1
|
Wu H, Zhu P, Shu P, Zhang S. Screening and verification of hub genes in esophageal squamous cell carcinoma by integrated analysis. Sci Rep 2024; 14:6894. [PMID: 38519533 PMCID: PMC10959922 DOI: 10.1038/s41598-024-57320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors. However, the mechanisms underlying ESCC tumorigenesis have not been fully elucidated. Thus, we aimed to determine the key genes involved in ESCC tumorigenesis. The following bioinformatics analyses were performed: identification of differentially expressed genes (DEGs); gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis; integrated analysis of the protein-protein interaction network and Gene Expression Profiling Interactive Analysis database for validation of hub genes. Finally, western blotting and qPCR were used to explore the expression of cell division cycle 6 (CDC6) in ESCC cell lines. Immunohistochemistry analysis of ESCC samples from patients and matched clinical characteristics was used to determine the effects of CDC6. A total of 494 DEGs were identified, and functional enrichment was mainly focused on cell cycle and DNA replication. Biological pathway analysis of the hub genes was closely related to the cell cycle. We found that CDC6 was upregulated in ESCC cell lines and patient tissues and was related to the clinicopathological characteristics of ESCC. In conclusion, this study identified hub genes and crucial biological pathways related to ESCC tumorigenesis and integrated analyses indicated that CDC6 may be a novel diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Hongqiang Wu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Peiyao Zhu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Peng Shu
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China.
| |
Collapse
|
2
|
Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, Das BB. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res 2018; 46:5601-5617. [PMID: 29718323 PMCID: PMC6009676 DOI: 10.1093/nar/gky291] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Human tyrosyl-DNA phosphodiesterases (TDP) hydrolyze the phosphodiester bond between DNA and the catalytic tyrosine of Top1 to excise topoisomerase I cleavage complexes (Top1cc) that are trapped by camptothecin (CPT) and by genotoxic DNA alterations. Here we show that the protein arginine methyltransferase PRMT5 enhances the repair of Top1cc by direct binding to TDP1 and arginine dimethylation of TDP1 at residues R361 and R586. Top1-induced replication-mediated DNA damage induces TDP1 arginine methylation, enhancing its 3'- phosphodiesterase activity. TDP1 arginine methylation also increases XRCC1 association with TDP1 in response to CPT, and the recruitment of XRCC1 to Top1cc DNA damage foci. PRMT5 knockdown cells exhibit defective TDP1 activity with marked elevation in replication-coupled CPT-induced DNA damage and lethality. Finally, methylation of R361 and R586 stimulate TDP1 repair function and promote cell survival in response to CPT. Together, our findings provide evidence for the importance of PRMT5 for the post-translational regulation of TDP1 and repair of Top1cc.
Collapse
Affiliation(s)
- Ishita Rehman
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suparna M Basu
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Benu Brata Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
3
|
Huang Y, Amin A, Qin Y, Wang Z, Jiang H, Liang L, Shi L, Liang C. A Role of hIPI3 in DNA Replication Licensing in Human Cells. PLoS One 2016; 11:e0151803. [PMID: 27057756 PMCID: PMC4825987 DOI: 10.1371/journal.pone.0151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/06/2016] [Indexed: 01/08/2023] Open
Abstract
The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.
Collapse
Affiliation(s)
- Yining Huang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yan Qin
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Huadong Jiang
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lu Liang
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Linjing Shi
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chun Liang
- Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
- Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Fok Ying Tung Research Institute, Guangzhou, China
- Intelgen Ltd., Hong Kong-Guangzhou-Foshan, China
- * E-mail:
| |
Collapse
|
4
|
Abstract
Oxygen is the basic molecule which supports life and it truly is "god's gift to life." Despite its immense importance, research on "oxygen biology" has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word "hypoxia." Scientists have focused on hypoxia-induced transcriptomics and molecular-cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Collapse
|
5
|
Ferrándiz N, Caraballo JM, García-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, Bretones G, Quintanilla A, Muñoz-Alonso MJ, Blanco R, Reyes JC, Agell N, Delgado MD, Dotto GP, León J. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS One 2012; 7:e37759. [PMID: 22662213 PMCID: PMC3360621 DOI: 10.1371/journal.pone.0037759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/23/2012] [Indexed: 12/27/2022] Open
Abstract
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Collapse
Affiliation(s)
- Nuria Ferrándiz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Juan M. Caraballo
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Lucía García-Gutierrez
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Vikram Devgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
| | - Manuel Rodriguez-Paredes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - M. Carmen Lafita
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Gabriel Bretones
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Andrea Quintanilla
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - M. Jose Muñoz-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, Madrid, Spain
| | - Rosa Blanco
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Jose C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - G. Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Javier León
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- * E-mail:
| |
Collapse
|
6
|
Martin L. PD184352 releases the regular hypoxic reversible DNA replication arrest in T24 cells. BMB Rep 2007; 40:895-8. [PMID: 18047784 DOI: 10.5483/bmbrep.2007.40.6.895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxygen dependent regulation of DNA replication is an essential property of proliferating mammalian cells. In human T24 bladder cancer cells, several hours of hypoxia leads to reversible DNA replication arrest and re-entry of oxygen induces a burst of replication initiation. This short communication provides strong evidence that PD184352 initiates DNA replication in living hypoxic cells without elevating the oxygen level. PD184352 releases the regular hypoxic replicon arrest, however, at a low intensity compared to the effect of reoxygenation. Moreover, PD184352 shows no effect on normoxically incubated as well as reoxygenated T24 cells.
Collapse
Affiliation(s)
- Leenus Martin
- Interfakultares Institut fur Biochemie der Universitat Tubingen, Hoppe-Seyler-Strasse 4, D-72076 Tubingen, Germany.
| |
Collapse
|
7
|
Martin L. The Replicon Initiation Burst Released by Reoxygenation of Hypoxic T24 Cells is Accompanied by Changes of MCM2 and Cdc7. BMB Rep 2007; 40:805-13. [DOI: 10.5483/bmbrep.2007.40.5.805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Rocha S. Gene regulation under low oxygen: holding your breath for transcription. Trends Biochem Sci 2007; 32:389-97. [PMID: 17624786 DOI: 10.1016/j.tibs.2007.06.005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 05/08/2007] [Accepted: 06/20/2007] [Indexed: 01/21/2023]
Abstract
Oxygen is both an environmental and developmental signal that governs important cellular pathways. Therefore, hypoxia (or low oxygen tensions) is part of both physiological and pathological processes. To deal with hypoxic conditions, cells and organisms have evolved exquisite mechanisms for adaptation and survival. The cellular responses are reliant on controlled transcriptional and post-transcriptional events, where certain genes are positively regulated and others either remain inactive or are actively repressed. It has been known for some time that, during hypoxia, transcription is mainly regulated by the hypoxia inducible factor (HIF). However, recently it has been demonstrated that additional transcription factors are also activated and that non-HIF-dependent processes are involved in the hypoxic stress response. Therefore, gene expression following hypoxia is the result of combined effects on transcription, translation and adjustment mechanisms such as the induction of microRNAs and changes in chromatin.
Collapse
Affiliation(s)
- Sonia Rocha
- College of Life Sciences, Division of Gene Regulation and Expression MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
9
|
Voronina E, Lovasco LA, Gyuris A, Baumgartner RA, Parlow AF, Freiman RN. Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Dev Biol 2006; 303:715-26. [PMID: 17207475 PMCID: PMC1950739 DOI: 10.1016/j.ydbio.2006.12.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 11/27/2006] [Accepted: 12/06/2006] [Indexed: 01/29/2023]
Abstract
Oocyte development in the mammalian ovary requires productive interactions with somatic granulosa cells of the ovarian follicle. Proliferating granulosa cells support the progression of follicular growth and maturation, multiplying dramatically as it unfolds. The cell cycle recruitment of granulosa cells is regulated at least in part by hormones such as follicle-stimulating hormone (FSH) and estrogen. Follicles recruited into the growth phase following formation of multiple layers of granulosa cells have two major fates: either to continue proliferation followed by differentiation, or to die by programmed cell death, or atresia. While many of the signaling pathways orchestrating ovarian follicle development are known, the downstream transcriptional regulators that integrate such signals in the mammalian ovary remain to be defined. Recent experiments in diverse organisms have revealed multiple instances of gonad-selective components of the basal transcriptional machinery. One such protein, TAF4b, is a gonadal-enriched coactivator subunit of the TFIID complex required for normal female fertility in the mouse. To determine the etiology of female infertility of the TAF4b-deficient mice, we have determined multiple functions of TAF4b during postnatal ovarian follicle development. Here we demonstrate that the TAF4b protein is expressed in the granulosa cell compartment of the mammalian ovarian follicle. Furthermore, TAF4b-deficient mouse ovaries contain reduced numbers of primordial as well as growing follicles and a concomitant increased proportion of apoptotic follicles in comparison to wild type counterparts. Importantly, TAF4b-null follicles are largely resistant to induction of proliferation in response to multiple hormonal stimuli including estrogen and FSH and demonstrate compromised granulosa cell survival. Together, these data suggest that TAF4b integrates a program of granulosa cell gene expression required for normal ovarian follicle survival and proliferation in response to diverse ovarian signaling events.
Collapse
Affiliation(s)
- Ekaterina Voronina
- Brown University, Department of Molecular and Cell Biology and Biochemistry, 69 Brown St., Box G-J115, Providence, RI 02912 USA
| | - Lindsay A. Lovasco
- Brown University, Department of Molecular and Cell Biology and Biochemistry, 69 Brown St., Box G-J115, Providence, RI 02912 USA
| | - Aron Gyuris
- Brown University, Department of Molecular and Cell Biology and Biochemistry, 69 Brown St., Box G-J115, Providence, RI 02912 USA
| | - Robert A. Baumgartner
- Brown University, Department of Molecular and Cell Biology and Biochemistry, 69 Brown St., Box G-J115, Providence, RI 02912 USA
| | - Albert F. Parlow
- National Hormone & Peptide Program, Harbor-UCLA Medical Center, 1000 W. Carson. St., Torrance, CA 90509 USA
| | - Richard N. Freiman
- Brown University, Department of Molecular and Cell Biology and Biochemistry, 69 Brown St., Box G-J115, Providence, RI 02912 USA
- Corresponding author EMAIL: Phone: (401)-863-9633, FAX: (401) 863-2421
| |
Collapse
|
10
|
Stabenow D, Probst H, van Betteraey-Nikoleit M. Cdk2 activity is dispensable for triggering replicon initiation after transient hypoxia in T24 cells. FEBS J 2005; 272:5623-34. [PMID: 16262700 DOI: 10.1111/j.1742-4658.2005.04957.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined whether the fast release of replicon initiation after sudden O2 recovery of hypoxically incubated mammalian cells depends on kinase activity of Cdk2. We used a system based on starved/refed T24 cells elaborated previously for such investigations [van Betteraey-Nikoleit M, Eisele KH, Stabenow D and Probst H (2003) Eur J Biochem270, 3880-3890]. Cells subjected to hypoxia concurrently with refeeding accumulate the G1 DNA content within 5-6 h. In this state they are ready to perform, within 1-2 min after O2 recovery, a burst of replicon initiations that marks the start of a synchronous S-phase. We found that Cdk2 binds to the chromatin fraction within 4-6 h after refeeding with fresh medium, irrespective of whether the cells were incubated normoxically or hypoxically. However, inhibition of Cdk2 by olomoucine, roscovitine or the Cdk2/cyclin inhibitory peptide II had no influence on the synchronous burst of replicon initiations. Cdc6 and pRb, possible targets of Cdk2 phosphorylation, behaved differentially. Inhibition did not affect phosphorylation of Cdc6 after reoxygenation, whilst chromatin bound pRb remained hypophosphorylated beyond the initiation burst. Thus, neither Cdk2 activity, though present at the end of the hypoxic period, nor pRb phosphorylation are necessary for releasing the burst of replicon initiations upon oxygen recovery. Consequentially, Cdk2 dependent phosphorylation(s) cannot be a critical trigger of replicon initiation in response to reoxygenation after several hours of hypoxia, at least in the T24 cells studied.
Collapse
Affiliation(s)
- Dirk Stabenow
- Interfakultäres Institut für Biochemie der Universität Tübingen, Germany
| | | | | |
Collapse
|
11
|
Szüts D, Krude T. Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage. J Cell Sci 2005; 117:4897-908. [PMID: 15456844 DOI: 10.1242/jcs.01374] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle arrest in response to environmental effects can lead to DNA breaks. We investigated whether inhibition of DNA replication during the initiation step can lead to DNA damage and characterised a cell-cycle-arrest point at the replication initiation step before the establishment of active replication forks. This arrest can be elicited by the iron chelators mimosine, ciclopirox olamine or 2,2'-bipyridyl, and can be reversed by the removal of the drugs or the addition of excess iron. Iron depletion induces DNA double-strand breaks in treated cells, and activates a DNA damage response that results in focal phosphorylation of histone H2AX, focal accumulation of replication protein A (RPA) and ATR (ATM and Rad3-related kinase), and activation of CHK1 kinase. Abrogation of the checkpoint response does not abolish the cell cycle arrest before the establishment of active DNA replication forks. DNA breaks appear concomitantly with the arrival of cells at the arrest point and persist upon release from the cell cycle block. We conclude that DNA double-strand breaks are the consequence, and not the cause, of cell cycle arrest during the initiation step of DNA replication by iron chelation.
Collapse
Affiliation(s)
- Dávid Szüts
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK
| | | |
Collapse
|