1
|
Zhou F, Song W, Wang Z, Yin L, Yang S, Yang F, Song Z, Song Y, Zhang H, Qiao F, Zhang Z. Effects of remote ischemic preconditioning on contrast induced nephropathy after percutaneous coronary intervention in patients with acute coronary syndrome. Medicine (Baltimore) 2018; 97:e9579. [PMID: 29480853 PMCID: PMC5943865 DOI: 10.1097/md.0000000000009579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE The aim of this study was to explore the clinical effects of remote ischemic preconditioning (RIPC) on contrast-induced nephropathy after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS). PATIENTS AND METHODS The study was a single-center, prospective, randomized, controlled study. A total of 161 patients with ACS and the rate of estimate glomerular filtration (eGFR) 15 to 70 mL/min/1.73 m2 undergoing PCI were randomly assigned to RIPC group (induced by 4 times of 5-minute inflations of a blood pressure cuff to 200 mmHg around the upper arm, followed by 5-min intervals of reperfusion at 1 hour before PCI therapy) or control group (an uninflated cuff around the arm). Successful completion of the PCI eventually included 107 cases of patients, including 50 cases in the RIPC group and 57 cases in the control group. The level of serum creatinine (Scr), CystatinC (CysC), blood neutrophil gelatinase-associated lipocalin (NGAL), eGFR were measured in all patients at 6 AM before the day of PCI, and 4-hour NGAL, 24-hour CysC, 72-hour Scr, and eGFR after PCI in the 2 groups. The incidence of major adverse events in the kidney (including the incidence of CIN, the need for dialysis, or renal replacement therapy after using contrast agent) and the composite endpoint of cardiovascular events were recorded at 6 months after PCI. RESULTS There were no statistically significant differences in baseline indicators between the 2 groups. Scr, CysC, and blood NGAL levels and the incidence of CIN in patients with RIPC group were significantly lower than those form the control group after PCI (P < .05), but there were no significant differences between the average value of eGFR and occurrence of Major cardiovascular events in the postoperative 6 months (P > .05). CONCLUSIONS RIPC can reduce PCI-related CIN and protect renal function in patients with ACS. The benefits of these patients by RIPC may be related to the reduction of the NGAL and CysC.
Collapse
Affiliation(s)
- Fazhan Zhou
- Medical Examination Center of Qilu Hospital of Shandong University, Jinan
- Department of Cardiology, Taian City Central Hospital
| | - Wei Song
- Department of Cardiology, Taian City Central Hospital
| | - Zilong Wang
- Taishan Medical University, Taian, Shandong, China
| | - Luhua Yin
- Department of Cardiology, Taian City Central Hospital
| | - Shen Yang
- Department of Cardiology, Taian City Central Hospital
| | - Fubai Yang
- Department of Cardiology, Taian City Central Hospital
| | - Zhaofeng Song
- Department of Cardiology, Taian City Central Hospital
| | - Yaguang Song
- Department of Cardiology, Taian City Central Hospital
| | - Huanyi Zhang
- Department of Cardiology, Taian City Central Hospital
| | - Fengjie Qiao
- Taishan Medical University, Taian, Shandong, China
| | - Zhimian Zhang
- Medical Examination Center of Qilu Hospital of Shandong University, Jinan
| |
Collapse
|
2
|
The role of renal sympathetic nerves in ischemia reperfusion injury. Auton Neurosci 2017; 204:105-111. [DOI: 10.1016/j.autneu.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 11/21/2022]
|
3
|
Nair A, Khan S, Omar S, Pei XQ, McNeill K, Chowienczyk P, Webb AJ. Remote ischaemic preconditioning suppresses endogenous plasma nitrite during ischaemia-reperfusion: a randomized controlled crossover pilot study. Br J Clin Pharmacol 2017; 83:1416-1423. [PMID: 28074482 DOI: 10.1111/bcp.13231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/23/2016] [Accepted: 12/18/2016] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this article is to test the hypothesis that remote ischaemic preconditioning (RIPC) increases circulating endogenous local and systemic plasma (nitrite) during RIPC and ischaemia-reperfusion (IR) as a potential protective mechanism against ischaemia-reperfusion injury (IRI). METHODS Six healthy male volunteers (mean age 29.5 ± 7.6 years) were randomized in a crossover study to initially receive either RIPC (4 × 5 min cycles) to the left arm, or no RIPC (control), both followed by an ischaemia-reperfusion (IR) sequence (20 min cuff inflation to 200 mmHg, 20 min reperfusion) to the right arm. The volunteers returned at least 7 days later for the alternate intervention. The primary outcome was the effect of RIPC vs. control on local and systemic plasma (nitrite). RESULTS RIPC did not significantly change plasma (nitrite) in either the left or the right arm during the RIPC sequence. However, compared to control, RIPC decreased plasma (nitrite) during the subsequent IR sequence by ~26% (from 118 ± 9 to 87 ± 5 nmol l-1 ) locally in the left arm (P = 0.008) overall, with an independent effect of -58.70 nmol l-1 (95% confidence intervals -116.1 to -1.33) at 15 min reperfusion, and by ~24% (from 109 ± 9 to 83 ± 7 nmol l-1 ) systemically in the right arm (P = 0.03). CONCLUSIONS RIPC had no effect on plasma (nitrite) during the RIPC sequence, but instead decreased plasma (nitrite) by ~25% during IR. This would likely counteract the protective mechanisms of RIPC, and contribute to RIPC's lack of efficacy, as observed in recent clinical trials. A combined approach of RIPC with nitrite administration may be required.
Collapse
Affiliation(s)
- Ashok Nair
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK.,Department of Anaesthetics, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Sitara Khan
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Sami Omar
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Xiao-Qing Pei
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK.,Ultrasound Department, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China
| | - Karen McNeill
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Phil Chowienczyk
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Andrew James Webb
- King's College London British Heart Foundation Centre, Cardiovascular Division, Department of Clinical Pharmacology, St. Thomas' Hospital, London, SE1 7EH, UK.,Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Kristensen MLV, Kierulf-Lassen C, Nielsen PM, Krag S, Birn H, Nejsum LN, Nørregaard R. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney. Physiol Rep 2016; 4:4/13/e12865. [PMID: 27405971 PMCID: PMC4945844 DOI: 10.14814/phy2.12865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na-K-ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na-K-ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na-K-ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na-K-ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na-K-ATPase expression in I/R rat kidneys.
Collapse
Affiliation(s)
| | | | - Per Mose Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Krag
- Department of Pathology, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Renal Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Schenning KJ, Anderson S, Alkayed NJ, Hutchens MP. Hyperglycemia abolishes the protective effect of ischemic preconditioning in glomerular endothelial cells in vitro. Physiol Rep 2015; 3:3/3/e12346. [PMID: 25804266 PMCID: PMC4393174 DOI: 10.14814/phy2.12346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In preclinical investigations, ischemic preconditioning (IPC) protects kidneys from ischemia/reperfusion injury. The direct effects of IPC on glomerular endothelial cells have not been studied in detail. Most investigations of IPC have focused on healthy cells and animals, and it remains unknown whether IPC is renoprotective in the setting of medical comorbidities such as diabetes. In this study, we determined the preventive potential of IPC in healthy glomerular endothelial cell monolayers, and compared these results to monolayers cultured under hyperglycemic conditions. We exposed glomerular endothelial monolayers to 1 h of IPC 24 h prior to oxygen-glucose deprivation (OGD), an in vitro model of ischemia/reperfusion injury. Glomerular endothelial monolayer integrity was assessed by measuring transendothelial electrical resistance, albumin flux, and cell survival. We found that IPC protected healthy but not hyperglycemic glomerular endothelial monolayers from ischemia/reperfusion injury. Furthermore, not only was the protective effect of IPC lost in the setting of hyperglycemia, but IPC was actually deleterious to the integrity of hyperglycemic glomerular endothelial cell monolayers.
Collapse
Affiliation(s)
- Katie J Schenning
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | - Sharon Anderson
- Division of Nephrology and Hypertension, Department of Internal Medicine, Oregon Health and Science University, Portland, Oregon Department of Internal Medicine, Portland Veterans Affairs Medical Center, Portland, Oregon
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon Knight Cardiovascular Institute Oregon Health and Science University, Portland, Oregon
| | - Michael P Hutchens
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
6
|
Below-Target Postoperative Arterial Blood Pressure but Not Central Venous Pressure Is Associated With Delayed Graft Function. Transplant Proc 2013; 45:46-50. [DOI: 10.1016/j.transproceed.2012.03.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 02/20/2012] [Accepted: 03/06/2012] [Indexed: 10/27/2022]
|
7
|
Avraamidou A, Marinis A, Asonitis S, Perrea D, Polymeneas G, Voros D, Argyra E. The impact of ischemic preconditioning on hemodynamic, biochemical and inflammatory alterations induced by intra-abdominal hypertension: an experimental study in a porcine model. Langenbecks Arch Surg 2012; 397:1333-41. [DOI: 10.1007/s00423-012-0977-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/22/2012] [Indexed: 11/28/2022]
|
8
|
Habibey R, Pazoki-Toroudi H. Morphine dependence protects rat kidney against ischaemia-reperfusion injury. Clin Exp Pharmacol Physiol 2008; 35:1209-14. [PMID: 18565196 DOI: 10.1111/j.1440-1681.2008.04986.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ischaemic preconditioning (IPC) protects the heart and kidneys against ischaemia-reperfusion (I/R) injury. It has been shown that opioid receptor activation can mimic cardiac IPC. In a kidney model of I/R, a single dose of morphine failed to mimic IPC. The aim of the present study was to determine the role of chronic morphine (dependence) in protection against renal I/R injury. Male Wistar rats were treated with increasing doses of morphine (20-30 mg/kg per day, s.c., for 5 days) to develop morphine dependence (MD). Three weeks before the I/R procedure, the right kidney was removed. Ischaemia-reperfusion injury was induced by clamping the left renal artery for 45 min, followed by 24 h reperfusion. Some MD rats were pretreated with naloxone (5 mg/kg, s.c.). Twenty-four hours later, creatinine and sodium concentrations were measured in serum and urine, then creatinine clearance (CCr) and the fractional excretion of sodium (FE(Na)) were calculated. Blood urea nitrogen (BUN) was measured only in serum samples. Kidneys were also assessed histologically for evidence of tissue injury. In the present study, MD decreased tissue injury (histological score), serum creatinine and BUN levels, increased CCr and decreased FE(Na) after I/R. Pretreatment with naloxone attenuated the protective effects of MD. Morphine dependence did not have any significant effect on urine volume. In conclusion, it seems that morphine dependence protects the kidney against I/R injury via opioid receptor-dependent pathways. Further studies are required to clearly determine the mechanisms involved.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
9
|
Timsit MO, Gadet R, Ben Abdennebi H, Codas R, Petruzzo P, Badet L. Renal ischemic preconditioning improves recovery of kidney function and decreases alpha-smooth muscle actin expression in a rat model. J Urol 2008; 180:388-91. [PMID: 18499158 DOI: 10.1016/j.juro.2008.02.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Indexed: 01/09/2023]
Abstract
PURPOSE We determined the role of ischemic preconditioning on renal function and histology in a rat model. MATERIALS AND METHODS A total of 34 Sprague-Dawley rats (Janvier Laboratories, Le Genet-St-Isle, France) were divided into 6 groups, including sham operation, ischemic preconditioning alone (5 minutes of bilateral ischemia followed by 5 minutes of reperfusion for 3 cycles), ischemia alone (60 minutes of bilateral renal pedicle clamping), ischemic preconditioning before bilateral ischemia, ischemic preconditioning before ischemia in left nephrectomized rats and ischemic preconditioning of the left kidney alone before 60 minutes of bilateral warm ischemia to assess the effect of left kidney preconditioning on the contralateral kidney. Serum creatinine and malondialdehyde levels were recorded at days 0, 1, 3, 11 and 15. Kidneys were harvested at day 15 for histological study and alpha-smooth muscle actin typing. RESULTS At days 1 and 3 serum creatinine and malondialdehyde levels were significantly lower in the ischemic preconditioning group compared to levels in the ischemia alone group. At days 11 and 15 creatinine and malondialdehyde levels were similar in all groups and comparable to levels at day 0. At day 15 ischemic preconditioning kidneys showed significantly decreased fibrosis and alpha-smooth muscle actin expression than ischemia alone kidneys. CONCLUSIONS Ischemic preconditioning improves the ability of rat kidney to tolerate subsequent ischemic injury in the first 3 days after reperfusion. Moreover, fibrosis and alpha-smooth muscle actin expression are decreased in ischemic preconditioning kidneys 15 days after reperfusion, suggesting a potential interest of ischemic preconditioning in surgical situations that expose kidneys to prolonged warm ischemia.
Collapse
Affiliation(s)
- Marc Olivier Timsit
- Department of Urology and Transplantation, Hôpital Edouard Herriot, Lyon, France
| | | | | | | | | | | |
Collapse
|
10
|
Wang H, Li Z, Liu X. Effects of various protocols of ischemic preconditioning on rat tram flaps. Microsurgery 2008; 28:37-43. [DOI: 10.1002/micr.20436] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Bonventre JV. Molecular and Genetic Aspects of Ischemic Acute Kidney Injury. MOLECULAR AND GENETIC BASIS OF RENAL DISEASE 2008:531-555. [DOI: 10.1016/b978-1-4160-0252-9.50034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Altindis M, Yilmaz S, Polat C, Serteser M. Sequential periods of preconditioning decrease laparoscopy-related elevations in hepatic TNF-alpha and IL-6 levels in rats. J Laparoendosc Adv Surg Tech A 2005; 14:380-3. [PMID: 15684786 DOI: 10.1089/lap.2004.14.380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Laparoscopy induces an ischemia/reperfusion (I/R) injury that elicits the production of inflammatory cytokines. The aim of this study was to test whether laparoscopic preconditioning (LP) could change hepatic inflammatory response. MATERIALS AND METHODS Twenty-four male Spraque Dawley rats were assigned into one of three experimental groups: the control group (C) was subjected to sham operation; the I/R group was subjected to 60 minutes of pneumoperitoneum followed by 45 minutes of desufflation; and the ischemic preconditioning (IP) group was subjected to preconditioning prior to the induction of I/R. Preconditioning was defined as two cycles of 5 minutes of pneumoperitoneum followed immediately by 5 minutes of desufflation. Hepatic tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-6 levels were evaluated as an inflammatory response. RESULTS Hepatic TNF-alpha levels increased in the I/R group compared with the C group (9.64 +/- 0.77 pg/mg protein vs. 6.53 +/- 0.48 pg/mg protein, P < 0.01). The decreased TNF-alpha levels in the IP group were not statistically significant when compared to the I/R group (8.09 +/- 0.74 pg/mg protein). Hepatic IL-6 levels increased in the I/R group compared to the C group (4.17 +/- 0.31 pg/mg protein vs. 2.93 +/- 0.20 pg/mg, P < 0.05). IP reduced the hepatic IL-6 levels significantly compared to the I/R group (3.31 +/- 0.22 pg/mg protein vs. 4.17 +/- 0.31 pg/mg protein, P <0.05). CONCLUSION Laparoscopy induces cytokine response in various organs including the liver. LP could alter the production of cytokines prior to sustained laparoscopic procedures. Preconditioning may be advisable, especially for elderly or other patients with hepatic, renal, or cardiac dysfunction. Further studies are needed to adapt this concept to clinical settings.
Collapse
Affiliation(s)
- Mustafa Altindis
- Department of Microbiology, Afyon Kocatepe University School of Medicine, Afyon, Turkey
| | | | | | | |
Collapse
|
13
|
Li SQ, Liang LJ, Huang JF, Li Z. Ischemic preconditioning protects liver from hepatectomy under hepatic inflow occlusion for hepatocellular carcinoma patients with cirrhosis. World J Gastroenterol 2004; 10:2580-4. [PMID: 15300911 PMCID: PMC4572168 DOI: 10.3748/wjg.v10.i17.2580] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the protective effect of ischemic preconditioning (IPC) on hepatocellular carcinoma (HCC) patients with cirrhosis undergoing hepatic resection under hepatic inflow occlusion (HIO) and its possible mechanism.
METHODS: Twenty-nine consecutive patients with resectable 0HCC were randomized into two groups: IPC group: before HIO, IPC with 5 min of ischemia and 5 min of reperfusion was given; control group: no IPC was given. Liver functions, hepatic Caspase-3 activity, and apoptotic cells were compared between these two groups.
RESULTS: On postoperative days (POD) 1, 3 and 7, the aspartate transaminase (AST) and alanine transaminase (ALT) levels in the IPC group were significantly lower than those in the control group (P < 0.05). On POD 3 and 7, the total bilirubin level in the IPC group was significantly lower than that in the control group (P < 0.05). On POD 1, the albumin level in the IPC group was higher than that in the control group (P = 0.053). After 1 h of reperfusion, both hepatic Caspase-3 activity and apoptotic sinusoidal endothelial cells in the IPC group were significantly lower than those in the control group (P < 0.05).
CONCLUSION: IPC has a potential protective effect on HCC patients with cirrhosis. Its protective mechanism underlying the suppression of sinusoidal endothelial cell apoptosis is achieved by inhibiting Caspase-3 activity.
Collapse
Affiliation(s)
- Shao-Qiang Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | | | | | | |
Collapse
|
14
|
Chatterjee PK, Zacharowski K, Cuzzocrea S, Brown PAJ, Stewart KN, Mota-Filipe H, Thiemermann C. Lipoteichoic acid from Staphylococcus aureus reduces renal ischemia/reperfusion injury. Kidney Int 2002; 62:1249-63. [PMID: 12234295 DOI: 10.1111/j.1523-1755.2002.kid580.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of this study was to investigate whether in vivo administration of a low, sub-lethal dose of lipoteichoic acid (LTA), a bacterial wall-fragment derived from the Gram-positive bacterium Staphylococcus aureus, protects the kidney against the renal dysfunction and injury caused by ischemia/reperfusion (I/R). METHODS Male Wistar rats were administered LTA from S. aureus (1 mg/kg, IP). After 24 hours, rats were subjected to bilateral renal ischemia (45 min) followed by reperfusion (6 h). Serum and urinary markers were measured for the assessment of renal function, tubular and reperfusion-injury. Renal sections were used for histological grading of renal injury and for immunohistochemical localization of P-selectin, inducible nitric oxide synthase (iNOS) and nitrotyrosine (indicative of peroxynitrite formation). Kidney myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured for assessment of polymorphonuclear (PMN) cell infiltration and lipid peroxidation, respectively. Nitric oxide (NO) production was determined by measurement of plasma nitrite/nitrate levels. RESULTS LTA pretreatment significantly reduced renal dysfunction, tubular and reperfusion-injury caused by I/R of the kidney as well as histological evidence of renal injury. LTA also reduced the expression of P-selectin and kidney MPO activity associated with renal I/R. MDA levels were significantly reduced by LTA pretreatment suggesting a reduction in the lipid peroxidation and formation of reactive oxygen species (ROS). LTA pretreatment also markedly reduced both the expression of iNOS and the formation of nitrotyrosine associated with renal I/R. Although LTA significantly reduced plasma nitrite/nitrate levels associated with I/R, nitrite/nitrate levels remained at levels significantly higher than that measured from the plasma obtained from Sham-operated animals. CONCLUSIONS These data suggest, to our knowledge for the first time, that LTA pretreatment for 24 hours significantly reduces renal I/R injury. We propose that the mechanism of the protective effect involves reduction of the production of NO, ROS and peroxynitrite subsequent to reduced P-selectin and iNOS expression and PMN recruitment. However, although LTA pretreatment resulted in a reduction of iNOS expression and NO production, we hypothesize that the remaining significant levels of NO contribute to the beneficial actions provided by LTA.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine & Nephrology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, England, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ogawa T, Mimura Y, Kaminishi M. Renal denervation abolishes the protective effects of ischaemic preconditioning on function and haemodynamics in ischaemia-reperfused rat kidneys. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 174:291-7. [PMID: 11906329 DOI: 10.1046/j.1365-201x.2002.00944.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies were conducted to investigate the role of renal sympathetic nerves in the process of acquiring ischaemic tolerance in ischaemic preconditioned ischaemia-reperfused rat kidneys. Two periods of 3-min occlusion of bilateral renal arteries was performed prior to 30-min bilateral ischaemia and 90-min reperfusion in acute renal denervated or innervated kidneys. The glomerular filtration rate (GFR), fractional excretion of sodium (FENa) and lithium (FELi), and renal blood flow (RBF) were assessed in reperfused kidneys. Ischaemic preconditioning significantly improved values for all these parameters as compared with no treated ischaemia-reperfused kidneys. Denervation caused slight increase in GFR, diuresis and natriuresis without improving RBF after reperfusion. However, protecting effects of ischaemic preconditioning on renal function were disappeared in denervated kidneys, while in innervated kidneys the effects of ischaemic preconditioning were maintained. These results clearly showed that ischaemic preconditioning pre-treatment protects kidneys against ischaemia-reperfusion injury, and the effects are, at least in part, mediated by sympathetic nerves, as the protective effects were abolished by denervation.
Collapse
Affiliation(s)
- T Ogawa
- Endocrine and Metabolic Unit, Department of Surgery, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
16
|
Ogawa T, Nussler AK, Tuzuner E, Neuhaus P, Kaminishi M, Mimura Y, Beger HG. Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 138:50-8. [PMID: 11433228 DOI: 10.1067/mlc.2001.115648] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the contribution of nitric oxide (NO) to the effect of ischemic preconditioning (IP) on renal function and the hemodynamics in ischemia-reperfusion (I/R) mediated kidney injury. IP was performed by using 4 minutes of ischemia followed by a 30-minute reperfusion interval. I/R treatment consisted of a 30-minute ischemia and 60-minute reperfusion interval. We measured the glomerular filtration rate (GFR), the fractional excretion of sodium (FE(Na)), and the renal blood flow (RBF) in IP+I/R and I/R kidneys. Rats were pretreated with NaCl, N(G)-nitro-L-arginine methyl ester (L-NAME), or L-arginine. We found that IP significantly improved GFR and FE(Na) as compared with I/R treatment; however, this effect was completely abolished by L-NAME injection and enhanced by L-arginine treatment. L-NAME treatment significantly diminished RBF but did not alter nitrite/nitrate excretion. Furthermore, we found that IP alone does not lead to inducible NO synthase protein expression whereas I/R or IP+I/R treatment clearly did. Moreover, we observed an increased heme oxygenase-1 expression in IP+I/R kidneys as compared with I/R treated ones. Our results clearly showed that IP pretreatment protects kidneys from I/R mediated tissue injury and that these effects were partially mediated by NO.
Collapse
Affiliation(s)
- T Ogawa
- University of Ulm, Department of General Surgery, Humboldt University of Berlin, Campus Virchow, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|