1
|
Del Cid-Pellitero E, Plavski A, Mainville L, Jones BE. Homeostatic Changes in GABA and Glutamate Receptors on Excitatory Cortical Neurons during Sleep Deprivation and Recovery. Front Syst Neurosci 2017; 11:17. [PMID: 28408870 PMCID: PMC5374161 DOI: 10.3389/fnsys.2017.00017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/20/2017] [Indexed: 11/23/2022] Open
Abstract
Neuronal activity is regulated in a homeostatic manner through changes in inhibitory GABA and excitatory glutamate (Glu) AMPA (A) receptors (GluARs). Using immunofluorescent staining, we examined whether calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)-labeled (+) excitatory neurons in the barrel cortex undergo such homeostatic regulation following enforced waking with associated cortical activation during the day when mice normally sleep the majority of the time. Sleep deprived mice were prevented from falling asleep by unilateral whisker stimulation and sleep recovery (SR) mice allowed to sleep freely following deprivation. In parallel with changes in c-Fos reflecting changes in activity, (β2-3 subunits of) GABAA Rs were increased on the membrane of CaMKIIα+ neurons with enforced waking and returned to baseline levels with SR in barrel cortex on sides both contra- and ipsilateral to the whisker stimulation. The GABAAR increase was correlated with increased gamma electroencephalographic (EEG) activity across conditions. On the other hand, (GluA1 subunits of) AMPA Rs were progressively removed from the membrane of CaMKIIα+ neurons by (Rab5+) early endosomes during enforced waking and returned to the membrane by (Rab11+) recycling endosomes during SR. The internalization of the GluA1Rs paralleled the expression of Arc, which mediates homeostatic regulation of AMPA receptors through an endocytic pathway. The reciprocal changes in GluA1Rs relative to GABAARs suggest homeostatic down-scaling during enforced waking and sensory stimulation and restorative up-scaling during recovery sleep. Such homeostatic changes with sleep-wake states and their associated cortical activities could stabilize excitability and activity in excitatory cortical neurons.
Collapse
Affiliation(s)
- Esther Del Cid-Pellitero
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Anton Plavski
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Lynda Mainville
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| | - Barbara E Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological InstituteMontreal, QC, Canada
| |
Collapse
|
2
|
Sun Y, Florer J, Mayhew CN, Jia Z, Zhao Z, Xu K, Ran H, Liou B, Zhang W, Setchell KDR, Gu J, Grabowski GA. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS One 2015; 10:e0118771. [PMID: 25822147 PMCID: PMC4378893 DOI: 10.1371/journal.pone.0118771] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jane Florer
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Christopher N. Mayhew
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Zhanfeng Jia
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Zhiying Zhao
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Kui Xu
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Huimin Ran
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kenneth D. R. Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jianguo Gu
- Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gregory A. Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Synageva BioPharma Corp., Lexington, Massachusetts, United States of America
| |
Collapse
|
3
|
Regionally specific expression of high-voltage-activated calcium channels in thalamic nuclei of epileptic and non-epileptic rats. Mol Cell Neurosci 2014; 61:110-22. [PMID: 24914823 DOI: 10.1016/j.mcn.2014.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/21/2022] Open
Abstract
The polygenic origin of generalized absence epilepsy results in dysfunction of ion channels that allows the switch from physiological asynchronous to pathophysiological highly synchronous network activity. Evidence from rat and mouse models of absence epilepsy indicates that altered Ca(2+) channel activity contributes to cellular and network alterations that lead to seizure activity. Under physiological circumstances, high voltage-activated (HVA) Ca(2+) channels are important in determining the thalamic firing profile. Here, we investigated a possible contribution of HVA channels to the epileptic phenotype using a rodent genetic model of absence epilepsy. In this study, HVA Ca(2+) currents were recorded from neurons of three different thalamic nuclei that are involved in both sensory signal transmission and rhythmic-synchronized activity during epileptic spike-and-wave discharges (SWD), namely the dorsal part of the lateral geniculate nucleus (dLGN), the ventrobasal thalamic complex (VB) and the reticular thalamic nucleus (NRT) of epileptic Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) and non-epileptic August Copenhagen Irish (ACI) rats. HVA Ca(2+) current densities in dLGN neurons were significantly increased in epileptic rats compared with non-epileptic controls while other thalamic regions revealed no differences between the strains. Application of specific channel blockers revealed that the increased current was carried by L-type Ca(2+) channels. Electrophysiological evidence of increased L-type current correlated with up-regulated mRNA and protein expression of a particular L-type channel, namely Cav1.3, in dLGN of epileptic rats. No significant changes were found for other HVA Ca(2+) channels. Moreover, pharmacological inactivation of L-type Ca(2+) channels results in altered firing profiles of thalamocortical relay (TC) neurons from non-epileptic rather than from epileptic rats. While HVA Ca(2+) channels influence tonic and burst firing in ACI and WAG/Rij differently, it is discussed that increased Cav1.3 expression may indirectly contribute to increased robustness of burst firing and thereby the epileptic phenotype of absence epilepsy.
Collapse
|
4
|
Santos DVV, Costa KM, Vaz MCG, Da Silva Filho M. Relationships between dendritic morphology, spatial distribution and firing patterns in rat layer 1 neurons. Braz J Med Biol Res 2012; 45:1221-33. [PMID: 22930412 PMCID: PMC3854215 DOI: 10.1590/s0100-879x2012007500137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022] Open
Abstract
The cortical layer 1 contains mainly small interneurons, which have traditionally been classified according to their axonal morphology. The dendritic morphology of these cells, however, has received little attention and remains ill defined. Very little is known about how the dendritic morphology and spatial distribution of these cells may relate to functional neuronal properties. We used biocytin labeling and whole cell patch clamp recordings, associated with digital reconstruction and quantitative morphological analysis, to assess correlations between dendritic morphology, spatial distribution and membrane properties of rat layer 1 neurons. A total of 106 cells were recorded, labeled and subjected to morphological analysis. Based on the quantitative patterns of their dendritic arbor, cells were divided into four major morphotypes: horizontal, radial, ascendant, and descendant cells. Descendant cells exhibited a highly distinct spatial distribution in relation to other morphotypes, suggesting that they may have a distinct function in these cortical circuits. A significant difference was also found in the distribution of firing patterns between each morphotype and between the neuronal populations of each sublayer. Passive membrane properties were, however, statistically homogeneous among all subgroups. We speculate that the differences observed in active membrane properties might be related to differences in the synaptic input of specific types of afferent fibers and to differences in the computational roles of each morphotype in layer 1 circuits. Our findings provide new insights into dendritic morphology and neuronal spatial distribution in layer 1 circuits, indicating that variations in these properties may be correlated with distinct physiological functions.
Collapse
Affiliation(s)
- D V V Santos
- Laboratório de Biofísica Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil.
| | | | | | | |
Collapse
|
5
|
Rüschenschmidt C, Straub H, Köhling R, Siep E, Gorji A, Speckmann EJ. Reduction of human neocortical and guinea pig CA1-neuron A-type currents by organic calcium channel blockers. Neurosci Lett 2004; 368:57-62. [PMID: 15342134 DOI: 10.1016/j.neulet.2004.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/17/2004] [Accepted: 06/22/2004] [Indexed: 11/25/2022]
Abstract
In epilepsy models, organic calcium antagonists regularly induce a transient activity increase before suppression of epileptiform discharges. This action was speculated to be mediated by a modulation of potassium currents. Since A-type currents potently regulate neuronal excitability, their modulation by calcium channel blockers was investigated in acutely isolated human neocortical temporal lobe neurons and CA1 neurons of guinea pigs using the whole-cell voltage-clamp technique. In human neurons, 40 microM nifedipine caused an amplitude reduction by 28% at a command potential of -6 mV and produced a biexponential, markedly accelerated current inactivation with time constants of 8.4 +/- 1.1 ms (n = 6) and 62.9 +/- 6.4 ms (n = 5). The time constant under control conditions was 50.1 +/- 8.5 ms (n = 6). Verapamil (40 microM) did not affect the current amplitude, but accelerated the monoexponential current inactivation from 40.2 +/- 7.1 ms to 13.3 +/- 0.8 ms (n = 9). Accordingly, verapamil accelerated the inactivation from 42.3 +/- 5.9 ms to 15.0 +/- 1.3 ms (n = 11) in guinea pig CA1 neurons, without affecting the current amplitude. In this preparation, it was shown that the two enantiomers of verapamil do not differ in their actions. The results show that the A-type current in human neocortical and in guinea pig hippocampal neurons is reduced by organic calcium channel blockers.
Collapse
|
6
|
Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 2003. [PMID: 12878686 DOI: 10.1523/jneurosci.23-16-06460.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamocortical network is characterized by rhythmic burst activity during natural sleep and tonic single-spike activity during wakefulness. The change between these two activity modes is partially governed by transmitters acting on leak K+ currents in the thalamus, although the nature of the constituting ion channels is not yet known. In the present study, the contribution of members of the two-pore domain K+ channel family to the leak current was investigated using whole-cell patch-clamp techniques and molecular biological techniques. RT-PCR and in situ hybridization revealed the expression of TWIK-related acid-sensitive K+ channel 1 (TASK 1) and TASK3 channels in the rat dLGN. Voltage-clamp recordings of thalamocortical relay neurons in slice preparations demonstrated the existence of a current component sensitive to the TASK channel blocker bupivacaine, which reversed at the presumed K+ equilibrium potential, showed outward rectification, and contributed approximately 40% to the standing outward current at depolarized values of the membrane potential (-28 mV). The pharmacological profile was indicative of TASK channels, in that the current was sensitive to changes in extracellular pH, reduced by muscarine and increased by halothane, and these effects were occluded by a near-maximal action of bupivacaine. Pharmacological manipulation of this current under current-clamp conditions resulted in a shift between burst and tonic firing modes. It is concluded that TASK1 and TASK3 channels contribute to the muscarine- and halothane-sensitive conductance in thalamocortical relay neurons, thereby contributing to the change in the activity mode of thalamocortical networks observed during the sleep-wake cycle and on application of inhalational anesthetics.
Collapse
|
7
|
Abstract
Layer 1 of the neocortex is an important zone in which synaptic integration of inputs originating from a variety of cerebral regions is thought to take place. Layer 1 does not contain pyramidal cells, and several histochemical studies have suggested that most layer 1 neurons are GABAergic. However, although layer 1 neurons could be an important source of inhibition in this layer, the synaptic action of these neurons and the identity of their postsynaptic targets are unknown. We studied the physiological properties and synaptic interactions of a class of cells within layer 1 called late-spiking (LS) cells. The dendrites and axons of layer 1 LS cells were confined primarily to layer 1. Using paired recording, we showed that LS cells formed GABAergic connections with other LS cells as well as with non-LS cells in layer 1 and with pyramidal cells in layer 2/3. We also found that layer 2/3 pyramidal neurons provide excitatory inputs to LS cells. It has been suggested previously that GABAergic neurons belonging to the same class in the cortex are electrically coupled. In agreement with that hypothesis, we found that LS cells were interconnected by electrical coupling (83%), whereas electrical coupling between LS cells and non-LS cells was infrequent (2%). Thus, we provide evidence showing that a group of GABAergic neurons within layer 1 are specifically interconnected by electrical coupling and can provide significant inhibitory inputs to neurons in layer 1 and to distal dendrites of pyramidal cells.
Collapse
|
8
|
Modulation of excitability by alpha-dendrotoxin-sensitive potassium channels in neocortical pyramidal neurons. J Neurosci 2001. [PMID: 11517244 DOI: 10.1523/jneurosci.21-17-06553.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many neurons transduce synaptic inputs into action potentials (APs) according to rules that reflect their intrinsic membrane properties. Voltage-gated potassium channels, being numerous and diverse constituents of neuronal membrane, are important participants in neuronal excitability and thus in synaptic integration. Here we address the role of dendrotoxin-sensitive "D-type" potassium channels in the excitability of large pyramidal neurons in layer 5 of the rat neocortex. Low concentrations of 4-aminopyridine or alpha-dendrotoxin (alpha-DTX) dramatically increased excitability: the firing threshold for action potentials was hyperpolarized by 4-8 mV, and the firing frequency during a 1-sec-long 500 pA somatic current step was doubled. In nucleated outside-out patches pulled from the soma, alpha-DTX reversibly blocked a slowly inactivating potassium current that comprised approximately 6% of the total. This current first turned on at voltages just hyperpolarized to the threshold for spiking and activated steeply with depolarization. By assaying alpha-DTX-sensitive current in outside-out patches pulled from the axon and primary apical dendrite, it was found that this current was concentrated near the soma. We conclude that alpha-DTX-sensitive channels are present on large layer 5 pyramidal neurons at relatively low density, but their strategic location close to the site of action potential initiation in the axon may ensure that they have a disproportionate effect on neuronal excitability. Modulation of this class of channel would generate a powerful upregulation or downregulation of neuronal output after the integration of synaptic inputs.
Collapse
|
9
|
Budde T, Sieg F, Braunewell KH, Gundelfinger ED, Pape HC. Ca2+-induced Ca2+ release supports the relay mode of activity in thalamocortical cells. Neuron 2000; 26:483-92. [PMID: 10839366 DOI: 10.1016/s0896-6273(00)81180-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ca2+ ions play an important role during rhythmic bursting of thalamocortical neurons within sleep. The function of Ca2+ during the tonic relay mode of these neurons during wakefulness is less clear. Here, we report that tonic activity in thalamocortical cells results in an increase in the intracellular Ca2+ concentration and subsequent release of Ca2+ from intracellular stores mediated via ryanodine receptors (RyRs). Blockade of Ca2+ release shifted the regular firing of single action potentials toward the generation of spike clusters. Regular spike firing and intracellular Ca2+ release thus appear to be functionally coupled in a positive feedback manner, thereby supporting the relay mode of thalamocortical cells during wakefulness. Regulatory influences may be coupled to this system via the cyclic ADP ribose pathway.
Collapse
Affiliation(s)
- T Budde
- Institut für Physiologie, Otto-von-Guericke-Universität, Magdeburg, Federal Republic of Germany.
| | | | | | | | | |
Collapse
|
10
|
Madeja M, Müller V, Musshoff U, Speckmann EJ. Sensitivity of native and cloned hippocampal delayed-rectifier potassium channels to verapamil. Neuropharmacology 2000; 39:202-10. [PMID: 10670415 DOI: 10.1016/s0028-3908(99)00110-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of the phenylalkylamine verapamil on native and cloned hippocampal voltage-operated potassium channels were investigated. Native channels were studied in acutely isolated CA1 neurons from the guinea pig with the whole-cell patch-clamp technique. Cloned channels were expressed in oocytes of Xenopus laevis and studied with the two-electrode voltage-clamp technique. Native potassium channels: Verapamil suppressed the potassium currents in micro- and submicromolar concentrations. The current suppression increased during the voltage step. The IC50 value of verapamil was 3 micromol/l and the Hill coefficient was 0.5 indicating a mixed population of potassium channels with distinct verapamil sensitivity. Cloned potassium channels: The hippocampal potassium channels Kv1.1, Kv1.2, Kv1.3, Kv2.1, Kv3.1 and Kv3.2 were affected by verapamil in micromolar concentrations. The effect increased with depolarization time, was voltage-dependent, reached 90% of the maximum within around 40 s after start of verapamil application, recovered slowly after wash-out and did not reach control values even after wash-out times of six minutes. The IC50 values differed markedly and were 35 micromol/l for the Kv1.1 channel, 98 micromol/l for the Kv1.2 channel, 12 micromol/l for the Kv1.3 channel, 226 micromol/l for the Kv2.1 channel, 6 micromol/l for the Kv3.1 channel and 11 micromol/l for the Kv3.2 channel.
Collapse
Affiliation(s)
- M Madeja
- Institut für Physiologie, Münster, Germany.
| | | | | | | |
Collapse
|