1
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
2
|
Abstract
It is accepted that most fungal avirulence genes encode virulence factors that are called effectors. Most fungal effectors are secreted, cysteine-rich proteins, and a role in virulence has been shown for a few of them, including Avr2 and Avr4 of Cladosporium fulvum, which inhibit plant cysteine proteases and protect chitin in fungal cell walls against plant chitinases, respectively. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either inside the plant cell or on plasma membranes. Several secreted effectors function inside the host cell, but the uptake mechanism is not yet known. Variation observed among fungal effectors shows two types of selection that appear to relate to whether they interact directly or indirectly with their cognate resistance proteins. Direct interactions seem to favor point mutations in effector genes, leading to amino acid substitutions, whereas indirect interactions seem to favor jettison of effector genes.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Wageningen University and Research Center ( http://www.php.wur.nl/uk ), Laboratory of Phytopathology, 6709 PD Wageningen, The Netherlands.
| | | |
Collapse
|
3
|
Kruijt M, Kip DJ, Joosten MHAJ, Brandwagt BF, de Wit PJGM. The Cf-4 and Cf-9 resistance genes against Cladosporium fulvum are conserved in wild tomato species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1011-21. [PMID: 16167771 DOI: 10.1094/mpmi-18-1011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.
Collapse
Affiliation(s)
- Marco Kruijt
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
van den Burg HA, Spronk CAEM, Boeren S, Kennedy MA, Vissers JPC, Vuister GW, de Wit PJGM, Vervoort J. Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J Biol Chem 2004; 279:16786-96. [PMID: 14769793 DOI: 10.1074/jbc.m312594200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The attack of fungal cell walls by plant chitinases is an important plant defense response to fungal infection. Anti-fungal activity of plant chitinases is largely restricted to chitinases that contain a noncatalytic, plant-specific chitin-binding domain (ChBD) (also called Hevein domain). Current data confirm that the race-specific elicitor AVR4 of the tomato pathogen Cladosporium fulvum can protect fungi against plant chitinases, which is based on the presence of a novel type of ChBD in AVR4 that was first identified in invertebrates. Although these two classes of ChBDs (Hevein and invertebrate) are sequentially unrelated, they share structural homology. Here, we show that the chitin-binding sites of these two classes of ChBDs have different topologies and characteristics. The K(D), DeltaH, and DeltaS values obtained for the interaction between AVR4 and chito-oligomers are comparable with those obtained for Hevein. However, the binding site of AVR4 is larger than that of Hevein, i.e. AVR4 interacts strictly with chitotriose, whereas Hevein can also interact with the monomer N-acetylglucosamine. Moreover, binding of additional AVR4 molecules to chitin occurs through positive cooperative protein-protein interactions. By this mechanism AVR4 is likely to effectively shield chitin on the fungal cell wall, preventing the cell wall from being degraded by plant chitinases.
Collapse
Affiliation(s)
- Harrold A van den Burg
- Laboratorie of Biochemistry, Wageningen University, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Luderer R, De Kock MJD, Dees RHL, De Wit PJGM, Joosten MHAJ. Functional analysis of cysteine residues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum. MOLECULAR PLANT PATHOLOGY 2002; 3:91-95. [PMID: 20569313 DOI: 10.1046/j.1464-6722.2001.00095.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary A striking feature of all elicitor proteins of Cladosporium fulvum that are specifically recognized by tomato is that they contain an even number of cysteine residues. These cysteine residues are thought to be involved in disulphide bridges. In this study, a mutational analysis of the cysteine residues of ECP1, ECP2 and ECP5 was performed, to examine their role in stability and hypersensitive response-inducing activity of the proteins. We show that not all cysteine residues of the ECPs are critical for the hypersensitive response-inducing activity of the proteins, and we propose that the role of cysteine residues in the ECPs is more complex than anticipated.
Collapse
Affiliation(s)
- Rianne Luderer
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
6
|
di Luccio E, Azulay DO, Regaya I, Fajloun Z, Sandoz G, Mansuelle P, Kharrat R, Fathallah M, Carrega L, Estève E, Rochat H, De Waard M, Sabatier JM. Parameters affecting in vitro oxidation/folding of maurotoxin, a four-disulphide-bridged scorpion toxin. Biochem J 2001; 358:681-92. [PMID: 11535129 PMCID: PMC1222102 DOI: 10.1042/0264-6021:3580681] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K(+) channel subtypes. MTX adopts a disulphide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, and folds according to the common alpha/beta scaffold reported for other known scorpion toxins. Here we have investigated the process and kinetics of the in vitro oxidation/folding of reduced synthetic L-MTX (L-sMTX, where L-MTX contains only L-amino acid residues). During the oxidation/folding of reduced L-sMTX, the oxidation intermediates were blocked by iodoacetamide alkylation of free cysteine residues, and analysed by MS. The L-sMTX intermediates appeared sequentially over time from the least (intermediates with one disulphide bridge) to the most oxidized species (native-like, four-disulphide-bridged L-sMTX). The mathematical formulation of the diffusion-collision model being inadequate to accurately describe the kinetics of oxidation/folding of L-sMTX, we have formulated a derived mathematical description that better fits the experimental data. Using this mathematical description, we have compared for the first time the oxidation/folding of L-sMTX with that of D-sMTX, its stereoisomer that contains only D-amino acid residues. Several experimental parameters, likely to affect the oxidation/folding process, were studied further; these included temperature, pH, ionic strength, redox potential and concentration of reduced toxin. We also assessed the effects of some cellular enzymes, peptidylprolyl cis-trans isomerase (PPIase) and protein disulphide isomerase (PDI), on the folding pathways of reduced L-sMTX and D-sMTX. All the parameters tested affect the oxidative folding of sMTX, and the kinetics of this process were indistinguishable for L-sMTX and D-sMTX, except when stereospecific enzymes were used. The most efficient conditions were found to be: 50 mM Tris/HCl/1.4 mM EDTA, pH 7.5, supplemented by 0.5 mM PPIase and 50 units/ml PDI for 0.1 mM reduced compound. These data represent the first report of potent stereoselective effects of cellular enzymes on the oxidation/folding of a scorpion toxin.
Collapse
Affiliation(s)
- E di Luccio
- CNRS UMR 6560, Bd Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Luderer R, Rivas S, Nürnberger T, Mattei B, Van den Hooven HW, Van der Hoorn RA, Romeis T, Wehrfritz JM, Blume B, Nennstiel D, Zuidema D, Vervoort J, De Lorenzo G, Jones JD, De Wit PJ, Joosten MH. No evidence for binding between resistance gene product Cf-9 of tomato and avirulence gene product AVR9 of Cladosporium fulvum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:867-76. [PMID: 11437260 DOI: 10.1094/mpmi.2001.14.7.867] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gene-for-gene model postulates that for every gene determining resistance in the host plant, there is a corresponding gene conditioning avirulence in the pathogen. On the basis of this relationship, products of resistance (R) genes and matching avirulence (Avr) genes are predicted to interact. Here, we report on binding studies between the R gene product Cf-9 of tomato and the Avr gene product AVR9 of the pathogenic fungus Cladosporium fulvum. Because a high-affinity binding site (HABS) for AVR9 is present in tomato lines, with or without the Cf-9 resistance gene, as well as in other solanaceous plants, the Cf-9 protein was produced in COS and insect cells in order to perform binding studies in the absence of the HABS. Binding studies with radio-labeled AVR9 were performed with Cf-9-producing COS and insect cells and with membrane preparations of such cells. Furthermore, the Cf-9 gene was introduced in tobacco, which is known to be able to produce a functional Cf-9 protein. Binding of AVR9 to Cf-9 protein produced in tobacco was studied employing surface plasmon resonance and surface-enhanced laser desorption and ionization. Specific binding between Cf-9 and AVR9 was not detected with any of the procedures. The implications of this observation are discussed.
Collapse
Affiliation(s)
- R Luderer
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
van den Hooven HW, van den Burg HA, Vossen P, Boeren S, de Wit PJ, Vervoort J. Disulfide bond structure of the AVR9 elicitor of the fungal tomato pathogen Cladosporium fulvum: evidence for a cystine knot. Biochemistry 2001; 40:3458-66. [PMID: 11297411 DOI: 10.1021/bi0023089] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disease resistance in plants is commonly activated by the product of an avirulence (Avr) gene of a pathogen after interaction with the product of a matching resistance (R) gene in the host. In susceptible plants, Avr products might function as virulence or pathogenicity factors. The AVR9 elicitor from the fungus Cladosporium fulvum induces defense responses in tomato plants carrying the Cf-9 resistance gene. This 28-residue beta-sheet AVR9 peptide contains three disulfide bridges, which were identified in this study as Cys2-Cys16, Cys6-Cys19, and Cys12-Cys26. For this purpose, AVR9 was partially reduced, and the thiol groups of newly formed cysteines were modified to prevent reactions with disulfides. After HPLC purification, the partially reduced peptides were sequenced to determine the positions of the modified cysteines, which originated from the reduced disulfide bridge(s). All steps involving molecules with free thiol groups were performed at low pH to suppress disulfide scrambling. For that reason, cysteine modification by N-ethylmaleimide was preferred over modification by iodoacetamide. Upon (partial) reduction of native AVR9, the Cys2-Cys16 bridge opened selectively. The resulting molecule was further reduced to two one-bridge intermediates, which were subsequently completely reduced. The (partially) reduced cysteine-modified AVR9 species showed little or no necrosis-inducing activity, demonstrating the importance of the disulfide bridges for biological activity. Based on peptide length and cysteine spacing, it was previously suggested that AVR9 isa cystine-knotted peptide. Now, we have proven that the bridging pattern of AVR9 is indeed identical to that of cystine-knotted peptides. Moreover, NMR data obtained for AVR9 show that it is structurally closely related to the cystine-knotted carboxypeptidase inhibitor. However, AVR9 does not show any carboxypeptidase inhibiting activity, indicating that the cystine-knot fold is a commonly occurring motif with varying biological functions.
Collapse
Affiliation(s)
- H W van den Hooven
- Laboratory of Biochemistry, Department of Biomolecular Sciences, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Bioactive peptides as signal molecules in plant defense, growth, and development. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1572-5995(01)80012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
10
|
The Role of Glutathione and Glutathione-related Enzymes in Plant-pathogen Interactions. PLANT ECOPHYSIOLOGY 2001. [DOI: 10.1007/0-306-47644-4_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Laugé R, Goodwin PH, de Wit PJ, Joosten MH. Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:735-745. [PMID: 10998185 DOI: 10.1046/j.1365-313x.2000.00843.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The resistance of tomato (Lycopersicon esculentum) to the pathogenic fungus Cladosporium fulvum complies with the gene-for-gene concept. Host resistance is based on specific recognition of extracellular fungal proteins, resulting in a hypersensitive response (HR). Five proteins secreted by C. fulvum were purified and the encoding cDNA clone was obtained from two novel ones among them. Various tomato breeding lines and accessions of Lycopersicon pimpinellifolium were tested for their recognitional specificity by injection of the purified proteins or potato virus X-based expression of the cDNA. We found that HR-associated recognition of one or more of these proteins, in addition to recognition of the race-specific elicitors AVR4 and AVR9 of C. fulvum, occurs among Lycopersicon species. Studies on the inheritance of this recognition confirmed that single dominant genes are involved. Furthermore, one of the extracellular proteins of C. fulvum is specifically recognized by Nicotiana paniculata, which is not a host for C. fulvum. These results indicate that plants have a highly effective surveillance system for the presence of 'foreign' proteins, which, together with the high mutation rate of pathogens, can explain the complex gene-for-gene relationships frequently observed in pathosystems.
Collapse
Affiliation(s)
- R Laugé
- Laboratory of Phytopathology, Wageningen University, Binnenhaven 9, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|