1
|
Huang S, Zhu Y, Zhang L, Zhang Z. Recent Advances in Delivery Systems for Genetic and Other Novel Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107946. [PMID: 34914144 DOI: 10.1002/adma.202107946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Vaccination is one of the most successful and cost-effective prophylactic measures against diseases, especially infectious diseases including smallpox and polio. However, the development of effective prophylactic or therapeutic vaccines for other diseases such as cancer remains challenging. This is often due to the imprecise control of vaccine activity in vivo which leads to insufficient/inappropriate immune responses or short immune memory. The development of new vaccine types in recent decades has created the potential for improving the protective potency against these diseases. Genetic and subunit vaccines are two major categories of these emerging vaccines. Owing to their nature, they rely heavily on delivery systems with various functions, such as effective cargo protection, immunogenicity enhancement, targeted delivery, sustained release of antigens, selective activation of humoral and/or cellular immune responses against specific antigens, and reduced adverse effects. Therefore, vaccine delivery systems may significantly affect the final outcome of genetic and other novel vaccines and are vital for their development. This review introduces these studies based on their research emphasis on functional design or administration route optimization, presents recent progress, and discusses features of new vaccine delivery systems, providing an overview of this field.
Collapse
Affiliation(s)
- Shiqi Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Yining Zhu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Ling Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Zhang Q, Wu W, Zhang J, Xia X. Eradication of Helicobacter pylori: the power of nanosized formulations. Nanomedicine (Lond) 2020; 15:527-542. [PMID: 32028847 DOI: 10.2217/nnm-2019-0329] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a pathogen that is considered to cause several gastric disorders such as chronic gastritis, peptic ulcer and even gastric carcinoma. The current therapeutic regimens mainly constitute of a combination of several antimicrobial agents and proton pump inhibitors. However, the prevalence of antibiotic resistance has been significantly lowering the cure rates over the years. Nanocarriers possess unique strengths in this regard owing to the fact that they can protect the drugs (such as antibiotics) from the harsh environment in the stomach, penetrate the mucosal barrier and deliver drugs to the desired site. In this review we summarized recent studies of different antibacterial agents orally delivered by nanosized carriers for the eradication of H. pylori.
Collapse
Affiliation(s)
- Qianyu Zhang
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Wen Wu
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Jinqiang Zhang
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| | - Xuefeng Xia
- Innovative Drug Research Center (IDRC), School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, PR China
| |
Collapse
|
3
|
Zhang R, Qiao D, Peng X, Duan G, Shi Q, Zhang L, Wang C, Liang W, Chen S, Fan Q. A novel food‐grade lactococcal expression system and its use for secretion and delivery of an oral vaccine antigen. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2018; 93:1655-1660. [DOI: 10.1002/jctb.5536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/25/2017] [Indexed: 07/03/2024]
Abstract
AbstractBACKGROUNDFood‐grade bacterial expression systems are relatively rare, and increasing evidence indicates that subcellular location of antigens in bacterial vector vaccines may markedly affect the immune efficacy.RESULTSThis study developed a novel food‐grade secretory expression system for heterologous protein production and oral vaccine delivery. Furthermore, by using the expression system, an engineered L. lactis strain secreting H. pylori UreB was constructed, and used to vaccinate SPF BALB/c mice. As results, the UreB expressed in L. lactis was detected in both cell lysates and culture supernatant of the engineered strain, constituting roughly 50% of the culture supernatant proteins, and recognized by mouse anti‐H. pylori sera. Oral vaccination with the engineered L. lactis produced a significantly elevated anti‐UreB serum antibody level in mice (P < 0.05).CONCLUSIONThese data show a novel food‐grade L. lactis secretory expression system, which may have distinct potential impact on edible and medicinal protein production and oral vaccine development. Moreover, this is the first report on secretory expression of a H. pylori antigen via using a food‐grade lactococcal expression system, and the engineered strain secreting UreB can be a hopeful H. pylori vaccine candidate. © 2017 Society of Chemical Industry
Collapse
Affiliation(s)
- Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Dan Qiao
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Qingfeng Shi
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Linghan Zhang
- Department of Clinical Medicine Zhengzhou University Zhengzhou China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Wenjuan Liang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| |
Collapse
|
4
|
Moridi K, Hosseini Doust R, Goudarzi Z, Lashini H, Esmaeili D, Saberfar E. Investigation of Helicobacter pylori in Laryngeal Papillomatosis. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2015. [DOI: 10.17795/ijep22392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Corfield AP. Mucins: A biologically relevant glycan barrier in mucosal protection. Biochim Biophys Acta Gen Subj 2015; 1850:236-52. [PMID: 24821013 DOI: 10.1016/j.bbagen.2014.05.003] [Citation(s) in RCA: 375] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 04/05/2014] [Accepted: 05/02/2014] [Indexed: 02/08/2023]
|
6
|
Teymournejad O, Mobarez AM, Hassan ZM, Moazzeni SM, Ahmadabad HN. In vitro suppression of dendritic cells by Helicobacter pylori OipA. Helicobacter 2014; 19:136-43. [PMID: 24495278 DOI: 10.1111/hel.12107] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Outer inflammatory protein A (OipA) has an important role in Helicobacter pylori pathogenesis. In this study, we purified the outer membrane protein and evaluated the effects of this protein on maturation and cytokine production by dendritic cells (DCs). MATERIALS AND METHODS The oipA gene was inserted into pET28a, and this construct was transformed into Escherichia coli BL21 (DE3). Purification of the recombinant protein was performed by Ni-NTA affinity chromatography. Immature DCs were purified from spleen of C57BL/6 mice with more than 90% purity and were treated with several concentrations of OipA (1-20 μg/mL) overnight. Expression of maturation markers (CD86, CD40, and MHC-II) on the surface of DCs and production of IL-10 and IL-12 were assessed by flow cytometry and ELISA, respectively. RESULTS The expression of DC maturation markers CD40, CD86, and MHC-II was downregulated on the surface of OipA-treated DCs at concentrations of 10 and 20 μg/mL compared with negative control. Production of IL-10 decreases with increasing OipA concentration at a concentration of 5 μg/mL, but we detected no change in IL-12 production. CONCLUSION Inability to eliminate H. pylori from stomach is partly due to the evasion of the bacteria from the immune response. DCs are central mediators between innate and adaptive immunity, and DC cytokines direct the types of adaptive immune response. This study indicated that OipA of H. pylori is a DC maturation suppression factor. Previous studies have shown that H. pylori manage tolerogenic programming in DCs leading to long-time gastric colonization. In conclusion, H. pylori OipA helps the establishment of chronic infection with reduction in IL-10 and suppression of DC maturation.
Collapse
Affiliation(s)
- Omid Teymournejad
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
7
|
Ng GZ, Chionh YT, Sutton P. Vaccine-mediated protection against Helicobacter pylori is not associated with increased salivary cytokine or mucin expression. Helicobacter 2014; 19:48-54. [PMID: 24165046 DOI: 10.1111/hel.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of an effective vaccine against Helicobacter pylori is impeded by the inability to reliably produce sterilizing immunity and our lack of knowledge regarding mechanisms of protective immunity against this pathogen. It has previously been described that salivary glands are essential for vaccine-mediated protection against H. pylori, but the mechanism responsible for this effect has not been identified. In this study we tested the hypothesis that vaccines reduce H. pylori colonization by inducing an immune-mediated change in salivary gland mucin secretion. MATERIALS AND METHODS Sublingual and submandibular salivary glands were removed from untreated mice, from mice infected with H. pylori and from mice vaccinated against H. pylori then challenged with live bacteria. Cytokine levels in these salivary glands were quantified by ELISA, and salivary mucins were quantified by real-time PCR. Salivary antibody responses were determined by Western blot. RESULTS Vaccine-mediated protection against H. pylori did not produce any evidence of a positive increase in either salivary cytokine or mucin levels. In fact, many cytokines were significantly reduced in the vaccinated/challenged mice, including IL-17A, IL-10, IL-1ß, as well as the mucin Muc10. These decreases were associated with an increase in total protein content within the salivary glands of vaccinated mice which appeared to be the result of increased IgA production. While this study showed that vaccination increased salivary IgA levels, previous studies have demonstrated that antibodies do not play a critical role in protection against H. pylori that is induced by current vaccine formulations and regimes. CONCLUSIONS The effector mechanism of protective immunity induced by vaccination of mice did not involve immune changes within the salivary glands, nor increased production of salivary mucins.
Collapse
Affiliation(s)
- Garrett Z Ng
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Parkville, Vic., 3010, Australia; Mucosal Immunology, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Parkville, Vic., 3052, Australia
| | | | | |
Collapse
|
8
|
Becher D, Deutscher ME, Simpfendorfer KR, Wijburg OL, Pederson JS, Lew AM, Strugnell RA, Walduck AK. Local recall responses in the stomach involving reduced regulation and expanded help mediate vaccine-induced protection against Helicobacter pylori in mice. Eur J Immunol 2010; 40:2778-90. [PMID: 21038469 DOI: 10.1002/eji.200940219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is recognised as the chief cause of chronic gastritis, ulcers and gastric cancer in humans. With increased incidence of treatment failure and antibiotic resistance, development of prophylactic or therapeutic vaccination is a desirable alternative. Although the results of vaccination studies in animal models have been promising, studies in human volunteers have revealed problems such as 'post-immunisation gastritis' and comparatively poor responses to vaccine antigens. The focus of this study was to compare the gastric and systemic cellular immune responses induced by recombinant attenuated Salmonella Typhimurium-based vaccination in the C57BL/6 model of H. pylori infection. Analysis of lymphocyte populations in the gastric mucosa, blood, spleen, paragastric LN and MLN revealed that the effects of vaccination were largely confined to the parenchymal stomach rather than lymphoid organs. Vaccine-induced protection was correlated with an augmented local recall response in the gastric mucosa, with increased proportions of CD4(+) T cells, neutrophils and reduced proportions of CD4(+) Treg. CD4(+) T cells isolated from the stomachs of vaccinated mice proliferated ex vivo in response to H. pylori antigen, and secreted Th1 cytokines, particularly IFN-γ. This detailed analysis of local gastric immune responses provides insight into the mechanism of vaccine-induced protection.
Collapse
Affiliation(s)
- Dorit Becher
- Department of Microbiology and Immunology, University of Melbourne, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Aebischer T, Walduck A, Schroeder J, Wehrens A, Chijioke O, Schreiber S, Meyer TF. A vaccine against Helicobacter pylori: towards understanding the mechanism of protection. Int J Med Microbiol 2007; 298:161-8. [PMID: 17702653 DOI: 10.1016/j.ijmm.2007.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori infection remains a significant global public health problem. Vaccine development against this infection appears to be feasible but has not yet delivered its promise in clinical trials. Efforts to improve current vaccination strategies would greatly benefit from a better molecular understanding of the mechanism of protection. Here, we review recent developments in this field.
Collapse
Affiliation(s)
- Toni Aebischer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charité Platz 1, D-10117 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Walduck A, Schmitt A, Lucas B, Aebischer T, Meyer TF. Transcription profiling analysis of the mechanisms of vaccine‐induced protection against
H. pylori. FASEB J 2004; 18:1955-7. [PMID: 15456742 DOI: 10.1096/fj.04-2321fje] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Development of a vaccine against H. pylori is regarded as desirable alternative to the current antibiotic therapy regimens. Mice immunized with an attenuated recombinant Salmonella typhimurium expressing H. pylori urease subunits A&B have dramatically reduced bacterial loads after a single dose. The mechanism(s) of protection against this largely extra-cellular pathogen are not fully understood. The aim of this study was to identify genes that were regulated specifically in response to immunization, in order to gain a broader picture of the immune response in the immunized gastric epithelium. Gene expression in RNA isolated from the gastric mucosa of immunized and infected Balb/c mice was compared with that in infected only mice at 1, 3, and 14 days after challenge with a mouse-adapted strain of H. pylori. We show that infection with H. pylori causes an immediate reaction in vivo, which was clearly divided into acute and chronic phases, and further that the transcriptional response in the H. pylori infected and immunized gastric mucosa is unique. Analysis of gene expression patterns at day 14 post-infection suggested not only the beginning of a lymphocytic infiltrate, but of an integrated epithelial response characterized by increased expression of genes controlling cell cycle and turnover. This observation was confirmed in independent experiments. The global approach has brought new insights to the effect of immunization on the gastric epithelium and has led us to propose a new multi-factorial model for the mechanisms underlying vaccine-induced protection.
Collapse
Affiliation(s)
- Anna Walduck
- Max-Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | | | | | | | |
Collapse
|
11
|
Reddy VM, Suleman FG, Hayworth DA. Mycobacterium avium binds to mouse intestinal mucus aldolase. Tuberculosis (Edinb) 2004; 84:303-10. [PMID: 15207805 DOI: 10.1016/j.tube.2003.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 11/03/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
SETTING Mycobacterium avium complex (MAC) is known to colonize the gastrointestinal tract of human immunodeficiency virus (HIV) infected patients before causing bacteremia and disseminated disease. However, the mechanism involved in the gastrointestinal colonization is not known. OBJECTIVE To identify putative intestinal mucus receptors which serve as anchor for MAC colonization. DESIGN C57BL/6 mouse intestinal mucus was subjected to single and two-dimensional electrophoresis and blotted on nitrocellulose membranes. MAC specific mucus proteins were identified by probing the mucus western blots with biotinylated proteins derived from M.avium strain 101 (MAC101). RESULTS Biotinylated MAC 101 proteins recognized a 39 kDa intestinal mucus glycoprotein. The protein displaying an isoelectric point (pI) of 9.0, was found to be periodate sensitive but resistant to sialidase, heparinase I and chondroitinase ABC. The internal amino acid sequence of the 39 kDa protein displayed homology with fructose-1-6-bisphosphate aldolase B (aldolase). The proclivity between MAC adhesins and aldolase was confirmed by probing rabbit muscle aldolase with MAC proteins. Furthermore, both 25 and 31 kDa MAC adhesins, superoxide dismutase and heparin binding protein, respectively, were found to bind to aldolase. CONCLUSIONS MAC binds to intestinal mucus aldolase, conceivably facilitating intestinal colonization of the organism.
Collapse
Affiliation(s)
- V M Reddy
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL 61107, USA.
| | | | | |
Collapse
|
12
|
Abstract
Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed.
Collapse
Affiliation(s)
- M Alsahli
- Department of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass., USA
| | | | | |
Collapse
|
13
|
Ryan BM, Murphy G, O'Morain CA. Host cytokine responses to Helicobacter pylori: an important determinant of clinical outcome. Ir J Med Sci 2001; 170:90-91. [PMID: 11491057 DOI: 10.1007/bf03168814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|