1
|
Basha D, Azarmehri A, Proulx E, Chauvette S, Ghorbani M, Timofeev I. The reuniens nucleus of the thalamus facilitates hippocampo-cortical dialogue during sleep. eLife 2025; 12:RP90826. [PMID: 40047245 PMCID: PMC11884783 DOI: 10.7554/elife.90826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Memory consolidation during sleep depends on the interregional coupling of slow waves, spindles, and sharp wave-ripples (SWRs), across the cortex, thalamus, and hippocampus. The reuniens nucleus of the thalamus, linking the medial prefrontal cortex (mPFC) and the hippocampus, may facilitate interregional coupling during sleep. To test this hypothesis, we used intracellular, extracellular unit and local field potential recordings in anesthetized and head restrained non-anesthetized cats as well as computational modelling. Electrical stimulation of the reuniens evoked both antidromic and orthodromic intracellular mPFC responses, consistent with bidirectional functional connectivity between mPFC, reuniens and hippocampus in anesthetized state. The major finding obtained from behaving animals is that at least during NREM sleep hippocampo-reuniens-mPFC form a functional loop. SWRs facilitate the triggering of thalamic spindles, which later reach neocortex. In return, transition to mPFC UP states increase the probability of hippocampal SWRs and later modulate spindle amplitude. During REM sleep hippocampal theta activity provides periodic locking of reuniens neuronal firing and strong crosscorrelation at LFP level, but the values of reuniens-mPFC crosscorrelation was relatively low and theta power at mPFC was low. The neural mass model of this network demonstrates that the strength of bidirectional hippocampo-thalamic connections determines the coupling of oscillations, suggesting a mechanistic link between synaptic weights and the propensity for interregional synchrony. Our results demonstrate the presence of functional connectivity in hippocampo-thalamo-cortical network, but the efficacy of this connectivity is modulated by behavioral state.
Collapse
Affiliation(s)
- Diellor Basha
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| | - Amirmohammad Azarmehri
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Elian Proulx
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
| | | | - Maryam Ghorbani
- Department of Psychiatry and Neuroscience, Department of Electrical Engineering, Ferdowsi University of MashhadMashhadIran
| | - Igor Timofeev
- Département de psychiatrie et de neurosciences, Université LavalQuebecCanada
- CERVO Centre de recherche, Université LavalQuébecCanada
| |
Collapse
|
2
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Keeley RJ, Prillaman ME, Scarlata M, Vrana A, Tsai PJ, Gomez JL, Bonaventura J, Lu H, Michaelides M, Stein EA. Adolescent nicotine administration increases nicotinic acetylcholine receptor binding and functional connectivity in specific cortico-striatal-thalamic circuits. Brain Commun 2022; 4:fcac291. [PMID: 36440101 PMCID: PMC9683397 DOI: 10.1093/braincomms/fcac291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/05/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2023] Open
Abstract
Nicotine exposure is associated with regional changes in brain nicotinic acetylcholine receptors subtype expression patterns as a function of dose and age at the time of exposure. Moreover, nicotine dependence is associated with changes in brain circuit functional connectivity, but the relationship between such connectivity and concomitant regional distribution changes in nicotinic acetylcholine receptor subtypes following nicotine exposure is not understood. Although smoking typically begins in adolescence, developmental changes in brain circuits and nicotinic acetylcholine receptors following chronic nicotine exposure remain minimally investigated. Here, we combined in vitro nicotinic acetylcholine receptor autoradiography with resting state functional magnetic resonance imaging to measure changes in [3H]nicotine binding and α4ß2 subtype nicotinic acetylcholine receptor binding and circuit connectivity across the brain in adolescent (postnatal Day 33) and adult (postnatal Day 68) rats exposed to 6 weeks of nicotine administration (0, 1.2 and 4.8 mg/kg/day). Chronic nicotine exposure increased nicotinic acetylcholine receptor levels and induced discrete, developmental stage changes in regional nicotinic acetylcholine receptor subtype distribution. These effects were most pronounced in striatal, thalamic and cortical regions when nicotine was administered during adolescence but not in adults. Using these regional receptor changes as seeds, resting state functional magnetic resonance imaging identified dysregulations in cortico-striatal-thalamic-cortical circuits that were also dysregulated following adolescent nicotine exposure. Thus, nicotine-induced increases in cortical, striatal and thalamic nicotinic acetylcholine receptors during adolescence modifies processing and brain circuits within cortico-striatal-thalamic-cortical loops, which are known to be crucial for multisensory integration, action selection and motor output, and may alter the developmental trajectory of the adolescent brain. This unique multimodal study significantly advances our understanding of nicotine dependence and its effects on the adolescent brain.
Collapse
Affiliation(s)
- Robin J Keeley
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - McKenzie E Prillaman
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Miranda Scarlata
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Antonia Vrana
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Pei-Jung Tsai
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Juan L Gomez
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Jordi Bonaventura
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
- Departament de Patologia Terapèutica Experimental, Institut de Neurociènes, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain
| | - Hanbing Lu
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Michaelides
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program (NIDA-IRP), National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Ionov ID, Pushinskaya II, Gorev NP, Frenkel DD, Severtsev NN. Anticataleptic activity of nicotine in rats: involvement of the lateral entorhinal cortex. Psychopharmacology (Berl) 2021; 238:2471-2483. [PMID: 34002247 DOI: 10.1007/s00213-021-05870-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023]
Abstract
RATIONALE Recently, it was found that cyclosomatostatin-induced catalepsy in middle-aged rats is accompanied by neuronal hypoactivation in the lateral entorhinal cortex (LEntCx); this hypoactivation was reversed by systemic administration of nicotine combined with diphenhydramine. These findings suggest the ability of nicotine to regulate catalepsy and the involvement of the LEntCx in this nicotine effect. OBJECTIVES The study was aimed to assess whether nicotine alone influences catalepsy when injected into the LEntCx and some other neuroanatomical structures. METHODS Experiments were conducted with male Wistar rats of 540-560 days of age. Catalepsy was induced by intracerebroventricular injection of cyclosomatostatin and assessed by the standard bar test. Nicotine was injected into the LEntCx, prelimbic cortex (PrCx), or basolateral amygdala (BLA). The tissue levels of tyrosine hydroxylase, dopamine, and DOPAC in the substantia nigra pars compacta and dorsal striatum were measured with use of HPLC and ELISA. RESULTS Injections of nicotine into the LEntCx but not into the PrCx and BLA produced anticataleptic effect; the nicotine effect was significantly reversed by intra-LEntCx administration of NMDA and non-NMDA glutamate receptor antagonists. Nicotine also attenuated cataleptogen-induced changes in nigrostriatal dopamine metabolism. CONCLUSIONS This may be the first demonstration of anticataleptic activity of nicotine. The results show that the effect is mediated by nicotine receptors in the LEntCx, via a glutamatergic mechanism. These findings may help advance the development of novel treatments for extrapyramidal disorders, including parkinsonism.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre On Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Leninsky prospect 123-4-63, Moscow, 117513, Russia.
| | | | | | | | | |
Collapse
|
5
|
Stratilov VA, Tyulkova EI, Vetrovoy OV. Prenatal Stress as a Factor of the
Development of Addictive States. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020060010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Wang C, Wang S, Shen Z, Qian W, Jiaerken Y, Luo X, Li K, Zeng Q, Gu Q, Yang Y, Huang P, Zhang M. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse. Neuroimage Clin 2020; 28:102451. [PMID: 33022581 PMCID: PMC7548987 DOI: 10.1016/j.nicl.2020.102451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022]
Abstract
The thalamus, with the highest density of nicotinic acetylcholine receptor (nAChR) in the brain, plays a central role in thalamo-cortical circuits that are implicated in nicotine addiction. However, little is known about whether the thalamo-cortical circuits are potentially predictive of smoking relapse. In the current study, a total of 125 participants (84 treatment-seeking male smokers and 41 age-matched male nonsmokers) were recruited. Structural and functional magnetic resonance images (MRI) were acquired from all participants. After a 12-week smoking cessation treatment with varenicline, the smokers were then divided into relapsers (n = 54) and nonrelapsers (n = 30). Then, we compared thalamic volume and seed-based thalamo-cortical resting state functional connectivity (rsFC) prior to the cessation treatment among relapsers, nonrelapsers and nonsmokers to investigate the associations between thalamic structure/function and smoking relapse. Increased thalamic volume was detected in smokers relative to nonsmokers, and in relapsers relative to nonrelapsers, especially on the left side. Moreover, decreased left thalamo-precuneus rsFC was detected in relapsers relative to nonrelapsers. Additionally, a logistic regression analysis showed that the thalamic volume and thalamo-precuneus rsFC predicted smoking relapse with an accuracy of 75.7%. These novel findings indicate that increased thalamic volume and decreased thalamo-precuneus rsFC are associated with smoking relapse, and these thalamic measures may be used to predict treatment efficacy of nicotine addiction and serve as a potential biomarker for personalized medicine.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Karimani F, Delphi L, Rezayof A. Nitric oxide blockade in mediodorsal thalamus impaired nicotine/ethanol-induced memory retrieval in rats via inhibition of prefrontal cortical pCREB/CREB signaling pathway. Neurobiol Learn Mem 2019; 162:15-22. [PMID: 31047996 DOI: 10.1016/j.nlm.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/17/2019] [Accepted: 04/28/2019] [Indexed: 11/17/2022]
Abstract
Reciprocal connections between the mediodorsal thalamic nucleus (MD) and the prefrontal cortex (PFC) are important for memory processes. Since the co-abuse of nicotine and ethanol affects memory formation, this study investigated the effect of nitric oxide inhibition in the MD on memory retrieval induced by co-administration of nicotine and ethanol. Subsequently, western blot analysis was used to evaluate how this change would alter the PFC pCREB/CREB signaling pathway. Male Wistar rats were bilaterally cannulated into the MD and the memory retrieval was measured by passive avoidance task. Intraperitoneal (i.p.) administration of ethanol (1 g/kg, i.p) 30 min before the test impaired memory retrieval and caused ethanol-induced amnesia. Subcutaneous (s.c.) administration of nicotine (0.05-0.2 mg/kg, s.c.) prevented ethanol-induced amnesia and improved memory retrieval. Intra-MD microinjection of a nitric oxide synthase (NOS) inhibitor, L-NAME (0.5-1 μg/rat) inhibited the improving effect of nicotine (0.2 mg/kg, s.c.) on ethanol-induced amnesia, while intra-MD microinjection of a precursor of nitric oxide, l-arginine (0.25-1 μg/rat), potentiated such effect. Noteworthy, intra-MD microinjection of the same doses of L-NAME or l-arginine by itself had no effect on memory retrieval. Furthermore, intra-MD microinjection of L-NAME (0.05, 0.1 and 0.3 μg/rat) reversed the l-arginine improving effect on nicotine response. Successful memory retrieval significantly increased the p-CREB/CREB ratio in the PFC tissue. Ethanol-induced amnesia, however, decreased this ratio in the PFC while the co-administration of nicotine and ethanol increased the PFC CREB signaling. Interestingly, the inhibitory effect of L-NAME and the potentiating effect of l-arginine on nicotine response were associated with the decrease and increase of the PFC p-CREB/CREB ratio respectively. It can be concluded that MD-PFC connections are involved in the combined effects of nicotine and ethanol on memory retrieval. The mediodorsal thalamic NO system possibly mediated this interaction via the pCREB/CREB signaling pathways in the PFC.
Collapse
Affiliation(s)
- Farnaz Karimani
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Del-Ben CM, Louzada-Junior P. Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophr Res 2018; 202:55-63. [PMID: 29935886 DOI: 10.1016/j.schres.2018.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been largely implicated in the neurobiology of schizophrenia and other psychosis. Aiming to evaluate their potential as peripheral biomarkers for psychosis, we quantified the plasma concentrations of NR1 and NR2 NMDAR subunits of first-episode psychosis patients in their first contact with mental health services due to psychotic symptoms, compared with siblings and matched community-based controls. METHODS The quantifications of NR1 and NR2 plasma concentrations were performed by ELISA. Data were analysed by nonparametric tests and Receiver Operating Curve (ROC) analysis. RESULTS We included 166 first-episode psychosis patients (mean age = 30.3 ± 12.2 years; 64% men), with the diagnosis of schizophrenia spectrum (n = 84), bipolar disorder (n = 51) and psychotic depression (n = 31), 76 siblings (mean age = 31.5 ± 11.0 years; 30.3% men) and 166 healthy community-based controls (mean age = 31.4 ± 12.0 years; 63.9% men). NMDAR subunits were significantly lower in patients compared with siblings and controls (p < 0.001), except by NR1 plasma concentrations of bipolar patients compared with siblings and controls. NR1 plasma concentrations lower than 17.65 pg/ml (AUC = 0.621) showed sensitivity of 42.8%, specificity of 84.3%, positive predictive value (PPV) of 73.2% and negative predictive value (NPV) of 59.6%. Individuals with NR2 plasma concentrations lower than 2.92 ng/ml (AUC = 0.801) presented a 10.61-fold increased risk of psychosis, with a sensibility of 71.9%, specificity of 80.6%, PPV of 79.0% and NPV of 73.9%. CONCLUSIONS This is the first study reporting the measurement and the reduction of NR1 and NR2 NMDAR subunits plasma concentrations in psychiatric disorders. In particular, the NR2 subunit may be a possible plasma biomarker for psychosis.
Collapse
Affiliation(s)
- C M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - R Shuhama
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - H A Fachim
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil; Institute of Neuroscience and Behaviour- INeC, Ribeirão Preto, São Paulo, Brazil
| | - P R Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - C M Del-Ben
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - P Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
10
|
Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL. Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits. Neuron 2018; 97:611-625.e5. [PMID: 29420933 PMCID: PMC6588401 DOI: 10.1016/j.neuron.2018.01.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022]
Abstract
Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Pasteur str. 3, 02-093 Warsaw, Poland
| | - Jean-Sebastien Jouhanneau
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Stephanie E Myal
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), Berlin-Buch, Robert-Rössle-Str. 10, 13092 Berlin, Germany; Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Hamilton HK, D’Souza DC, Ford JM, Roach BJ, Kort NS, Ahn KH, Bhakta S, Ranganathan M, Mathalon DH. Interactive effects of an N-methyl-d-aspartate receptor antagonist and a nicotinic acetylcholine receptor agonist on mismatch negativity: Implications for schizophrenia. Schizophr Res 2018; 191:87-94. [PMID: 28711472 PMCID: PMC5745273 DOI: 10.1016/j.schres.2017.06.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/18/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022]
Abstract
N-methyl-d-aspartate glutamate receptor (NMDAR) hypofunction has been implicated in the pathophysiology of schizophrenia, including auditory processing abnormalities reflected by the mismatch negativity (MMN) event-related potential component. Evidence suggesting cognitive benefits from nicotine administration, together with the high rate of cigarette use in patients with schizophrenia, has stimulated interest in whether nicotine modulates NMDAR hypofunction. We examined the interactive effects of ketamine, an NMDAR antagonist that produces transient schizophrenia-like neurophysiological effects, and nicotine, a nicotinic acetylcholine receptor (nAChR) agonist, in 30 healthy volunteers to determine whether nicotine prevents or attenuates MMN abnormalities. Secondary analyses compared the profile of ketamine and schizophrenia effects on MMN using previously reported data from 24 schizophrenia patients (Hay et al. 2015). Healthy volunteers completed four test days, during which they received ketamine/placebo and nicotine/placebo in a double-blind, counterbalanced design. MMN to intensity, frequency, duration, and frequency+duration double deviant sounds was assessed each day. Ketamine decreased intensity, frequency, and double deviant MMN amplitudes, whereas nicotine increased intensity and double deviant MMN amplitudes. A ketamine×nicotine interaction indicated, however, that nicotine failed to attenuate the decrease in MMN associated with ketamine. Although the present dose of ketamine produced smaller decrements in MMN than those associated with schizophrenia, the profile of effects across deviant types did not differ between ketamine and schizophrenia. Results suggest that while ketamine and schizophrenia produce similar profiles of MMN effects across deviant types, nicotinic agonists may have limited potential to improve these putative NMDAR hypofunction-mediated impairments in schizophrenia.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco VA Health Care System, 4150 Clement St 116D, San Francisco, CA 94121 USA,University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA, 94143 USA
| | - Deepak C. D’Souza
- Veterans Affairs Connecticut Health Care System, 950 Campbell Ave, 116A, West Haven, CT 06516 USA,Yale University, 300 George St, Suite 901, New Haven, CT 06511 USA
| | - Judith M. Ford
- San Francisco VA Health Care System, 4150 Clement St 116D, San Francisco, CA 94121 USA,University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA, 94143 USA
| | - Brian J. Roach
- Northern California Institute for Research and Education, 4150 Clement St, San Francisco, CA 94121 USA
| | - Naomi S. Kort
- University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA, 94143 USA
| | - Kyung-Heup Ahn
- Veterans Affairs Connecticut Health Care System, 950 Campbell Ave, 116A, West Haven, CT 06516 USA,Yale University, 300 George St, Suite 901, New Haven, CT 06511 USA
| | - Savita Bhakta
- Yale University, 300 George St, Suite 901, New Haven, CT 06511 USA
| | | | - Daniel H. Mathalon
- San Francisco VA Health Care System, 4150 Clement St 116D, San Francisco, CA 94121 USA,University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA, 94143 USA
| |
Collapse
|
12
|
Poirier GL, Huang W, Tam K, DiFranza JR, King JA. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder. Nicotine Tob Res 2017; 19:1016-1023. [PMID: 28444321 DOI: 10.1093/ntr/ntx088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 11/14/2022]
Abstract
Introduction Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Methods Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Results Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. Conclusions In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Implications Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Kelly Tam
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Joseph R DiFranza
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
13
|
Notarangelo FM, Pocivavsek A. Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior. Neuropharmacology 2017; 112:275-285. [PMID: 26944732 PMCID: PMC5010529 DOI: 10.1016/j.neuropharm.2016.03.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/20/2022]
Abstract
The kynurenine pathway (KP) of tryptophan degradation contains several neuroactive metabolites that may influence brain function in health and disease. Mounting focus has been dedicated to investigating the role of these metabolites during neurodevelopment and elucidating their involvement in the pathophysiology of psychiatric disorders with a developmental component, such as schizophrenia. In this review, we describe the changes in KP metabolism in the brain from gestation until adulthood and illustrate how environmental and genetic factors affect the KP during development. With a particular focus on kynurenic acid, the antagonist of α7 nicotinic acetylcholine (α7nACh) and N-methyl-d-aspartate (NMDA) receptors, both implicated in modulating brain development, we review animal models designed to ascertain the role of perinatal KP elevation on long-lasting biochemical, neuropathological, and behavioral deficits later in life. We present new data demonstrating that combining perinatal choline-supplementation, to potentially increase activation of α7nACh receptors during development, with embryonic kynurenine manipulation is effective in attenuating cognitive impairments in adult rat offspring. With these findings in mind, we conclude the review by discussing the advancement of therapeutic interventions that would target not only symptoms, but potentially the root cause of central nervous system diseases that manifest from a perinatal KP insult. This article is part of the Special Issue entitled 'The Kynurenine Pathway in Health and Disease'.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Li X, D'Souza MS, Niño AM, Doherty J, Cross A, Markou A. Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats. Psychopharmacology (Berl) 2016; 233:1801-14. [PMID: 26873083 DOI: 10.1007/s00213-016-4220-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/18/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Numerous medication development strategies seek to decrease nicotine consumption and prevent relapse to tobacco smoking by blocking glutamate transmission. Decreasing glutamate release by activating presynaptic inhibitory metabotropic glutamate (mGlu)2/3 receptors inhibits the reinforcing effects of nicotine and blocks cue-induced reinstatement of nicotine-seeking behavior in rats. However, the relative contribution of mGlu2 receptors in nicotine dependence is still unknown. OBJECTIVES The present study evaluated the role of mGlu2 receptors in nicotine-taking and nicotine-seeking behavior using the novel, relatively selective mGlu2 positive allosteric modulators (PAMs) AZD8418 and AZD8529. RESULTS Acute treatment with AZD8418 (0.37, 1.12, 3.73, 7.46, and 14.92 mg/kg) and AZD8529 (1.75, 5.83, 17.5, and 58.3 mg/kg) deceased nicotine self-administration and had no effect on food-maintained responding. Chronic treatment with AZD8418 attenuated nicotine self-administration, but tolerance to this effect developed quickly. The inhibition of nicotine self-administration by chronic AZD8529 administration persisted throughout the 14 days of treatment. Chronic treatment with either PAMs inhibited food self-administration. AZD8418 (acute) and AZD8529 (acute and subchronic) blocked cue-induced reinstatement of nicotine- and food-seeking behavior. CONCLUSIONS These findings indicate an important role for mGlu2 receptors in the reinforcing properties of self-administered nicotine and the motivational impact of cues that were previously associated with nicotine administration (i.e., cue-induced reinstatement of nicotine-seeking behavior). Thus, mGlu2 PAMs may be useful medications to assist people to quit tobacco smoking and prevent relapse.
Collapse
Affiliation(s)
- Xia Li
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Manoranjan S D'Souza
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Ana M Niño
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - James Doherty
- Present address: Sage Therapeutics, Cambridge, MA, 02142, USA
| | - Alan Cross
- AstraZeneca Neuroscience Innovative Medicines, Cambridge, MA, 02139, USA
| | - Athina Markou
- Department of Psychiatry, M/C 0603, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
15
|
Kolisnyk B, Al-Onaizi MA, Prado VF, Prado MAM. α7 nicotinic ACh receptor-deficient mice exhibit sustained attention impairments that are reversed by β2 nicotinic ACh receptor activation. Br J Pharmacol 2015. [PMID: 26222090 DOI: 10.1111/bph.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Disruptions of executive function, including attentional deficits, are a hallmark of a number of diseases. ACh in the prefrontal cortex regulates attentive behaviour; however, the role of α7 nicotinic ACh receptor (α7nAChR) in attention is contentious. EXPERIMENTAL APPROACH In order to probe attention, we trained both wild-type and α7nAChR knockout mice on a touch screen-based five-choice serial reaction time task (5-CSRT). Following training procedures, we then tested sustained attention using a probe trial experiment. To further differentiate the role of specific nicotinic receptors in attention, we then tested the effects of both α7nAChR and β2nAChR agonists on the performance of both wild-type and knockout mice on the 5-CSRT task. KEY RESULTS At low doses, α7nAChR agonists improved attentional performance of wild-type mice, while high doses had deleterious effects on attention. α7nAChR knockout mice displayed deficits in sustained attention that were not ameliorated by α7nAChR agonists. However, these deficits were completely reversed by the administration of a β2nAChR agonist. Furthermore, administration of a β2nAChR agonist in α7nAChR knockout mice elicited similar biochemical response in the prefrontal cortex as the administration of α7nAChR agonists in wild-type mice. CONCLUSIONS AND IMPLICATIONS Our experiments reveal an intricate relationship between distinct nicotinic receptors to regulate attentional performance and provide the basis for targeting β2nAChRs pharmacologically to decrease attentional deficits due to a dysfunction in α7nAChRs.
Collapse
Affiliation(s)
- Benjamin Kolisnyk
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Mohammed A Al-Onaizi
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Brusco S, Ambrosi P, Meneghini S, Becchetti A. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors. Front Pharmacol 2015; 6:201. [PMID: 26441658 PMCID: PMC4585029 DOI: 10.3389/fphar.2015.00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/01/2015] [Indexed: 01/03/2023] Open
Abstract
Regulation of the “neuronal” nicotinic acetylcholine receptors (nAChRs) is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16% of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo.
Collapse
Affiliation(s)
- Simone Brusco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Paola Ambrosi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
17
|
Knott V, Impey D, Choueiry J, Smith D, de la Salle S, Saghir S, Smith M, Beaudry E, Ilivitsky V, Labelle A. An acute dose, randomized trial of the effects of CDP-Choline on Mismatch Negativity (MMN) in healthy volunteers stratified by deviance detection level. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40810-014-0002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Acetylcholine Acts through Nicotinic Receptors to Enhance the Firing Rate of a Subset of Hypocretin Neurons in the Mouse Hypothalamus through Distinct Presynaptic and Postsynaptic Mechanisms .. eNeuro 2015; 2. [PMID: 26322330 PMCID: PMC4551500 DOI: 10.1523/eneuro.0052-14.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons expressing the neuropeptide hypocretin regulate many behavioral functions, including sleep, motivation, and behaviors related to addiction. The ability of nicotine to stimulate nicotinic acetylcholine receptors (nAChRs) is essential for its addictive properties, but little is known about whether, and how, nicotine and the endogenous neurotransmitter acetylcholine affect hypocretin neurons. Hypocretin/orexin neurons regulate many behavioral functions, including addiction. Nicotine acts through nicotinic acetylcholine receptors (nAChRs) to alter firing rate of neurons throughout the brain, leading to addiction-related behaviors. While nAChRs are expressed in the hypothalamus and cholinergic fibers project to this structure, it is unclear how acetylcholine modulates the activity of hypocretin neurons. In this study, we stimulated hypocretin neurons in mouse brain slices with ACh in the presence of atropine to dissect presynaptic and postsynaptic modulation of these neurons through nAChRs. Approximately one-third of tested hypocretin neurons responded to pressure application of ACh (1 mM) with an increase in firing frequency. Stimulation of postsynaptic nAChRs with ACh or nicotine resulted in a highly variable inward current in approximately one-third of hypocretin neurons. In contrast, ACh or nicotine (1 µM) reliably decreased the frequency of miniature EPSCs (mEPSCs). Antagonism of nAChRs with mecamylamine also suppressed mEPSC frequency, suggesting that an endogenous, tonic activation of presynaptic nAChRs might be required for maintaining functional mEPSC frequency. Antagonism of heteromeric (α4β2) or homomeric (α7) nAChRs alone suppressed mEPSCs to a lesser extent. Finally, blocking internal calcium release reduced the frequency of mEPSCs, occluding the suppressive effect of presynaptic ACh. Taken together, these data provide a mechanism by which phasic ACh release enhances the firing of a subset of hypocretin neurons through postsynaptic nAChRs, but disrupts tonic, presynaptic nAChR-mediated glutamatergic inputs to the overall population of hypocretin neurons, potentially enhancing the signal-to-noise ratio during the response of the nAChR-positive subset of neurons.
Collapse
|
19
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
20
|
Martin-Cortecero J, Nuñez A. Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats. Brain Res 2014; 1591:27-37. [DOI: 10.1016/j.brainres.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/17/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
|
21
|
The novel α7 nicotinic acetylcholine receptor agonist EVP-6124 enhances dopamine, acetylcholine, and glutamate efflux in rat cortex and nucleus accumbens. Psychopharmacology (Berl) 2014; 231:4541-51. [PMID: 24810107 DOI: 10.1007/s00213-014-3596-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Alpha7 and α4β2 nicotinic acetylcholine receptor (nAChR) agonists have been shown to improve cognition in various animal models of cognitive impairment and are of interest as treatments for schizophrenia, Alzheimer's disease, and other cognitive disorders. Increased release of dopamine (DA), acetylcholine (ACh), glutamate (Glu), and γ-aminobutyric acid (GABA) in cerebral cortex, hippocampus, and nucleus accumbens (NAC) has been suggested to contribute to their beneficial effects on cognition. RESULTS Using in vivo microdialysis, we found that EVP-6124 [(R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide], a high-affinity α7 nAChR partial agonist, at 0.1 mg/kg, s.c., increased DA efflux in the medial prefrontal cortex (mPFC) and NAC. EVP-6124, 0.1 and 0.3 mg/kg, also increased efflux of ACh in the mPFC but not in the NAC. Similarly, EVP-6124, 0.1 mg/kg, but not 0.03 and 0.3 mg/kg, significantly increased mPFC Glu efflux. Thus, EVP-6124 produced an inverted U-shaped curve for DA and Glu release, as previously reported for other α7 nAChR agonists. The three doses of EVP-6124 did not produce a significant effect on GABA efflux in either region. Pretreatment with the selective α7 nAChR antagonist, methyllycaconitine (MLA, 1.0 mg/kg), significantly blocked cortical DA and Glu efflux induced by EVP-6124 (0.1 mg/kg), suggesting that the effects of EVP-6124 on these neurotransmitters were due to α7 nAChR agonism. MLA only partially blocked the effects of EVP-6124 on ACh efflux in the mPFC. CONCLUSION These results suggest increased cortical DA, ACh, and Glu release, which may contribute to the ability of the α7 nAChR agonist, EVP-6124, to treat cognitive impairment and possibly other dimensions of psychopathology.
Collapse
|
22
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
23
|
Pollard M, Bartolome JM, Conn PJ, Steckler T, Shaban H. Modulation of neuronal microcircuit activities within the medial prefrontal cortex by mGluR5 positive allosteric modulator. J Psychopharmacol 2014; 28:935-46. [PMID: 25031220 PMCID: PMC4356529 DOI: 10.1177/0269881114542856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Suppressing anxiety and fear memory relies on bidirectional projections between the medial prefrontal cortex and the amygdala. Positive allosteric modulators of mGluR5 improve cognition in animal models of schizophrenia and retrieval of newly formed associations such as extinction of fear-conditioned behaviour. The increase in neuronal network activities of the medial prefrontal cortex is influenced by both mGluR1 and mGluR5; however, it is not well understood how they modulate network activities and downstream information processing. To map mGluR5-mediated network activity in relation to its emergence as a viable cognitive enhancer, we tested group I mGluR compounds on medial prefrontal cortex network activity via multi-electrode array neuronal spiking and whole-cell patch clamp recordings. Results indicate that mGluR5 activation promotes feed-forward inhibition that depends on recruitment of neuronal activity by carbachol-evoked up states. The rate of neuronal spiking activity under the influence of carbachol was reduced by the mGluR5 positive allosteric modulator, N-(1,3-Diphenyl-1H-pyrazolo-5-yl)-4-nitrobenzamide (VU-29), and enhanced by the mGluR5 negative allosteric modulator, 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine hydrochloride (MTEP). Spontaneous inhibitory post-synaptic currents were increased upon application of carbachol and in combination with VU-29. These results emphasize a bias towards tonic mGluR5-mediated inhibition that might serve as a signal-to-noise enhancer of sensory inputs projected from associated limbic areas onto the medial prefrontal cortex neuronal microcircuit.
Collapse
Affiliation(s)
| | | | - P Jeffrey Conn
- Department of Pharmacology, and the Vanderbilt Center for Neuroscience Drug Discovery 2, Vanderbilt University Medical School, Nashville, TN, USA
| | | | | |
Collapse
|
24
|
Gullo F, Manfredi I, Lecchi M, Casari G, Wanke E, Becchetti A. Multi-electrode array study of neuronal cultures expressing nicotinic β2-V287L subunits, linked to autosomal dominant nocturnal frontal lobe epilepsy. An in vitro model of spontaneous epilepsy. Front Neural Circuits 2014; 8:87. [PMID: 25104926 PMCID: PMC4109561 DOI: 10.3389/fncir.2014.00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a partial sleep-related epilepsy which can be caused by mutant neuronal nicotinic acetylcholine receptors (nAChR). We applied multi-electrode array (MEA) recording methods to study the spontaneous firing activity of neocortical cultures obtained from mice expressing or not (WT) an ADNFLE-linked nAChR subunit (β2-V287L). More than 100,000 up-states were recorded during experiments sampling from several thousand neurons. Data were analyzed by using a fast sliding-window procedure which computes histograms of the up-state durations. Differently from the WT, cultures expressing β2-V287L displayed long (10–32 s) synaptic-induced up-state firing events. The occurrence of such long up-states was prevented by both negative (gabazine, penicillin G) and positive (benzodiazepines) modulators of GABAA receptors. Carbamazepine (CBZ), a drug of choice in ADNFLE patients, also inhibited the long up-states at micromolar concentrations. In cultures expressing β2-V287L, no significant effect was observed on the action potential waveform either in the absence or in the presence of pharmacological treatment. Our results show that some aspects of the spontaneous hyperexcitability displayed by a murine model of a human channelopathy can be reproduced in neuronal cultures. In particular, our cultures represent an in vitro chronic model of spontaneous epileptiform activity, i.e., not requiring pre-treatment with convulsants. This opens the way to the study in vitro of the role of β2-V287L on synaptic formation. Moreover, our neocortical cultures on MEA platforms allow to determine the effects of prolonged pharmacological treatment on spontaneous network hyperexcitability (which is impossible in the short-living brain slices). Methods such as the one we illustrate in the present paper should also considerably facilitate the preliminary screening of antiepileptic drugs (AEDs), thereby reducing the number of in vivo experiments.
Collapse
Affiliation(s)
- Francesca Gullo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Irene Manfredi
- Center for Translational Genomics and Bioinformatics, Vita-Salute San Raffaele University and San Raffaele Scientific Institute Milano, Italy
| | - Marzia Lecchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Giorgio Casari
- Center for Translational Genomics and Bioinformatics, Vita-Salute San Raffaele University and San Raffaele Scientific Institute Milano, Italy
| | - Enzo Wanke
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
25
|
Nicotinic acetylcholine receptors in attention circuitry: the role of layer VI neurons of prefrontal cortex. Cell Mol Life Sci 2014; 71:1225-44. [PMID: 24122021 PMCID: PMC3949016 DOI: 10.1007/s00018-013-1481-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 12/15/2022]
Abstract
Cholinergic modulation of prefrontal cortex is essential for attention. In essence, it focuses the mind on relevant, transient stimuli in support of goal-directed behavior. The excitation of prefrontal layer VI neurons through nicotinic acetylcholine receptors optimizes local and top-down control of attention. Layer VI of prefrontal cortex is the origin of a dense feedback projection to the thalamus and is one of only a handful of brain regions that express the α5 nicotinic receptor subunit, encoded by the gene chrna5. This accessory nicotinic receptor subunit alters the properties of high-affinity nicotinic receptors in layer VI pyramidal neurons in both development and adulthood. Studies investigating the consequences of genetic deletion of α5, as well as other disruptions to nicotinic receptors, find attention deficits together with altered cholinergic excitation of layer VI neurons and aberrant neuronal morphology. Nicotinic receptors in prefrontal layer VI neurons play an essential role in focusing attention under challenging circumstances. In this regard, they do not act in isolation, but rather in concert with cholinergic receptors in other parts of prefrontal circuitry. This review urges an intensification of focus on the cellular mechanisms and plasticity of prefrontal attention circuitry. Disruptions in attention are one of the greatest contributing factors to disease burden in psychiatric and neurological disorders, and enhancing attention may require different approaches in the normal and disordered prefrontal cortex.
Collapse
|
26
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
27
|
Transient inactivation of the ventral hippocampus in neonatal rats impairs the mesolimbic regulation of prefrontal glutamate release in adulthood. Neuropharmacology 2014; 84:19-30. [PMID: 24747179 DOI: 10.1016/j.neuropharm.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/24/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
Cognitive deficits in schizophrenia (SZ) reflect maturational disruptions within a neural system that includes the ventral hippocampus (VH), nucleus accumbens (NAc), basal forebrain, and prefrontal cortex (PFC). A better understanding of these changes may reveal drug targets for more efficacious cognition enhancers. We have utilized an animal model in which the above distributed system is altered, during a sensitive period of development, by transiently inactivating the VH and its efferent projections. We determined the ability of NAc shell activation to evoke prefrontal glutamate release in adult male Wistar rats that had received saline (Sal) or tetrodotoxin (TTX) as neonates (PD7) or as adolescents (PD32). The nucleus accumbens shell (NAcSh) was activated by NMDA infusions (0.05-0.30 μg/0.5 μL). Basal and evoked glutamate levels were measured amperometrically using a glutamate-sensitive microelectrode. There were no differences in basal glutamate levels among the groups tested (overall 1.41 ± 0.26 uM). However, the dose-related stimulation of prefrontal glutamate levels seen in control rats treated with saline on PD7 (4.31 ± 0.22 μM after 0.15 μg) was markedly attenuated in rats treated with TTX on PD7 (0.45 ± 0.12 μM after 0.15 μg). This effect was age-dependent as infusions of TTX on PD32 did not alter the NMDA-induced increases in glutamate release (4.10 ± 0.37 μM after 0.15 μg). Collectively, these findings reveal that transient inactivation of VH transmission, during a sensitive period of development, leads to a functional mesolimbic-cortical disconnection that produces neurochemical and ultimately cognitive impairments resembling those seen in SZ.
Collapse
|
28
|
Bloem B, Poorthuis RB, Mansvelder HD. Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity. Front Neural Circuits 2014; 8:17. [PMID: 24653678 PMCID: PMC3949318 DOI: 10.3389/fncir.2014.00017] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/20/2014] [Indexed: 11/27/2022] Open
Abstract
Acetylcholine (ACh) release in the medial prefrontal cortex (mPFC) is crucial for normal cognitive performance. Despite the fact that many have studied how ACh affects neuronal processing in the mPFC and thereby influences attention behavior, there is still a lot unknown about how this occurs. Here we will review the evidence that cholinergic modulation of the mPFC plays a role in attention and we will summarize the current knowledge about the role between ACh receptors (AChRs) and behavior and how ACh receptor activation changes processing in the cortical microcircuitry. Recent evidence implicates fast phasic release of ACh in cue detection and attention. This review will focus mainly on the fast ionotropic nicotinic receptors and less on the metabotropic muscarinic receptors. Finally, we will review limitations of the existing studies and address how innovative technologies might push the field forward in order to gain understanding into the relation between ACh, neuronal activity and behavior.
Collapse
Affiliation(s)
- Bernard Bloem
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| | | | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije UniversiteitAmsterdam, Netherlands
| |
Collapse
|
29
|
Beggiato S, Tanganelli S, Fuxe K, Antonelli T, Schwarcz R, Ferraro L. Endogenous kynurenic acid regulates extracellular GABA levels in the rat prefrontal cortex. Neuropharmacology 2014; 82:11-8. [PMID: 24607890 DOI: 10.1016/j.neuropharm.2014.02.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/07/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Abstract
The tryptophan metabolite kynurenic acid (KYNA) is an endogenous antagonist of the α7 nicotinic acetylcholine receptor (α7nAChR) and, at higher concentrations, inhibits ionotropic glutamate receptors. Increases in KYNA levels are seen in brain and cerebrospinal fluid in individuals with schizophrenia (SZ) and may be causally related to cognitive deficits in SZ and other psychiatric diseases. As dysfunction of circuits involving GABAergic neurons in the prefrontal cortex (PFC) likely plays a role in the cognitive impairments seen in these disorders, we examined the effects of KYNA on extracellular GABA in this brain area. Applied to awake rats for 2 h by reverse dialysis, KYNA concentration-dependently and reversibly reduced extracellular GABA levels, with 300 nM KYNA causing a nadir of ∼45% of baseline concentrations. This effect was not duplicated by reverse dialysis of the selective glycineB receptor antagonist 7-Cl-KYNA (100 nM) or the AMPA/kainate receptor antagonist CNQX (100 μM), and was prevented by co-application of galantamine (5 μM), a positive allosteric modulator of the α7nAChR. Conversely, inhibition of endogenous KYNA formation by reverse dialysis of (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 5 mM) reversibly increased GABA levels in the PFC, reaching a peak of ∼160% of baseline concentrations. Co-infusion of 30 nM KYNA neutralized this effect. Taken together, these results demonstrate a role for endogenous KYNA in the bi-directional control of GABAergic neurotransmission in the PFC. Pharmacological manipulation of KYNA may therefore be useful in the treatment of GABAergic impairments in SZ and other brain disorders involving the PFC.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Italy; Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Italy.
| | - Sergio Tanganelli
- Department of Medical Sciences, University of Ferrara, Italy; Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Italy
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Italy; Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Italy
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luca Ferraro
- Laboratory for the Technology of Advanced Therapies (LTTA Centre), University of Ferrara, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| |
Collapse
|
30
|
Sarter M, Lustig C, Howe WM, Gritton H, Berry AS. Deterministic functions of cortical acetylcholine. Eur J Neurosci 2014; 39:1912-20. [PMID: 24593677 DOI: 10.1111/ejn.12515] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
Traditional descriptions of the basal forebrain cholinergic projection system to the cortex have focused on neuromodulatory influences, that is, mechanisms that modulate cortical information processing but are not necessary for mediating discrete behavioral responses and cognitive operations. This review summarises and conceptualises the evidence in support of more deterministic contributions of cholinergic projections to cortical information processing. Through presynaptic receptors expressed on cholinergic terminals, thalamocortical and corticocortical projections can evoke brief cholinergic release events. These acetylcholine (ACh) release events occur on a fast, sub-second to seconds-long time scale ('transients'). In rats performing a task requiring the detection of cues as well as the report of non-cue events cholinergic transients mediate the detection of cues specifically in trials that involve a shift from a state of monitoring for cues to cue-directed responding. Accordingly, ill-timed cholinergic transients, generated using optogenetic methods, force false detections in trials without cues. We propose that the evidence is consistent with the hypothesis that cholinergic transients reduce detection uncertainty in such trials. Furthermore, the evidence on the functions of the neuromodulatory component of cholinergic neurotransmission suggests that higher levels of neuromodulation favor staying-on-task over alternative action. In other terms, higher cholinergic neuromodulation reduces opportunity costs. Evidence indicating a similar integration of other ascending projection systems, including noradrenergic and serotonergic systems, into cortical circuitry remains sparse, largely because of the limited information about local presynaptic regulation and the limitations of current techniques in measuring fast and transient neurotransmitter release events in these systems.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, 4030 East Hall, 530 Church Street, Ann Arbor, MI, 48109-1043, USA
| | | | | | | | | |
Collapse
|
31
|
Effect of alpha7 nicotinic acetylcholine receptor agonists on attentional set-shifting impairment in rats. Psychopharmacology (Berl) 2014; 231:673-83. [PMID: 24057763 DOI: 10.1007/s00213-013-3275-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
RATIONALE Attentional set shifting, a measure of executive function, is impaired in schizophrenia patients. Current standard of care has little therapeutic benefit for treating cognitive dysfunction in schizophrenia; therefore, novel drugs and animal models for testing novel therapies are needed. The NMDA receptor antagonist, MK-801, produces deficits in a rat maze-based set-shifting paradigm, an effect which parallels deficits observed on tests of executive function in schizophrenia patients. Alpha7 nicotinic acetylcholine receptor (nAChR) agonists, currently under clinical development by several companies, show promise in treating cognitive symptoms in schizophrenia patients and can improve cognition in various animal models. OBJECTIVES The objectives of the present study were to determine whether the MK-801 deficit in set shifting could be reproduced in a drug discovery setting and to determine whether cognitive improvement could be detected for the first time in this task with alpha7 nAChR agonists. RESULTS The data presented here replicate findings that a systemic injection of the NMDA receptor antagonist MK-801 can induce a deficit in set shifting in rats. Furthermore, the deficit could be reversed by the atypical antipsychotic clozapine as well as by several alpha7 nAch receptor agonists (SSR-180711, PNU-282987, GTS-21) with varying in vitro properties. CONCLUSIONS Results indicate that the MK-801 set-shift assay is a useful preclinical tool for measuring prefrontal cortical function in rodents and can be used to identify novel mechanisms for the potential treatment of cognitive deficits in schizophrenia.
Collapse
|
32
|
Rowe DL, Hermens DF. Attention-deficit/hyperactivity disorder: neurophysiology, information processing, arousal and drug development. Expert Rev Neurother 2014; 6:1721-34. [PMID: 17144785 DOI: 10.1586/14737175.6.11.1721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we draw on literature from both animal and human neurophysiological studies to consider the neurochemical mechanisms underlying attention-deficit/ hyperactivity disorder (ADHD). Psychophysiological and neuropsychological research is used to propose possible etiological endophenotypes of ADHD. These are conceptualized as patients with distinct cortical-arousal, information-processing or maturational abnormalities, or a combination thereof, and how the endophenotypes can be used to help drug development and optimize treatment and management. To illustrate, the paper focuses on neuro- and psychophysiological evidence that suggests cholinergic mechanisms may underlie specific information-processing abnormalities that occur in ADHD. The clinical implications for a cholinergic hypothesis of ADHD are considered, along with its possible implications for treatment and pharmacological development.
Collapse
Affiliation(s)
- Donald L Rowe
- The Brain Dynamics Centre and Department of Psychological Medicine, Westmead Hospital and University of Sydney, NSW, Australia.
| | | |
Collapse
|
33
|
Mathalon DH, Ahn KH, Perry EB, Cho HS, Roach BJ, Blais RK, Bhakta S, Ranganathan M, Ford JM, D'Souza DC. Effects of nicotine on the neurophysiological and behavioral effects of ketamine in humans. Front Psychiatry 2014; 5:3. [PMID: 24478731 PMCID: PMC3900858 DOI: 10.3389/fpsyt.2014.00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/07/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND N-methyl-d-aspartate (NMDA) receptor hypofunction has been implicated in the pathophysiology of schizophrenia and its associated neurocognitive impairments. The high rate of cigarette smoking in schizophrenia raises questions about how nicotine modulates putative NMDA receptor hypofunction in the illness. Accordingly, we examined the modulatory effects of brain nicotinic acetylcholine receptor (nAChR) stimulation on NMDA receptor hypofunction by examining the interactive effects of nicotine, a nAChR agonist, and ketamine, a non-competitive NMDA receptor antagonist, on behavioral and neurophysiological measures in healthy human volunteers. METHODS From an initial sample of 17 subjects (age range 18-55 years), 8 subjects successfully completed 4 test sessions, each separated by at least 3 days, during which they received ketamine or placebo and two injections of nicotine or placebo in a double-blind, counterbalanced manner. Schizophrenia-like effects Positive and Negative Syndrome Scale, perceptual alterations Clinician Administered Dissociative Symptoms Scale, subjective effects Visual Analog Scale and auditory event-related brain potentials (mismatch negativity, MMN; P300) were assessed during each test session. RESULTS Consistent with existing studies, ketamine induced transient schizophrenia-like behavioral effects. P300 was reduced and delayed by ketamine regardless of whether it was elicited by a target (P3b) or novel (P3a) stimulus, while nicotine only reduced the amplitude of P3a. Nicotine did not rescue P300 from the effects of ketamine; the interactions of ketamine and nicotine were not significant. While nicotine significantly reduced MMN amplitude, ketamine did not. CONCLUSION Nicotine failed to modulate ketamine-induced neurophysiological and behavioral effects in this preliminary study. Interestingly, ketamine reduced P3b amplitude and nicotine reduced P3a amplitude, suggesting independent roles of NMDA receptor and nAChR in the generation of P3b and P3a, respectively.
Collapse
Affiliation(s)
- Daniel H Mathalon
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA ; Mental Health Service (116D), San Francisco VA Medical Center , San Francisco, CA , USA
| | - Kyung-Heup Ahn
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Schizophrenia Biological Research Center (116A), VA Connecticut Healthcare System , West Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA
| | - Edward B Perry
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Schizophrenia Biological Research Center (116A), VA Connecticut Healthcare System , West Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA
| | - Hyun-Sang Cho
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Department of Psychiatry, Yonsei University College of Medicine , Seoul , South Korea
| | - Brian J Roach
- Mental Health Service (116D), San Francisco VA Medical Center , San Francisco, CA , USA
| | - Rebecca K Blais
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Savita Bhakta
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Judith M Ford
- Department of Psychiatry, University of California San Francisco , San Francisco, CA , USA ; Mental Health Service (116D), San Francisco VA Medical Center , San Francisco, CA , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Schizophrenia Biological Research Center (116A), VA Connecticut Healthcare System , West Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA
| |
Collapse
|
34
|
Bortz DM, Mikkelsen JD, Bruno JP. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release. Neuroscience 2013; 255:55-67. [PMID: 24095692 DOI: 10.1016/j.neuroscience.2013.09.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate levels. The lower dose (1.0μg in 0.4μL) evoked a rapid rise (∼1.0s) in glutamate (1.41±0.30μM above baseline). The higher dose (5.0μg) produced a similarly rapid, yet larger increase (3.51±0.36μM above baseline). After each dose, the glutamate signal was cleared to basal levels within 7-18s. SSR180711-evoked glutamate was mediated by the α7 nAChR as co-infusion of the selective α7 nAChR antagonist α-bungarotoxin (10.0μM)+SSR1808711 (5.0μg) reduced the effect of 5.0μg alone by 87% (2.62 vs. 0.35μM). Finally, the clearance of the SSR180711 (5.0μg)-evoked glutamate was bidirectionally affected by drugs that inhibited (threo-beta-benzyl-oxy-aspartate (TβOA), 100.0μM) or facilitated (ceftriaxalone, 200mg/kg, i.p.) excitatory amino acid transporters. TβOA slowed both the clearance (s) and rate of clearance (μM/s) by 10-fold, particularly at the mid-late stages of the return to baseline. Ceftriaxone reduced the magnitude of the SSR180711-evoked increase by 65%. These results demonstrate that pharmacological stimulation of α7 nAChRs within the prefrontal cortex is sufficient to evoke rapid yet transient increases in glutamate levels. Such increases may underlie the cognition-enhancing effects of the drug in animals; further justifying studies on the use of α7 nAChR-positive modulators in treating cognition-impairing disorders in humans.
Collapse
Affiliation(s)
- D M Bortz
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | | | | |
Collapse
|
35
|
Grupe M, Paolone G, Jensen AA, Sandager-Nielsen K, Sarter M, Grunnet M. Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochem Pharmacol 2013; 86:1487-96. [PMID: 24051136 DOI: 10.1016/j.bcp.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/16/2022]
Abstract
Prefrontal glutamate release evoked through activation of α4β2* nicotinic acetylcholine receptors (nAChRs) situated on thalamic glutamatergic afferents mediates cue detection processes and thus contributes to attentional performance. However, little is known about the respective contributions of the high sensitivity and low sensitivity (LS) stoichiometries of the α4β2 nAChR, (α4)2(β2)3 and (α4)3(β2)2, to these processes. In the present study we employed glutamate-sensitive microelectrodes and the (α4)3(β2)2-selective positive allosteric modulator (PAM) NS9283 to investigate the importance of the LS α4β2 nAChR for glutamate release in the rat medial prefrontal cortex (mPFC). Firstly, the signaling evoked by physiologically relevant ACh concentrations through the (α4)3(β2)2 nAChR in HEK293 cells was potentiated by NS9283, consistent with the classification of NS9283 as a PAM. In urethane-anesthetized rats, intra-prefrontal pressure ejections of NS9283 evoked glutamatergic transients. Importantly, this glutamate release was attenuated by removal of cholinergic projections to the recording area. This finding indicates that the effects of NS9283 depend on endogenous ACh, again consistent with effects of a PAM. We then conducted microdialysis to demonstrate the presence of extracellular ACh in urethane-anesthetized control rats. While detectable, those levels were significantly lower than in awake rats. Finally, the amplitudes of glutamatergic transients evoked by local pressure ejections of a low concentration of nicotine were significantly augmented following systemic administration of NS9283 (3.0mg/kg). In conclusion, our results indicate that a LS α4β2 nAChR PAM such as NS9283 may enhance the cholinergic modulation of glutamatergic neurotransmission in the cortex, thereby perhaps alleviating the attentional impairments common to a range of brain disorders.
Collapse
Affiliation(s)
- Morten Grupe
- Department of Psychology and Neuroscience Program, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI 48109-1109, USA; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; NeuroSearch A/S, Pederstrupvej 93, 2750 Ballerup, Denmark.
| | | | | | | | | | | |
Collapse
|
36
|
Aracri P, Amadeo A, Pasini ME, Fascio U, Becchetti A. Regulation of glutamate release by heteromeric nicotinic receptors in layer V of the secondary motor region (Fr2) in the dorsomedial shoulder of prefrontal cortex in mouse. Synapse 2013; 67:338-57. [PMID: 23424068 DOI: 10.1002/syn.21655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/15/2013] [Indexed: 12/24/2022]
Abstract
We studied how nicotinic acetylcholine receptors (nAChRs) regulate glutamate release in the secondary motor area (Fr2) of the dorsomedial murine prefrontal cortex, in the presence of steady agonist levels. Fr2 mediates response to behavioral situations that require immediate attention and is a candidate for generating seizures in the frontal epilepsies caused by mutant nAChRs. Morphological analysis showed a peculiar chemoarchitecture and laminar distribution of pyramidal cells and interneurons. Tonic application of 5 µM nicotine on Layer V pyramidal neurons strongly increased the frequency of spontaneous glutamatergic excitatory postsynaptic currents. The effect was inhibited by 1 µM dihydro-β-erythroidine (which blocks α4-containing nAChRs) but not by 10 nM methyllicaconitine (which blocks α7-containing receptors). Excitatory postsynaptic currents s were also stimulated by 5-iodo-3-[2(S)-azetidinylmethoxy]pyridine, selective for β2-containing receptors, in a dihydro-β-erythroidine -sensitive way. We next studied the association of α4 with different populations of glutamatergic terminals, by using as markers the vesicular glutamate transporter type (VGLUT) 1 for corticocortical synapses and VGLUT2 for thalamocortical projecting fibers. Immunoblots showed higher expression of α4 in Fr2, as compared with the somatosensory cortex. Immunofluorescence showed intense VGLUT1 staining throughout the cortical layers, whereas VGLUT2 immunoreactivity displayed a more distinct laminar distribution. In Layer V, colocalization of α4 nAChR subunit with both VGLUT1 and VGLUT2 was considerably stronger in Fr2 than in somatosensory cortex. Thus, in Fr2, α4β2 nAChRs are expressed in both intrinsic and extrinsic glutamatergic terminals and give a major contribution to control glutamate release in Layer V, in the presence of tonic agonist levels.
Collapse
Affiliation(s)
- Patrizia Aracri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | | | | | | | | |
Collapse
|
37
|
Alitto HJ, Dan Y. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 2013; 6:79. [PMID: 23316142 PMCID: PMC3540901 DOI: 10.3389/fnsys.2012.00079] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 12/21/2012] [Indexed: 11/13/2022] Open
Abstract
Activation of the cholinergic neurons in the basal forebrain (BF) desynchronizes cortical activity and enhances sensory processing during arousal and attention. How the cholinergic input modulates the activity of different subtypes of cortical neurons remains unclear. Using in vivo two-photon calcium imaging of neurons in layers 1 and 2/3 of mouse visual cortex, we show that electrical stimulation of the BF bi-directionally modulates the activity of excitatory neurons as well as several subtypes of inhibitory interneurons. While glutamatergic activity contributed to the activation of both excitatory and inhibitory neurons, the contribution of acetylcholine (ACh) was more complex. Excitatory and parvalbumin-positive (PV+) neurons were activated through muscarinic ACh receptors (mAChRs) at low levels of cortical desynchronization and suppressed through nicotinic ACh receptors (nAChRs) when cortical desynchronization was strong. In contrast, vasoactive intestinal peptide-positive (VIP+) and layer 1 interneurons were preferentially activated through nAChRs during strong cortical desynchronization. Thus, cholinergic input from the BF causes a significant shift in the relative activity levels of different subtypes of cortical neurons at increasing levels of cortical desynchronization.
Collapse
Affiliation(s)
- Henry J Alitto
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California Berkeley, CA, USA
| | | |
Collapse
|
38
|
Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus. J Neurosci 2013; 32:15148-57. [PMID: 23100436 DOI: 10.1523/jneurosci.0941-12.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.
Collapse
|
39
|
Volf N, Hu G, Li M. Iptakalim Preferentially Decreases Nicotine-induced Hyperlocomotion in Phencyclidine-sensitized Rats: A Potential Dual Action against Nicotine Addiction and Psychosis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2012; 10:168-79. [PMID: 23430396 PMCID: PMC3569163 DOI: 10.9758/cpn.2012.10.3.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 11/27/2022]
Abstract
Objective Iptakalim is a putative ATP-sensitive potassium (KATP) channel opener. It is also a novel nicotinic acetylcholine receptor (nAChR) blocker and can antagonize nicotine-induced increase in dopamine release in the nucleus accumbens. Our recent work also shows that iptakalim exhibits a clozapine-like atypical antipsychotic profile, indicating that iptakalim may possess a dual action against nicotine addiction and schizophrenia. Methods The present study examined the potential therapeutic effects of iptakalim on nicotine use in schizophrenia. We created an animal model of comorbidity of nicotine addiction and schizophrenia by injecting male Sprague-Dawley rats with nicotine (0.40 mg/kg, subcutaneously[sc]) or saline, in combination with phencyclidine (PCP, 3.0 mg/kg, sc) or saline daily for 14 consecutive days. Results During the PCP/nicotine sensitization phase, PCP and nicotine independently increased motor activity over time. PCP also disrupted prepulse inhibition (PPI) of acoustic startle response. Acute nicotine treatment attenuated the PCP-induced hyperlocomotion and PCP-induced disruption of PPI, whereas repeated nicotine treatment potentiated these effects. Importantly, pretreatment with iptakalim (10-20 mg/kg, intraperitoneally) reduced nicotine-induced hyperlocomotion in a dose-dependent fashion. This reduction effect was highly selective: it was more effective in rats previously sensitized to the combination of PCP and nicotine, but less effective in rats sensitized to saline, nicotine alone or PCP alone. Conclusion To the extent that the combined nicotine and PCP sensitization mimics comorbid nicotine addiction in schizophrenia, the preferential inhibitory effect of iptakalim on nicotine-induced hyperlocomotion suggests that iptakalim may be a potential useful drug for the treatment nicotine abuse in schizophrenia.
Collapse
Affiliation(s)
- Nick Volf
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | |
Collapse
|
40
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
41
|
Goriounova NA, Mansvelder HD. Short- and long-term consequences of nicotine exposure during adolescence for prefrontal cortex neuronal network function. Cold Spring Harb Perspect Med 2012; 2:a012120. [PMID: 22983224 DOI: 10.1101/cshperspect.a012120] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
More than 70% of adolescents report to have smoked a cigarette at least once. At the adolescent stage the brain has not completed its maturation. The prefrontal cortex (PFC), the brain area responsible for executive functions and attention performance, is one of the last brain areas to mature and is still developing during adolescence. Smoking during adolescence increases the risk of developing psychiatric disorders and cognitive impairment in later life. In addition, adolescent smokers suffer from attention deficits, which aggravate with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and that underlie the lasting effects on cognitive function. Here we provide an overview of these recent findings.
Collapse
Affiliation(s)
- Natalia A Goriounova
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
42
|
D'Souza DC, Ahn K, Bhakta S, Elander J, Singh N, Nadim H, Jatlow P, Suckow RF, Pittman B, Ranganathan M. Nicotine fails to attenuate ketamine-induced cognitive deficits and negative and positive symptoms in humans: implications for schizophrenia. Biol Psychiatry 2012; 72:785-94. [PMID: 22717030 DOI: 10.1016/j.biopsych.2012.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/03/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND The uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, ketamine, induces a range of symptoms resembling those seen in schizophrenia. Enhancement of nicotinic acetylcholine receptor (nAChR) function may have potential as a treatment for the cognitive deficits and negative symptoms of schizophrenia. Accordingly, we examined the modulatory effects of brain nAChR systems on NMDAR antagonist-induced effects. METHODS The interactive effects of ketamine and nicotine were evaluated in 37 healthy subjects in a randomized, placebo-controlled, double-blind, crossover counterbalanced, 2 (intravenous ketamine or placebo) × 2 (intravenous nicotine or placebo) design. Verbal and visual memory, sustained attention, working memory, response inhibition, emotion recognition, executive function, reaction time, motor function, and speed of processing were assessed once per test day, while negative and positive symptoms, perceptual alterations, and a number of feeling states were measured several times before and after administration of drugs. RESULTS Ketamine induced cognitive deficits and negative and positive symptoms. Nicotine worsened immediate recall, auditory working memory, response inhibition, and executive function and serial processing. Nicotine decreased (improved) reaction time on the sustained attention and choice reaction time tasks. Nicotine did not reduce ketamine-induced cognitive deficits or negative and positive symptoms. CONCLUSIONS At blood levels comparable with tobacco smoking, nicotine infusion does not appear to alleviate the ketamine-induced transient cognitive and behavioral effects in healthy subjects that resemble those seen in schizophrenia. The lack of an effect of nicotine on a spectrum of ketamine effects suggests that the consequences of NMDAR antagonism are not likely under the direct influence of nAChR.
Collapse
Affiliation(s)
- Deepak Cyril D'Souza
- Psychiatry Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bueno-Junior LS, Lopes-Aguiar C, Ruggiero RN, Romcy-Pereira RN, Leite JP. Muscarinic and nicotinic modulation of thalamo-prefrontal cortex synaptic plasticity [corrected] in vivo. PLoS One 2012; 7:e47484. [PMID: 23118873 PMCID: PMC3484139 DOI: 10.1371/journal.pone.0047484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/11/2012] [Indexed: 02/06/2023] Open
Abstract
The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/µL), the nicotinic agonist nicotine (NIC; 320 nmol/µL), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.
Collapse
Affiliation(s)
- Lezio Soares Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cleiton Lopes-Aguiar
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Neves Romcy-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
44
|
Nicotine exposure during adolescence leads to short- and long-term changes in spike timing-dependent plasticity in rat prefrontal cortex. J Neurosci 2012; 32:10484-93. [PMID: 22855798 DOI: 10.1523/jneurosci.5502-11.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age can compromise the normal course of prefrontal development and lead to cognitive impairments in later life. Recently, we reported that nicotine exposure during adolescence results in a short-term increase and lasting reduction in synaptic mGluR2 levels in the rat mPFC, causing attention deficits during adulthood. It is unknown how changed synaptic mGluR2 levels after adolescent nicotine exposure affect the ability of mPFC synapses to undergo long-term synaptic plasticity. Here, we addressed this question. To model nicotine exposure, adolescent (P34-P43) or adult (P60-P69) rats were treated with nicotine injections three times per day for 10 d. We found that, both during acute activation of nicotinic receptors in the adolescent mPFC as well as immediately following nicotine treatment during adolescence, long-term plasticity in response to timed presynaptic and postsynaptic activity (tLTP) was strongly reduced. In contrast, in the mPFC of adult rats 5 weeks after they received nicotine treatment during adolescence, but not during adulthood, tLTP was increased. Short- and long-term adaptation of mPFC synaptic plasticity after adolescent nicotine exposure could be explained by changed mGluR2 signaling. Blocking mGluR2s augmented tLTP, whereas activating mGluR2s reduced tLTP. Our findings suggest neuronal mechanisms by which exposure to nicotine during adolescence alters the rules for spike timing-dependent plasticity in prefrontal networks that may explain the observed deficits in cognitive performance in later life.
Collapse
|
45
|
Temporal and spatial dynamics of thalamus-evoked activity in the anterior cingulate cortex. Neuroscience 2012; 222:302-15. [DOI: 10.1016/j.neuroscience.2012.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 11/23/2022]
|
46
|
Feduccia AA, Chatterjee S, Bartlett SE. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions. Front Mol Neurosci 2012; 5:83. [PMID: 22876217 PMCID: PMC3411089 DOI: 10.3389/fnmol.2012.00083] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/15/2012] [Indexed: 12/23/2022] Open
Abstract
Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies.
Collapse
Affiliation(s)
- Allison A Feduccia
- Ernest Gallo Clinic and Research Center, Preclinical Development Emeryville, CA, USA
| | | | | |
Collapse
|
47
|
Goriounova NA, Mansvelder HD. Nicotine exposure during adolescence alters the rules for prefrontal cortical synaptic plasticity during adulthood. Front Synaptic Neurosci 2012; 4:3. [PMID: 22876231 PMCID: PMC3410598 DOI: 10.3389/fnsyn.2012.00003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/16/2012] [Indexed: 01/10/2023] Open
Abstract
The majority of adolescents report to have smoked a cigarette at least once. Adolescence is a critical period of brain development during which maturation of areas involved in cognitive functioning, such as the medial prefrontal cortex (mPFC), is still ongoing. Tobacco smoking during this age may compromise the normal course of prefrontal development and lead to cognitive impairments in later life. In addition, adolescent smokers suffer from attention deficits, which progress with the years of smoking. Recent studies in rodents reveal the molecular changes induced by adolescent nicotine exposure that alter the functioning of synapses in the PFC and underlie the lasting effects on cognitive function. In particular, the expression and function of metabotropic glutamate receptors (mGluRs) are changed and this has an impact on short- and long-term plasticity of glutamatergic synapses in the PFC and ultimately on the attention performance. Here, we review and discuss these recent findings.
Collapse
Affiliation(s)
- Natalia A Goriounova
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, VU University Amsterdam, Netherlands
| | | |
Collapse
|
48
|
Savage LM. Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia. Behav Neurosci 2012; 126:226-36. [PMID: 22448856 DOI: 10.1037/a0027257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although the thalamus and/or mammillary bodies are the primary sites of neuropathology in cases of diencephalic amnesia such as Wernicke Korsakoff Syndrome (WKS), there is also functional deactivation of certain cortical regions that contribute to the cognitive dysfunction. Acetylcholine (ACh) is a key neurotransmitter that modulates neural processing within the cortex and between the thalamus and cortex. In the pyrithiamine-induced thiamine deficiency (PTD) rat model of WKS, there are significant reductions in cholinergic innervation and behaviorally stimulated ACh efflux in the frontal (FC) and retrosplenial (RSC) cortices. In the present study, ACh released levels were site-specifically amplified with physostigmine (0.5 μg, 1.0 μg) in the FC and the RSC, which was confirmed with in vivo microdialysis. Although physostigmine sustained high ACh levels in both cortical regions, the effects on spatial memory, assessed by spontaneous alternation, were different as a function of region (FC, RSC) and treatment (PTD, pair-fed [PF]). Higher ACh levels in the FC recovered the rate of alternation in PTD rats as well as reduced arm-reentry perseverative errors. However, higher ACh levels within the FC of PF rats exacerbated arm-reentry perseverative errors without significantly affecting alternation rates. Maintaining high ACh levels in the RSC had no procognitive effects in PTD rats, but rather impaired alternation behavior in PF rats. These results demonstrate that diverse cortical regions respond differently to intensified ACh levels-and the effects are dependent on thalamic pathology. Thus, pharmacotherapeutics aimed at enhancing cognitive functions must account for the unique features of cortical ACh stimulation and the connective circuitry with the thalamus.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
49
|
Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME. Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 2012; 6:32. [PMID: 22837741 PMCID: PMC3402879 DOI: 10.3389/fnbeh.2012.00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/07/2012] [Indexed: 11/13/2022] Open
Abstract
The entorhinal cortex (EC) receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB). To understand how cholinergic neurotransmission can modulate behavior, research has been directed toward identification of the specific cellular mechanisms in EC that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in EC that may underlie functions such as working memory, spatial processing, and episodic memory. In particular, the study of stellate cells (SCs) in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex (mEC) from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in EC that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in EC. Finally, the local circuits of EC demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of EC to underlie the functional role of acetylcholine in memory.
Collapse
Affiliation(s)
- James G. Heys
- Graduate Program for Neuroscience, Center for Memory and Brain, Boston UniversityBoston, MA, USA
| | | | | | | | | |
Collapse
|
50
|
Broussard JI. Posterior parietal cortex dynamically ranks topographic signals via cholinergic influence. Front Integr Neurosci 2012; 6:32. [PMID: 22712008 PMCID: PMC3375019 DOI: 10.3389/fnint.2012.00032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/28/2012] [Indexed: 01/08/2023] Open
Abstract
The hypothesis to be discussed in this review is that posterior parietal cortex (PPC) is directly involved in selecting relevant stimuli and filtering irrelevant distractors. The PPC receives input from several sensory modalities and integrates them in part to direct the allocation of resources to optimize gains. In conjunction with prefrontal cortex, nucleus accumbens, and basal forebrain cholinergic nuclei, it comprises a network mediating sustained attentional performance. Numerous anatomical, neurophysiological, and lesion studies have substantiated the notion that the basic functions of the PPC are conserved from rodents to humans. One such function is the detection and selection of relevant stimuli necessary for making optimal choices or responses. The issues to be addressed here are how behaviorally relevant targets recruit oscillatory potentials and spiking activity of posterior parietal neurons compared to similar yet irrelevant stimuli. Further, the influence of cortical cholinergic input to PPC in learning and decision-making is also discussed. I propose that these neurophysiological correlates of attention are transmitted to frontal cortical areas contributing to the top-down selection of stimuli in a timely manner.
Collapse
Affiliation(s)
- John I Broussard
- Department of Neuroscience, Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|