742-4658.2011.08275.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Shukla AA, Jain M, Chauhan SS. Ets-1/Elk-1 is a critical mediator of dipeptidyl-peptidase III transcription in human glioblastoma cells. FEBS J 2010; 277:1861-75. [PMID: 20236318 DOI: 10.1111/j.1742-4658.2010.07603.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dipetidyl-peptidase III is a metallopeptidase involved in a number of physiological processes and its expression has been reported to increase with the histological aggressiveness of human ovarian primary carcinomas. Because no information regarding the regulation of its expression was available, experiments were designed to clone, define and characterize the promoter region of the human dipeptidyl-peptidase III (DPP-III) gene. In this study, we cloned a 1038 bp 5'-flanking DNA fragment of the human DPP-III gene for the first time and demonstrated strong promoter activity in this region. Deletion analysis revealed that as few as 45 nucleotides proximal to the transcription start site retained approximately 40% of the activity of the full-length promoter. This promoter lacked the TATA box but contained multiple GC boxes and a single CAAT box. Similarly, two Ets-1/Elk-1-binding motifs are present in the first 25 nucleotides from the transcription start site. Binding of Ets-1/Elk-1 proteins to these motifs was visualized by electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutations of these binding sites abolished not only binding of the Ets protein, but also the intrinsic promoter activity. Increased DNA-binding activity of Ets-1/Elk-1 by v-Ha-ras also augmented the mRNA level and promoter activity of this gene. Similarly, co-transfection of DPP-III promoter-reporter constructs with Ets-1 expression vector led to a significant increase in promoter activity. From these results, we conclude that Ets-1/Elk-1 plays a critical role in transcription of the human DPP-III gene.
Collapse
Affiliation(s)
- Abhay A Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|
13
|
Jajcanin-Jozić N, Deller S, Pavkov T, Macheroux P, Abramić M. Identification of the reactive cysteine residues in yeast dipeptidyl peptidase III. Biochimie 2009; 92:89-96. [PMID: 19825391 DOI: 10.1016/j.biochi.2009.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 09/24/2009] [Indexed: 11/24/2022]
Abstract
Dipeptidyl peptidases III (DPPs III) form a distinct metallopeptidase family characterized by the unique HEXXGH motif. High susceptibility to inactivation by organomercurials suggests the presence of a reactive cysteine residue(s) in, or close to, their active site. Yeast DPP III contains five Cys, none of which is absolutely conserved within the family. In order to identify reactive residue(s), site-directed mutagenesis on yeast His(6)-tagged DPP III was employed to substitute specifically all five cysteine residues to serine. The variant enzymes thus obtained were enzymatically active and showed an overall structure not greatly affected by the mutations as judged by circular dichroism. Analysis by native and SDS-PAGE under non-reducing conditions revealed the existence of a monomeric and dimeric form in all DPP III proteins except in the C130S, implying that dimerization of yeast DPP III is mediated by the surface-exposed cysteine 130. The investigation of the effect of thiol reagent 4,4'-dithiodipyridine (DTDP) on all five Cys to Ser single protein variants showed that Cys639 and Cys518 are more reactive than the remainder. Only the C639S mutant protein displayed the remarkable resistance against p-hydroxy-mercuribenzoate (pHMB) indicating that modification of Cys639 is responsible for the fast inactivation of yeast DPP III by this sulfhydryl reagent.
Collapse
|
14
|
Isaac RE, Bland ND, Shirras AD. Neuropeptidases and the metabolic inactivation of insect neuropeptides. Gen Comp Endocrinol 2009; 162:8-17. [PMID: 19135055 DOI: 10.1016/j.ygcen.2008.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 11/26/2022]
Abstract
Neuropeptidases play a key role in regulating neuropeptide signalling activity in the central nervous system of animals. They are oligopeptidases that are generally found on the surface of neuronal cells facing the synaptic and peri-synaptic space and therefore are ideally placed for the metabolic inactivation of neuropeptide transmitters/modulators. This review discusses the structure of insect neuropeptides in relation to their susceptibility to hydrolysis by peptidases and the need for specialist enzymes to degrade many neuropeptides. It focuses on five neuropeptidase families (neprilysin, dipeptidyl-peptidase IV, angiotensin-converting enzyme, aminopeptidase and dipeptidyl aminopeptidase III) that have been implicated in the metabolic inactivation of neuropeptides in the central nervous system of insects. Experimental evidence for the involvement of these peptidases in neuropeptide metabolism is reviewed and their properties are compared to similar neuropeptide inactivating peptidases of the mammalian brain. We also discuss how the sequencing of insect genomes has led to the molecular identification of candidate neuropeptidase genes.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Institute of Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
15
|
Spoljarić J, Salopek-Sondi B, Makarević J, Vukelić B, Agić D, Simaga S, Jajcanin-Jozić N, Abramić M. Absolutely conserved tryptophan in M49 family of peptidases contributes to catalysis and binding of competitive inhibitors. Bioorg Chem 2009; 37:70-6. [PMID: 19375145 DOI: 10.1016/j.bioorg.2009.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/27/2022]
Abstract
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the K(m) values for two dipeptidyl 2-naphthylamide substrates. However, the K(m) for the W300L mutant was elevated 5-fold and the k(cat) value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites. These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme's S2 subsite.
Collapse
Affiliation(s)
- Jasminka Spoljarić
- Division of Organic Chemistry and Biochemistry, Ruder Bosković Institute, Bijenicka cesta 54, P.O. Box 180, HR-10002 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baral PK, Jajcanin-Jozić N, Deller S, Macheroux P, Abramić M, Gruber K. The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding. J Biol Chem 2008; 283:22316-24. [PMID: 18550518 DOI: 10.1074/jbc.m803522200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipeptidyl-peptidases III (DPP III) are zinc-dependent enzymes that specifically cleave the first two amino acids from the N terminus of different length peptides. In mammals, DPP III is associated with important physiological functions and is a potential biomarker for certain types of cancer. Here, we present the 1.95-A crystal structure of yeast DPP III representing the prototype for the M49 family of metallopeptidases. It shows a novel fold with two domains forming a wide cleft containing the catalytic metal ion. DPP III exhibits no overall similarity to other metallopeptidases, such as thermolysin and neprilysin, but zinc coordination and catalytically important residues are structurally conserved. Substrate recognition is accomplished by a binding site for the N terminus of the peptide at an appropriate distance from the metal center and by a series of conserved arginine residues anchoring the C termini of different length substrates.
Collapse
Affiliation(s)
- Pravas Kumar Baral
- Institute of Molecular Biosciences, University of Graz, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
17
|
Salopek-Sondi B, Vukelić B, Spoljarić J, Simaga S, Vujaklija D, Makarević J, Jajcanin N, Abramić M. Functional tyrosine residue in the active center of human dipeptidyl peptidase III. Biol Chem 2008; 389:163-7. [PMID: 18163885 DOI: 10.1515/bc.2008.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract Human dipeptidyl peptidase III (DPP III) is a member of the metallopeptidase family M49 with an implied role in the pain-modulatory system and endogenous defense against oxidative stress. Here, we report the heterologous expression of human DPP III and the site-directed mutagenesis results which demonstrate a functional role for Tyr318 at the active site of this enzyme. The substitution of Tyr318 to Phe decreased kcat by two orders of magnitude without altering the binding affinity of substrate, or of a competitive hydroxamate inhibitor designed to interact with S1 and S2 subsites. The results indicate that the conserved tyrosine could be involved in transition state stabilization during the catalytic action of M49 peptidases.
Collapse
Affiliation(s)
- Branka Salopek-Sondi
- Division of Molecular Biology, Ruder Bosković Institute, Bijenicka cesta 54, HR-10002 Zagreb, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Barsun M, Jajcanin N, Vukelić B, Spoljarić J, Abramić M. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins. Biol Chem 2007; 388:343-8. [PMID: 17338643 DOI: 10.1515/bc.2007.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.
Collapse
Affiliation(s)
- Marina Barsun
- PLIVA Research and Development Ltd., Prilaz baruna Filipovića 25, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
19
|
Agić D, Hranjec M, Jajcanin N, Starcević K, Karminski-Zamola G, Abramić M. Novel amidino-substituted benzimidazoles: Synthesis of compounds and inhibition of dipeptidyl peptidase III. Bioorg Chem 2007; 35:153-69. [PMID: 17174378 DOI: 10.1016/j.bioorg.2006.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/22/2006] [Accepted: 11/03/2006] [Indexed: 11/19/2022]
Abstract
Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is a zinc-hydrolase with an indicated role in the mammalian pain modulatory system. In order to find a potent antagonist of this enzyme, we synthesized and screened the effect of a small set of benzimidazole derivatives on its activity. To improve the inhibitory potential, a cyclobutane ring was introduced as rigid conformation support to the diamidino substituted dibenzimidazoles. Two such compounds (1' and 4') from the group of cyclobutane derivatives containing amidino-substituted benzimidazole moieties, obtained by photochemical cyclization in water and by respecting rules of the "green chemistry" approach, were found to be strong DPP III inhibitors, with IC(50) value below 5 microM. Compound 1' displayed time-dependent inhibition towards human DPP III, characterized by the second-order rate constant of 6924+/-549 M(-1)min(-1) (K(i)=0.20 microM). The peptide substrate valorphin protected the enzyme from inactivation by 1'.
Collapse
Affiliation(s)
- Dejan Agić
- Department of Chemistry, Faculty of Agriculture, The Josip Juraj Strossmayer University, Trg Sv. Trojstva 3, P.O. Box 719, HR-31107 Osijek, Croatia
| | | | | | | | | | | |
Collapse
|
20
|
Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N, Mackiewicz M, Churchill GA, Pack AI. Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 2006; 27:337-50. [PMID: 16954408 DOI: 10.1152/physiolgenomics.00030.2006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functions of sleep and what controls it remain unanswered biological questions. According to the two-process model, a circadian process and a homeostatic process interact to regulate sleep. While progress has been made in understanding the molecular and cellular functions of the circadian process, the mechanisms of the homeostatic process remain undiscovered. We use the recently established sleep model system organism Drosophila melanogaster to examine dynamic changes in gene expression during sleep and during prolonged wakefulness in the brain. Our experimental design controls for circadian processes by killing animals at three matched time points from the beginning of the consolidated rest period [Zeitgeber time (ZT) 14)] under two conditions, sleep deprived and spontaneously sleeping. Using ANOVA at a false discovery rate of 5%, we have identified 252 genes that were differentially expressed between sleep-deprived and control groups in the Drosophila brain. Using linear trends analysis, we have separated the significant differentially expressed genes into nine temporal expression patterns relative to a common anchor point (ZT 14). The most common expression pattern is a decrease during extended wakefulness but no change during spontaneous sleep (n = 114). Genes in this category were involved in protein production (n = 47), calcium homeostasis, and membrane excitability (n = 5). Multiple mechanisms, therefore, act to limit wakefulness. In addition, by studying the effects of the mechanical stimulus used in our deprivation studies during the period when the animals are predominantly active, we provide evidence for a previously unappreciated role for the Drosophila immune system in the brain response to stress.
Collapse
Affiliation(s)
- John E Zimmerman
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mazzocco C, Gillibert-Duplantier J, Neaud V, Fukasawa KM, Claverol S, Bonneu M, Puiroux J. Identification and characterization of two dipeptidyl-peptidase III isoforms in Drosophila melanogaster. FEBS J 2006; 273:1056-64. [PMID: 16478478 DOI: 10.1111/j.1742-4658.2006.05132.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dipeptidyl-peptidase III (DPP III) hydrolyses small peptides with a broad substrate specificity. It is thought to be involved in a major degradation pathway of the insect neuropeptide proctolin. We report the purification and characterization of a soluble DPP III from 40 g Drosophila melanogaster. Western blot analysis with anti-(DPP III) serum revealed the purification of two proteins of molecular mass 89 and 82 kDa. MS/MS analysis of these proteins resulted in the sequencing of 45 and 41 peptide fragments, respectively, confirming approximately 60% of both annotated D. melanogaster DPP III isoforms (CG7415-PC and CG7415-PB) predicted at 89 and 82 kDa. Sequencing also revealed the specific catalytic domain HELLGH in both isoforms, indicating that they are both effective in degrading small peptides. In addition, with a probe specific for D. melanogaster DPP III, northern blot analysis of fruit fly total RNA showed two transcripts at approximately 2.6 and 2.3 kb, consistent with the translation of 89-kDa and 82-kDa DPP III proteins. Moreover, the purified enzyme hydrolyzed the insect neuropeptide proctolin (Km approximately 4 microm) at the second N-terminal peptide bound, and was inhibited by the specific DPP III inhibitor tynorphin. Finally, anti-(DPP III) immunoreactivity was observed in the central nervous system of D. melanogaster larva, supporting a functional role for DPP III in proctolin degradation. This study shows that DPP III is in actuality synthesized in D. melanogaster as 89-kDa and 82-kDa isoforms, representing two native proteins translated from two alternative mRNA transcripts.
Collapse
Affiliation(s)
- Claire Mazzocco
- Laboratoire de Neurobiologie des Réseaux, CNRS-UMR 5816, Université Bordeaux I, Talence, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Huang ZY, Yang PY, Almofti MR, Yu YL, Rui YC, Yang PY. Comparative analysis of the proteome of left ventricular heart of arteriosclerosis in rat. Life Sci 2005; 75:3103-15. [PMID: 15488891 DOI: 10.1016/j.lfs.2004.04.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/07/2004] [Indexed: 11/20/2022]
Abstract
Despite the worldwide occurrence of coronary atherosclerotic heart disease (CAHD), the pathogenic mechanisms underlying this disease remain largely unknown. In this study, the experimental model of atherosclerosis in rat (CAHD rat) was established by the injection of vitamin D3 associated with high fat diet for 6 weeks. By using the proteomic approach, we comparatively analyzed the proteome of the control and CAHD rat left ventricular myocardial tissues. We reproducibly separated over 2500 polypeptides by using two-dimensional electrophoresis (2-DE) at pH range of 3-11. Among these proteins, 26 proteins with large amount were identified using micro high performance liquid chromatography mass spectrometer/mass spectrometer (micro-HPLC-MS/MS). Using PDQUEST software to process the 2-DE gel images, 38 protein spots that significantly altered in CAHD were detected. Of these, 12 proteins were identified with high confidence by using 2-DE and matrix-associated laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS). The identification of protein alterations specify to CAHD would clarify the pathogenetic mechanisms involved in the disease and might be of prognostic and therapeutic benefit.
Collapse
Affiliation(s)
- Zhen-Yu Huang
- Department of Chemistry, Fudan University, 220 HanDan Road, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
23
|
Isaac RE, Taylor CA, Hamasaka Y, Nässel DR, Shirras AD. Proctolin in the post-genomic era: new insights and challenges. INVERTEBRATE NEUROSCIENCE 2004; 5:51-64. [PMID: 15378391 DOI: 10.1007/s10158-004-0029-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 12/27/2022]
Abstract
Complete understanding of how neuropeptides operate as neuromodulators and neurohormones requires integration of knowledge obtained at different levels of biology, including molecular, biochemical, physiological and whole organism studies. Major advances have recently been made in the understanding of the molecular basis of neuropeptide action in invertebrates by analysis of data generated from sequencing the genomes of several insect species, especially that of Drosophila melanogaster. This approach has quickly led to the identification of genes encoding: (1) novel neuropeptide sequences, (2) neuropeptide receptors and (3) peptidases that might be responsible for the processing and inactivation of neuropeptides. In this article, we review our current knowledge of the biosynthesis, receptor interaction and metabolic inactivation of the arthropod neuropeptide, proctolin, and how the analysis and exploitation of genome sequencing projects has provided new insights.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Molecular and Cellular Biology Research Group, Faculty of Biological Sciences, L.C. Miall Building, University of Leeds, LS2 9JT, Leeds, UK.
| | | | | | | | | |
Collapse
|