1
|
Zhu YN, He J, Wang J, Guo W, Liu H, Song Z, Kang L. Parental experiences orchestrate locust egg hatching synchrony by regulating nuclear export of precursor miRNA. Nat Commun 2024; 15:4328. [PMID: 38773155 PMCID: PMC11109280 DOI: 10.1038/s41467-024-48658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Parental experiences can affect the phenotypic plasticity of offspring. In locusts, the population density that adults experience regulates the number and hatching synchrony of their eggs, contributing to locust outbreaks. However, the pathway of signal transmission from parents to offspring remains unclear. Here, we find that transcription factor Forkhead box protein N1 (FOXN1) responds to high population density and activates the polypyrimidine tract-binding protein 1 (Ptbp1) in locusts. FOXN1-PTBP1 serves as an upstream regulator of miR-276, a miRNA to control egg-hatching synchrony. PTBP1 boosts the nucleo-cytoplasmic transport of pre-miR-276 in a "CU motif"-dependent manner, by collaborating with the primary exportin protein exportin 5 (XPO5). Enhanced nuclear export of pre-miR-276 elevates miR-276 expression in terminal oocytes, where FOXN1 activates Ptbp1 and leads to egg-hatching synchrony in response to high population density. Additionally, PTBP1-prompted nuclear export of pre-miR-276 is conserved in insects, implying a ubiquitous mechanism to mediate transgenerational effects.
Collapse
Affiliation(s)
- Ya Nan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiawen Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongran Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhuoran Song
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
2
|
Janssen R, Schomburg C, Prpic NM, Budd GE. A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS One 2022; 17:e0270790. [PMID: 35802758 PMCID: PMC9269926 DOI: 10.1371/journal.pone.0270790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Christoph Schomburg
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
- Fachgebiet Botanik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Nikola-Michael Prpic
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Janssen R, Budd GE. Oscillating waves of Fox, Cyclin and CDK gene expression indicate unique spatiotemporal control of cell cycling during nervous system development in onychophorans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101042. [PMID: 33752095 DOI: 10.1016/j.asd.2021.101042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Forkhead box (Fox) genes code for a class of transcription factors with many different fundamental functions in animal development including cell cycle control. Other important factors of cell cycle control are Cyclins and Cyclin-dependent kinases (CDKs). Here we report on the oscillating expression of three Fox genes, FoxM, FoxN14 (jumeaux) and FoxN23 (Checkpoint suppressor like-1), Cyclins and CDKs in an onychophoran, a representative of a relatively small group of animals that are closely related to the arthropods. Expression of these genes is in the form of several waves that start as dot-like domains in the center of each segment and then transform into concentric rings that run towards the periphery of the segments. This oscillating gene expression, however, occurs exclusively along the anterior-posterior body axis in the tissue ventral to the base of the appendages, a region where the central nervous system and the enigmatic ventral and preventral organs of the onychophoran develop. We suggest that the oscillating gene expression and the resulting waves of expression we report are likely correlated with cell cycle control during the development of the onychophoran nervous system. This intriguing patterning appears to be unique for onychophorans as it is not found in any of the arthropods we also investigated in this study, and is likely correlated with the slow embryonic development of onychophorans compared to arthropods.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden.
| | - Graham E Budd
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
4
|
Li J, Lee YK, Fu W, Whalen AM, Estable MC, Raftery LA, White K, Weiner L, Brissette JL. Modeling by disruption and a selected-for partner for the nude locus. EMBO Rep 2020; 22:e49804. [PMID: 33369874 PMCID: PMC7926259 DOI: 10.15252/embr.201949804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
A long‐standing problem in biology is how to dissect traits for which no tractable model exists. Here, we screen for genes like the nude locus (Foxn1)—genes central to mammalian hair and thymus development—using animals that never evolved hair, thymi, or Foxn1. Fruit flies are morphologically disrupted by the FOXN1 transcription factor and rescued by weak reductions in fly gene function, revealing molecules that potently synergize with FOXN1 to effect dramatic, chaotic change. Strong synergy/effectivity in flies is expected to reflect strong selection/functionality (purpose) in mammals; the more disruptive a molecular interaction is in alien contexts (flies), the more beneficial it will be in its natural, formative contexts (mammals). The approach identifies Aff4 as the first nude‐like locus, as murine AFF4 and FOXN1 cooperatively induce similar cutaneous/thymic phenotypes, similar gene expression programs, and the same step of transcription, pre‐initiation complex formation. These AFF4 functions are unexpected, as AFF4 also serves as a scaffold in common transcriptional‐elongation complexes. Most likely, the approach works because an interaction's power to disrupt is the inevitable consequence of its selected‐for power to benefit.
Collapse
Affiliation(s)
- Jian Li
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yun-Kyoung Lee
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wenyu Fu
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anne M Whalen
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mario C Estable
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Laurel A Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
5
|
Hofmann A, Brünner M, Schwendemann A, Strödicke M, Karberg S, Klebes A, Saumweber H, Korge G. The winged-helix transcription factor JUMU regulates development, nucleolus morphology and function, and chromatin organization of Drosophila melanogaster. Chromosome Res 2010; 18:307-24. [PMID: 20213139 DOI: 10.1007/s10577-010-9118-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/05/2010] [Indexed: 01/10/2023]
Abstract
The PEV-modifying winged-helix/forkhead domain transcription factor JUMU of Drosophila is an essential protein of pleiotropic function. The correct gene dose of jumu is required for nucleolar integrity and correct nucleolus function. Overexpression of jumu results in bloating of euchromatic chromosome arms, displacement of the JUMU protein from the chromocenter and the nucleolus, fragile weak points, and disrupted chromocenter of polytene chromosomes. Overexpression of the acidic C terminus of JUMU alone causes nucleolus disorganization. In addition, euchromatic genes are overexpressed and HP1, which normally accumulates in the pericentric heterochromatin and spreads into euchromatic chromosome arms, although H3-K9 di-methylation remains restricted to the pericentric heterochromatin. The human winged-helix nude gene shows similarities to jumu and its overexpression in Drosophila causes bristle mutations.
Collapse
Affiliation(s)
- Annemarie Hofmann
- Institut für Biologie-Genetik, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hofmann A, Brünner M, Korge G. The winged-helix transcription factor JUMU is a haplo-suppressor/triplo-enhancer of PEV in various tissues but exhibits reverse PEV effects in the brain of Drosophila melanogaster. Chromosome Res 2009; 17:347-58. [DOI: 10.1007/s10577-009-9026-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/02/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
|
7
|
Lee HH, Frasch M. Survey of forkhead domain encoding genes in the Drosophila genome: Classification and embryonic expression patterns. Dev Dyn 2004; 229:357-66. [PMID: 14745961 DOI: 10.1002/dvdy.10443] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genetic approaches in Drosophila led to the identification of Forkhead, the prototype of forkhead domain transcription factors that are now known to comprise an evolutionarily conserved family of proteins with essential roles in development and differentiation. Sequence analysis of the recently published genomic scaffold sequence from Drosophila melanogaster has allowed us to determine the presumably full complement of forkhead domain encoding genes in this species. We show herein that the Drosophila genome contains 17 forkhead domain encoding genes; 13 of these genes have orthologs in chordate species, and their products can be assigned to 10 of the 17 forkhead domain subclasses known from chordates. One Drosophila forkhead domain gene only has a Caenorhabditis elegans ortholog and may represent a subclass that is absent in chordates, while the remaining three cannot be classified. We present the mRNA expression patterns of seven previously uncharacterized members of this gene family and show that they are expressed in tissues from all three germ layers, including central and peripheral nervous system, epidermis, salivary gland primordia, endoderm, somatic mesoderm, and hemocyte progenitors. Furthermore, the expression patterns of two of these genes, fd19B and fd102C, suggest a role for them as gap genes during early embryonic head segmentation.
Collapse
Affiliation(s)
- Hsiu-Hsiang Lee
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, New York, USA
| | | |
Collapse
|
8
|
Harden N. Signaling pathways directing the movement and fusion of epithelial sheets: lessons from dorsal closure in Drosophila. Differentiation 2002; 70:181-203. [PMID: 12147138 DOI: 10.1046/j.1432-0436.2002.700408.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wound healing in embryos and various developmental events in metazoans require the spreading and fusion of epithelial sheets. The complex signaling pathways regulating these processes are being pieced together through genetic, cell biological, and biochemical approaches. At present, dorsal closure of the Drosophila embryo is the best-characterized example of epithelial sheet movement. Dorsal closure involves migration of the lateral epidermal flanks to close a hole in the dorsal epidermis occupied by an epithelium called the amnioserosa. Detailed genetic studies have revealed a network of interacting signaling molecules regulating this process. At the center of this network is a Jun N-terminal kinase cascade acting at the leading edge of the migrating epidermis that triggers signaling by the TGF-beta superfamily member Decapentaplegic and which interacts with the Wingless pathway. These signaling modules regulate the cytoskeletal reorganization and cell shape change necessary to drive dorsal closure. Activation of this network requires signals from the amnioserosa and input from a variety of proteins at cell-cell junctions. The Rho family of small GTPases is also instrumental, both in activation of signaling and regulation of the cytoskeleton. Many of the proteins regulating dorsal closure have been implicated in epithelial movement in other organisms, and dorsal closure has emerged as an ideal model system for the study of the migration and fusion of epithelial sheets.
Collapse
Affiliation(s)
- Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
9
|
Abstract
Loss-of-function mutations in Whn (Hfh11, Foxn1), a winged-helix/forkhead transcription factor, cause the nude phenotype, which is characterized by the abnormal morphogenesis of the epidermis, hair follicles, and thymus. To delineate the biochemical pathway of Whn, we investigated its upstream regulation and downstream effects using primary keratinocytes from wild-type and transgenic mice. The transgenic animals express whn from the involucrin promoter, which is active in keratinocytes undergoing terminal differentiation. In wild-type cultures, as in the epidermis, Whn was induced during the early stages of terminal differentiation and declined during later stages. In transgenic keratinocytes, whn overexpression altered the terminal differentiation program, stimulating an early differentiation marker (keratin 1) and suppressing later markers (profilaggrin, loricrin, and involucrin). These results suggest a role for Whn in the stepwise or temporal regulation of differentiation, as Whn can ensure that the differentiation program is carried out in proper sequence. Before the start of differentiation, Whn levels were suppressed by the p42/p44 mitogen-activated protein kinase cascade, and this signaling pathway was rapidly inactivated as differentiation began. Thus, as keratinocytes commit to terminal differentiation, mitogen-activated protein kinase signaling decreases, which permits the induction of Whn; Whn then activates early features of the differentiation program.
Collapse
Affiliation(s)
- Ruth M Baxter
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
10
|
Abstract
The nude mutation has been known for a long time. Nevertheless, the gene responsible for the defect has been identified only recently. It encodes a transcriptional activator of the family of forkhead proteins mainly expressed in thymic epithelium and distinct keratinocyte populations in the epidermis and hair follicles. The present review focuses on the molecular and functional characterization of the nude gene and its product and gives an overview as to its role in skin biology and the first identified target genes in the skin. In addition, evolutionary aspects are highlighted stressing the importance of such investigations for a comprehensive understanding of the nude gene product and the regulation of its expression. Furthermore, these studies give a hint as to when the nude gene has occurred first and how it has developed in molecular and functional terms since then.
Collapse
Affiliation(s)
- T Schlake
- Department of Developmental Immunology, Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| |
Collapse
|
11
|
Mecklenburg L, Nakamura M, Sundberg JP, Paus R. The nude mouse skin phenotype: the role of Foxn1 in hair follicle development and cycling. Exp Mol Pathol 2001; 71:171-8. [PMID: 11599924 DOI: 10.1006/exmp.2001.2386] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The original nude mouse mutation has proven to be an incredibly valuable biomedical tool since its discovery in 1966. Initially its value was as a tool to study the immune system. The immunodeficiency in this mutant mouse made nude mice valuable as hosts for xenografts, primarily for cancer research. More recently, the most obvious clinical feature of this mutant mouse, lack of hair, has been capitalized on to define the role of Foxn1 in normal and pathological skin and hair follicle physiology.
Collapse
Affiliation(s)
- L Mecklenburg
- Department of Dermatology, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|