1
|
Mannie MD, DeOca KB, Bastian AG, Moorman CD. Tolerogenic vaccines: Targeting the antigenic and cytokine niches of FOXP3 + regulatory T cells. Cell Immunol 2020; 355:104173. [PMID: 32712270 PMCID: PMC7444458 DOI: 10.1016/j.cellimm.2020.104173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
FOXP3+ regulatory T cells (Tregs) constitute a critical barrier that enforces tolerance to both the self-peptidome and the extended-self peptidome to ensure tissue-specific resistance to autoimmune, allergic, and other inflammatory disorders. Here, we review intuitive models regarding how T cell antigen receptor (TCR) specificity and antigen recognition efficiency shape the Treg and conventional T cell (Tcon) repertoires to adaptively regulate T cell maintenance, tissue-residency, phenotypic stability, and immune function in peripheral tissues. Three zones of TCR recognition efficiency are considered, including Tcon recognition of specific low-efficiency self MHC-ligands, Treg recognition of intermediate-efficiency agonistic self MHC-ligands, and Tcon recognition of cross-reactive high-efficiency agonistic foreign MHC-ligands. These respective zones of TCR recognition efficiency are key to understanding how tissue-resident immune networks integrate the antigenic complexity of local environments to provide adaptive decisions setting the balance of suppressive and immunogenic responses. Importantly, deficiencies in the Treg repertoire appear to be an important cause of chronic inflammatory disease. Deficiencies may include global deficiencies in Treg numbers or function, subtle 'holes in the Treg repertoire' in tissue-resident Treg populations, or simply Treg insufficiencies that are unable to counter an overwhelming molecular mimicry stimulus. Tolerogenic vaccination and Treg-based immunotherapy are two therapeutic modalities meant to restore dominance of Treg networks to reverse chronic inflammatory disease. Studies of these therapeutic modalities in a preclinical setting have provided insight into the Treg niche, including the concept that intermediate-efficiency TCR signaling, high IFN-β concentrations, and low IL-2 concentrations favor Treg responses and active dominant mechanisms of immune tolerance. Overall, the purpose here is to assimilate new and established concepts regarding how cognate TCR specificity of the Treg repertoire and the contingent cytokine networks provide a foundation for understanding Treg suppressive strategy.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
2
|
Moorman CD, Bastian AG, DeOca KB, Mannie MD. A GM-CSF-neuroantigen tolerogenic vaccine elicits inefficient antigen recognition events below the CD40L triggering threshold to expand CD4 + CD25 + FOXP3 + Tregs that inhibit experimental autoimmune encephalomyelitis (EAE). J Neuroinflammation 2020; 17:180. [PMID: 32522287 PMCID: PMC7285464 DOI: 10.1186/s12974-020-01856-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tolerogenic vaccines represent antigen-specific interventions designed to re-establish self-tolerance and thereby alleviate autoimmune diseases, which collectively comprise over 100 chronic inflammatory diseases afflicting more than 20 million Americans. Tolerogenic vaccines comprised of single-chain GM-CSF-neuroantigen (GMCSF-NAg) fusion proteins were shown in previous studies to prevent and reverse disease in multiple rodent models of experimental autoimmune encephalomyelitis (EAE) by a mechanism contingent upon the function of CD4+ CD25+ FOXP3+ regulatory T cells (Tregs). GMCSF-NAg vaccines inhibited EAE in both quiescent and inflammatory environments in association with low-efficiency T cell receptor (TCR) signaling events that elicited clonal expansion of immunosuppressive Tregs. Methods This study focused on two vaccines, including GMCSF-MOG (myelin oligodendrocyte glycoprotein 35–55/MOG35–55) and GMCSF-NFM (neurofilament medium peptide 13–37/NFM13–37), that engaged the transgenic 2D2 TCR with either low or high efficiencies, respectively. 2D2 mice were crossed with FOXP3 IRES eGFP (FIG) mice to track Tregs and further crossed with Rag−/− mice to reduce pre-existing Treg populations. Results This study provided evidence that low and high efficiency TCR interactions were integrated via CD40L expression levels to control the Treg/Tcon balance. The high-efficiency GMCSF-NFM vaccine elicited memory Tcon responses in association with activation of the CD40L costimulatory system. Conversely, the low-efficiency GMCSF-MOG vaccine lacked adequate TCR signal strength to elicit CD40L expression and instead elicited Tregs by a mechanism that was impaired by a CD40 agonist. When combined, the low- and high-efficiency GMCSF-NAg vaccines resulted in a balanced outcome and elicited both Tregs and Tcon responses without the predominance of a dominant immunogenic Tcon response. Aside from Treg expansion in 2D2-FIG mice, GMCSF-MOG caused a sustained decrease in TCR-β, CD3, and CD62L expression and a sustained increase in CD44 expression in Tcon subsets. Subcutaneous administration of GMCSF-MOG without adjuvants inhibited EAE in wildtype mice, which had a replete Treg repertoire, but was pathogenic rather than tolerogenic in 2D2-FIG-Rag1−/− mice, which lacked pre-existing Tregs. Conclusions This study provided evidence that the GMCSF-MOG vaccine elicited antigenic responses beneath the CD40L triggering threshold, which defined an antigenic niche that drove dominant expansion of tolerogenic myelin-specific Tregs that inhibited EAE.
Collapse
Affiliation(s)
- Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Alexander G Bastian
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
3
|
Purushothaman B, Arumugam P, Song JM. A Novel Catecholopyrimidine Based Small Molecule PDE4B Inhibitor Suppresses Inflammatory Cytokines in Atopic Mice. Front Pharmacol 2018; 9:485. [PMID: 29867490 PMCID: PMC5958743 DOI: 10.3389/fphar.2018.00485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/24/2018] [Indexed: 01/23/2023] Open
Abstract
Degradation of cyclic adenosine mono phosphate (cAMP) by phosphodiesterase-4B (PDE-4B) in the inflammatory cells leads to elevated expression of inflammatory cytokines in inflammatory cells. Suppression of cytokines has proved to be beneficial in the treatment of atopic dermatitis (AD). Henceforth, application of PDE4B specific inhibitor to minimize the degradation of cAMP can yield better results in the treatment of AD. PDE4B specific inhibitor with a limited side effect is highly warranted. Herein, we synthesized a novel PDE4 inhibitor, compound 2 comprising catecholopyrimidine core functionalized with trifluoromethyl (-CF3) group. PDE4B inhibitory potential and specificity of novel compounds were evaluated by PDE inhibitor assay. In vivo efficacy of the compounds was analyzed using DNCB-induced NC/Nga mice. IgE, CD4+ T-helper cell infiltration, and cytokine profiles were analyzed by ELISA and immunohistochemistry techniques. Toluidine blue staining was performed for mast cell count. PDE4 inhibitor assay confirmed that compound 2 specifically inhibits PDE4B. In vivo analysis with DNCB-induced NC/Nga mice confirmed that compound 2 suppressed the levels of pro-inflammatory cytokines such as TNF-α, IL-4, IL-5, and IL-17. Furthermore, compound 2 significantly reduced the infiltrative CD4+ T-helper cells, mast cells and IgE levels in atopic tissue. The in vitro and in vivo data suggested that compound 2 specifically inhibit the PDE4B and the symptoms of the AD in atopic mice. Compound 2 might constitute a good candidate molecule for the treatment of AD.
Collapse
Affiliation(s)
| | | | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Wilkinson DS, Ghosh D, Nickle RA, Moorman CD, Mannie MD. Partial CD25 Antagonism Enables Dominance of Antigen-Inducible CD25 high FOXP3 + Regulatory T Cells As a Basis for a Regulatory T Cell-Based Adoptive Immunotherapy. Front Immunol 2017; 8:1782. [PMID: 29312311 PMCID: PMC5735073 DOI: 10.3389/fimmu.2017.01782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 11/29/2017] [Indexed: 02/02/2023] Open
Abstract
FOXP3+ regulatory T cells (Tregs) represent a promising platform for effective adoptive immunotherapy of chronic inflammatory disease, including autoimmune diseases such as multiple sclerosis. Successful Treg immunotherapy however requires new technologies to enable long-term expansion of stable, antigen-specific FOXP3+ Tregs in cell culture. Antigen-specific activation of naïve T cells in the presence of TGF-β elicits the initial differentiation of the FOXP3+ lineage, but these Treg lines lack phenotypic stability and rapidly transition to a conventional T cell (Tcon) phenotype during in vitro propagation. Because Tregs and Tcons differentially express CD25, we hypothesized that anti-CD25 monoclonal antibodies (mAbs) would only partially block IL-2 signaling in CD25high FOXP3+ Tregs while completely blocking IL-2 responses of CD25low-intermediate Tcons to enable preferential outgrowth of Tregs during in vitro propagation. Indeed, murine TGF-β-induced MOG-specific Treg lines from 2D2 transgenic mice that were maintained in IL-2 with the anti-CD25 PC61 mAb rapidly acquired and indefinitely maintained a FOXP3high phenotype during long-term in vitro propagation (>90% FOXP3+ Tregs), whereas parallel cultures lacking PC61 rapidly lost FOXP3. These results pertained to TGF-β-inducible "iTregs" because Tregs from 2D2-FIG Rag1-/- mice, which lack thymic or natural Tregs, were stabilized by continuous culture in IL-2 and PC61. MOG-specific and polyclonal Tregs upregulated the Treg-associated markers Neuropilin-1 (NRP1) and Helios (IKZF2). Just as PC61 stabilized FOXP3+ Tregs during expansion in IL-2, TGF-β fully stabilized FOXP3+ Tregs during cellular activation in the presence of dendritic cells and antigen/mitogen. Adoptive transfer of blastogenic CD25high FOXP3+ Tregs from MOG35-55-specific 2D2 TCR transgenic mice suppressed experimental autoimmune encephalomyelitis in pretreatment and therapeutic protocols. In conclusion, low IL-2 concentrations coupled with high PC61 concentrations constrained IL-2 signaling to a low-intensity range that enabled dominant stable outgrowth of suppressive CD25high FOXP3+ Tregs. The ability to indefinitely expand stable Treg lines will provide insight into FOXP3+ Treg physiology and will be foundational for Treg-based immunotherapy.
Collapse
Affiliation(s)
- Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
5
|
Pitarokoili K, Ambrosius B, Gold R. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis. ACTA ACUST UNITED AC 2017; 81:9.61.1-9.61.20. [PMID: 29058769 DOI: 10.1002/cpns.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this unit, we describe in detail the most common methods used to break immunological tolerance for central myelin antigens and induce experimental autoimmune encephalomyelitis (EAE) in Lewis rats as an animal model of multiple sclerosis. The resulting disease course ranges from an acute monophasic disease to a chronic relapsing or chronic progressive course, which strongly resembles the human disease. These models enable the study of cellular and humoral autoimmunity against major antigenic epitopes of the myelin basic protein, myelin oligodendrocyte glycoprotein, or proteolipid protein. We provide an overview of common immunization protocols for induction of active and passive EAE, assessment and analysis of clinical score, preparation and purification of myelin basic protein, and derivation of neuroantigen-specific rat T cell lines. Finally, we describe the major clinical characteristics of these models. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Bjoern Ambrosius
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
6
|
Banerjee HN, Banerji A, Banerjee AN, Riddick E, Petis J, Evans S, Patel M, Parson C, Smith V, Gwebu E, Voisin S. Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy. ACTA ACUST UNITED AC 2015; 7:44-47. [PMID: 25937869 DOI: 10.4172/1948-5956.1000323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hirendra Nath Banerjee
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Arnold Banerji
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Arunendra Nath Banerjee
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Eilena Riddick
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Jenae Petis
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Shavonda Evans
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Megha Patel
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Carl Parson
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - Valerie Smith
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | - E Gwebu
- Department of Natural Sciences and Pharmaceutical Sciences, ElizabethCity State University, University of North Carolina, ElizabethCity, NC-27909, USA
| | | |
Collapse
|
7
|
Abbott DJ, Blanchfield JL, Martinson DA, Russell SC, Taslim N, Curtis AD, Mannie MD. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE). BMC Immunol 2011; 12:72. [PMID: 22208499 PMCID: PMC3261124 DOI: 10.1186/1471-2172-12-72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/30/2011] [Indexed: 01/24/2023] Open
Abstract
Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity.
Collapse
Affiliation(s)
- Derek J Abbott
- The Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Blanchfield JL, Mannie MD. A GMCSF-neuroantigen fusion protein is a potent tolerogen in experimental autoimmune encephalomyelitis (EAE) that is associated with efficient targeting of neuroantigen to APC. J Leukoc Biol 2010; 87:509-21. [PMID: 20007248 DOI: 10.1189/jlb.0709520] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cytokine-NAg fusion proteins represent an emerging platform for specific targeting of self-antigen to particular APC subsets as a means to achieve antigen-specific immunological tolerance. This study focused on cytokine-NAg fusion proteins that targeted NAg to myeloid APC. Fusion proteins contained GM-CSF or the soluble extracellular domain of M-CSF as the N-terminal domain and the encephalitogenic 69-87 peptide of MBP as the C-terminal domain. GMCSF-NAg and MCSF-NAg fusion proteins were approximately 1000-fold and 32-fold more potent than NAg in stimulating antigenic proliferation of MBP-specific T cells, respectively. The potentiated antigenic responses required cytokine-NAg covalent linkage and receptor-mediated uptake. That is, the respective cytokines did not potentiate antigenic responses when cytokine and NAg were added as separate molecules, and the potentiated responses were inhibited specifically by the respective free cytokine. Cytokine-dependent targeting of NAg was specific for particular subsets of APC. GMCSF-NAg and MCSF-NAg targeted NAg to DC and macrophages; conversely, IL4-NAg and IL2-NAg fusion proteins, respectively, induced an 1000-fold enhancement in NAg reactivity in the presence of B cell and T cell APC. GMCSF-NAg significantly attenuated severity of EAE when treatment was completed before encephalitogenic challenge or alternatively, when treatment was initiated after onset of EAE. MCSF-NAg also had significant tolerogenic activity, but GMCSF-NAg was substantially more efficacious as a tolerogen. Covalent GMCSF-NAg linkage was required for prevention and treatment of EAE. In conclusion, GMCSF-NAg was highly effective for targeting NAg to myeloid APC and was a potent, antigen-specific tolerogen in EAE.
Collapse
Affiliation(s)
- J Lori Blanchfield
- The Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | | |
Collapse
|
9
|
Mannie MD, Abbott DJ, Blanchfield JL. Experimental autoimmune encephalomyelitis in Lewis rats: IFN-beta acts as a tolerogenic adjuvant for induction of neuroantigen-dependent tolerance. THE JOURNAL OF IMMUNOLOGY 2009; 182:5331-41. [PMID: 19380780 DOI: 10.4049/jimmunol.0803756] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine-Ag fusion proteins represent a novel approach for induction of Ag-specific tolerance and may constitute an efficient therapy for autoimmune disease. This study addressed whether a fusion protein containing rat IFN-beta and the encephalitogenic 73-87 determinant of myelin basic protein (i.e., the neuroantigen, or NAg) could prevent or treat experimental autoimmune encephalomyelitis (EAE) in Lewis rats. The optimal structure of the fusion protein was comprised of the rat IFN-beta cytokine as the N-terminal domain with an enterokinase (EK) linker to the NAg domain. Both cytokine and NAg domains had full biological activity. Subcutaneous administration of 1 nmol of IFNbeta-NAg fusion protein in saline on days -21, -14, and -7 before encephalitogenic challenge on day 0 resulted in a substantial attenuation of EAE. In contrast, administration of IFN-beta or NAg alone did not affect susceptibility to EAE. The covalent attachment of IFN-beta and NAg was not necessary, because separate injections of IFN-beta and NAg at adjacent sites were as effective as injection of IFNbeta-NAg for prevention of disease. When treatment was initiated after disease onset, the rank order of inhibitory activity was as follows: the IFNbeta-NAg fusion protein > or = a mixture of IFN-beta plus NAg > IFN-beta > NAg. The novel finding that IFN-beta acts as a tolerogenic adjuvant as well as a tolerogenic fusion partner may have significance for development of tolerogenic vaccines.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA
| | | | | |
Collapse
|
10
|
Mannie M, Swanborg RH, Stepaniak JA. Experimental autoimmune encephalomyelitis in the rat. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 15:15.2.1-15.2.15. [PMID: 19347844 DOI: 10.1002/0471142735.im1502s85] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are several diverse rat models of experimental autoimmune encephalomyelitis (EAE) that can be used to investigate the pathogenesis and regulation of autoimmunity against CNS myelin. The disease course of these models ranges from an acute monophasic disease with limited demyelination to a chronic relapsing or chronic progressive course marked by severe demyelination. These models enable the study of encephalitogenic T cells and demyelinating antibody specific for major neuroantigens such as myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), or proteolipid protein (PLP), among other important CNS autoantigens. Overall, this unit provides an overview of common methods for induction of active and passive EAE, assessment and analysis of clinical disease, preparation and purification of myelin basic protein, and derivation of neuroantigen-specific rat T cell lines. This unit also provides a brief discussion of the basic characteristics of these models.
Collapse
Affiliation(s)
- Mark Mannie
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, North Carolina
| | | | | |
Collapse
|
11
|
Mannie MD, Abbott DJ. A fusion protein consisting of IL-16 and the encephalitogenic peptide of myelin basic protein constitutes an antigen-specific tolerogenic vaccine that inhibits experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:1458-65. [PMID: 17641011 DOI: 10.4049/jimmunol.179.3.1458] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To test a novel concept for the generation of tolerogenic vaccines, fusion proteins were constructed encompassing a tolerogenic or biasing cytokine and the major encephalitogenic peptide of guinea pig myelin basic protein (GPMBP; i.e., neuroantigen or NAg). The cytokine domain was predicted to condition APC while simultaneously targeting the covalently linked encephalitogenic peptide to the MHC class II Ag processing pathway of those conditioned APC. Rats were given three s.c. injections of cytokine-NAg in saline 1-2 wk apart and then at least 1 wk later were challenged with NAg in CFA. The rank order of tolerogenic activity in the Lewis rat model of EAE was NAgIL16 > IL2NAg > IL1RA-NAg, IL13NAg >or= IL10NAg, GPMBP, GP69-88, and saline. NAgIL16 was also an effective inhibitor of experimental autoimmune encephalomyelitis when administered after an encephalitogenic challenge during the onset of clinical signs. Covalent linkage of the NAg and IL-16 was required for inhibition of experimental autoimmune encephalomyelitis. These data identify IL-16 as an optimal cytokine partner for the generation of tolerogenic vaccines and indicate that such vaccines may serve as Ag-specific tolerogens for the treatment of autoimmune disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Line
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Epitopes/administration & dosage
- Epitopes/genetics
- Epitopes/immunology
- Guinea Pigs
- Immune Tolerance/genetics
- Interleukin-16/administration & dosage
- Interleukin-16/genetics
- Interleukin-16/immunology
- Molecular Sequence Data
- Myelin Basic Protein/administration & dosage
- Myelin Basic Protein/genetics
- Myelin Basic Protein/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Rats
- Rats, Inbred Lew
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
12
|
Mannie MD, Clayson BA, Buskirk EJ, DeVine JL, Hernandez JJ, Abbott DJ. IL-2/neuroantigen fusion proteins as antigen-specific tolerogens in experimental autoimmune encephalomyelitis (EAE): correlation of T cell-mediated antigen presentation and tolerance induction. THE JOURNAL OF IMMUNOLOGY 2007; 178:2835-43. [PMID: 17312127 DOI: 10.4049/jimmunol.178.5.2835] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to assess whether the Ag-targeting activity of cytokine/neuroantigen (NAg) fusion proteins may be associated with mechanisms of tolerance induction. To assess this question, we expressed fusion proteins comprised of a N-terminal cytokine domain and a C-terminal NAg domain. The cytokine domain comprised either rat IL-2 or IL-4, and the NAg domain comprised the dominant encephalitogenic determinant of the guinea pig myelin basic protein. Subcutaneous administration of IL2NAg (IL-2/NAg fusion protein) into Lewis rats either before or after an encephalitogenic challenge resulted in an attenuated course of experimental autoimmune encephalomyelitis. In contrast, parallel treatment of rats with IL4NAg (IL-4/NAg fusion protein) or NAg lacked tolerogenic activity. In the presence of IL-2R(+) MHC class II(+) T cells, IL2NAg fusion proteins were at least 1,000 times more potent as an Ag than NAg alone. The tolerogenic activity of IL2NAg in vivo and the enhanced potency in vitro were both dependent upon covalent linkage of IL-2 and NAg. IL4NAg also exhibited enhanced antigenic potency. IL4NAg was approximately 100-fold more active than NAg alone in the presence of splenic APC. The enhanced potency of IL4NAg also required covalent linkage of cytokine and NAg and was blocked by soluble IL-4 or by a mAb specific for IL-4. Other control cytokine/NAg fusion proteins did not exhibit a similar enhancement of Ag potency compared with NAg alone. Thus, the IL2NAg and IL4NAg fusion proteins targeted NAg for enhanced presentation by particular subsets of APC. The activities of IL2NAg revealed a potential relationship between NAg targeting to activated T cells, T cell-mediated Ag presentation, and tolerance induction.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Mannie MD, Devine JL, Clayson BA, Lewis LT, Abbott DJ. Cytokine-neuroantigen fusion proteins: new tools for modulation of myelin basic protein (MBP)-specific T cell responses in experimental autoimmune encephalomyelitis. J Immunol Methods 2006; 319:118-32. [PMID: 17188704 DOI: 10.1016/j.jim.2006.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Fusion proteins incorporating anti-inflammatory cytokines and immunodominant self antigen as separate domains of a single protein may hold promise for development of antigen-specific tolerogenic vaccines. Proteins incorporating rat sequences of IL-1RA, IL-2, IL-4, IL-10, or IL-13 were expressed as fusion proteins containing the major encephalitogenic region of myelin basic protein (MBP). These fusion proteins were expressed via baculovirus (bv) expression systems and were shown to have cytokine-dependent and antigen-specific biological activity. In the case of the IL-2 and IL-4 fusion proteins, covalent linkage of the cytokine and neuroantigen domains resulted in synergistic antigen presentation. These data indicate that the cytokine domain may be able to modulate APC activity and simultaneously target the covalently tethered NAg for enhanced presentation by certain APC subsets. Cytokine/antigen fusion proteins may represent a novel tool for antigen-specific immune modulation in autoimmune disease.
Collapse
Affiliation(s)
- Mark D Mannie
- The Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27834, USA.
| | | | | | | | | |
Collapse
|
14
|
Banerjee HN, Zhang L. Deciphering the finger Prints of Brain Cancer Astrocytoma in comparison to Astrocytes by using near infrared Raman Spectroscopy. Mol Cell Biochem 2006; 295:237-40. [PMID: 16924417 DOI: 10.1007/s11010-006-9278-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 07/07/2006] [Indexed: 11/24/2022]
Abstract
To explore the biochemical differences between brain cancer cells Astrocytoma and normal cells Astrocyte, we investigated the Raman spectra of single cell from these two cell types and analyzed the difference in spectra and intensity. Raman spectrum shows the banding pattern of different compounds as detected by the laser. Raman intensity measures the intensity of these individual bands. The Raman spectra of brain cancer cells was similar to those of normal cells, but the Raman intensity of cancer cells was much higher than that of normal cells. The Raman spectra of brain cancer Astrocytoma shows that the structural changes of cancer cells happen so that many biological functions of these cells are lost. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hirendra Nath Banerjee
- Department of Biological Sciences, Elizabeth City State University, University of North Carolina, Elizabeth City, NC 27909, USA.
| | | |
Collapse
|
15
|
Mannie MD, McConnell TJ, Xie C, Li YQ. Activation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy. J Immunol Methods 2005; 297:53-60. [PMID: 15777930 DOI: 10.1016/j.jim.2004.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 11/19/2004] [Accepted: 11/24/2004] [Indexed: 11/30/2022]
Abstract
Near-infrared Raman spectroscopy may provide a highly sensitive, noninvasive means to identify activation status of leukocytes. The purpose of the current study was to establish Raman spectroscopic characteristics of T cell activation. Activation of the RsL.11 T cell clone in vitro with Con A resulted in specific decrements in band intensities at 785, 1048, 1093, and 1376 cm(-1) but did not alter a majority of other band intensities including those at 1004 cm(-1) (phenylalanine) and 1660 cm(-1) (amide bonds). Activation-dependent decrements in these band intensities occurred subsequent to IL-2 production and correlated closely with T cell blastogenesis. Activation-dependent decrements in these band intensities were not strictly a function of cell size because the same observations were noted in size-controlled comparisons of resting and activated T cells. Like the RsL.11 clone, freshly isolated thymocytes that were activated by Con A or IL-2 showed decrements in particular emissions. These findings indicate that near-infrared Raman spectroscopy can be used as a noninvasive technique to reveal the activation status of single living T cells.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27834, USA.
| | | | | | | |
Collapse
|
16
|
Mannie MD, Dawkins JG, Walker MR, Clayson BA, Patel DM. MHC class II biosynthesis by activated rat CD4+ T cells: development of repression in vitro and modulation by APC-derived signals. Cell Immunol 2005; 230:33-43. [PMID: 15541717 DOI: 10.1016/j.cellimm.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 08/23/2004] [Indexed: 11/29/2022]
Abstract
This study focused on synthesis of MHC class II glycoproteins (MHCII) by rat CD4(+) T-helper cells. During activation in Con A and IL-2, purified rat splenic CD4(+) T cells expressed abundant surface MHCII together with transcripts for I-A alpha/beta, invariant chain, and the type III and type IV MHC class II transactivator (CIITA). Activated thymic CD8(+)CD4(-) and CD8(+)CD4(+) T cells exhibited essentially the same phenotype. MHCII synthesis by CD4(+) T cells enabled presentation of myelin basic protein (MBP) to antigen-specific responders. T cell expression of MHCII was due to direct biosynthesis rather than adsorption from professional APC; indeed, T cell-mediated expression of MHCII was optimal in the absence of professional APC. Despite periodic reactivation with Con A during 3-4 weeks of culture, CD4(+) T cells repressed MHCII synthesis and reverted to a MHCII(-) phenotype. These short-term lines resembled established lines of MBP-specific T cells in that mitogenic activation elicited extensive blastogenesis without MHCII synthesis. Activation-dependent synthesis of MHCII however was partially restored in lines of mitogen-stimulated T cells when the cultures were reconstituted with irradiated splenic APC. These data indicate that most naive rat CD4(+) T cells exhibit activation-dependent synthesis of MHCII whereas continuously propagated T cells require an APC-derived signal to support MHCII synthesis.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, Brody Medical Sciences Building, East Carolina University School of Medicine, Greenville, NC 27834, USA.
| | | | | | | | | |
Collapse
|