1
|
Zhou J, Lu X, Wang H. The underlying molecular mechanisms of Fyn in neonatal hypoxic-ischaemic encephalopathy. Front Cell Neurosci 2024; 18:1476856. [PMID: 39664999 PMCID: PMC11631624 DOI: 10.3389/fncel.2024.1476856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Fyn is a cytoplasmic tyrosine kinase (TK) that is a nonreceptor and a member of the Src family of kinases (SFKs). It is involved in several transduction pathways in the central nervous system (CNS), such as oligodendrocyte development, myelination, axon guidance, and synaptic transmission. Owing to its wide range of activities in the molecular signaling pathways that underpin both neuropathologic and neurodevelopmental events, Fyn has remained of great interest for more than a century. Accumulating preclinical data have highlighted the potential role of Fyn in the pathophysiology of neonatal hypoxic-ischaemic encephalopathy (HIE). By mediating important signaling pathways, Fyn may control glutamate excitotoxicity, promote neuroinflammation and facilitate the death of neurons caused by oxidative stress. In this review, we address new evidence regarding the role of Fyn in the pathogenesis of this condition, with the aim of providing a reference for the development of new strategies to improve the prognosis of neonatal HIE. In addition, we also offer insights into additional Fyn-related molecular mechanisms involved in HIE pathology.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Reproductive Medicine Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiang Lu
- Department of Cardiology, The First People’s Hospital of Yuexi County, Yuexi, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Yu K, Yao KR, Aguinaga MA, Choquette JM, Liu C, Wang Y, Liao D. G272V and P301L Mutations Induce Isoform Specific Tau Mislocalization to Dendritic Spines and Synaptic Dysfunctions in Cellular Models of 3R and 4R Tau Frontotemporal Dementia. J Neurosci 2024; 44:e1215232024. [PMID: 38858079 PMCID: PMC11236579 DOI: 10.1523/jneurosci.1215-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Tau pathologies are detected in the brains of some of the most common neurodegenerative diseases including Alzheimer's disease (AD), Lewy body dementia (LBD), chronic traumatic encephalopathy (CTE), and frontotemporal dementia (FTD). Tau proteins are expressed in six isoforms with either three or four microtubule-binding repeats (3R tau or 4R tau) due to alternative RNA splicing. AD, LBD, and CTE brains contain pathological deposits of both 3R and 4R tau. FTD patients can exhibit either 4R tau pathologies in most cases or 3R tau pathologies less commonly in Pick's disease, which is a subfamily of FTD. Here, we report the isoform-specific roles of tau in FTD. The P301L mutation, linked to familial 4R tau FTD, induces mislocalization of 4R tau to dendritic spines in primary hippocampal cultures that were prepared from neonatal rat pups of both sexes. Contrastingly, the G272V mutation, linked to familial Pick's disease, induces phosphorylation-dependent mislocalization of 3R tau but not 4R tau proteins to dendritic spines. The overexpression of G272V 3R tau but not 4R tau proteins leads to the reduction of dendritic spine density and suppression of mEPSCs in 5-week-old primary rat hippocampal cultures. The decrease in mEPSC amplitude caused by G272V 3R tau is dynamin-dependent whereas that caused by P301L 4R tau is dynamin-independent, indicating that the two tau isoforms activate different signaling pathways responsible for excitatory synaptic dysfunction. Our 3R and 4R tau studies here will shed new light on diverse mechanisms underlying FTD, AD, LBD, and CTE.
Collapse
Affiliation(s)
- Ke Yu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Department of General Practice, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Katherine R Yao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Miguel A Aguinaga
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- College of Biological Sciences, University of Minnesota, St Paul, Minnesota 55108
| | - Jessica M Choquette
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Chengliang Liu
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Yuxin Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
3
|
Suriano CM, Kumar N, Verpeut JL, Ma J, Jung C, Dunn CE, Carvajal BV, Nguyen AV, Boulanger LM. An innate immune response to adeno-associated virus genomes decreases cortical dendritic complexity and disrupts synaptic transmission. Mol Ther 2024; 32:1721-1738. [PMID: 38566414 PMCID: PMC11184335 DOI: 10.1016/j.ymthe.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Recombinant adeno-associated viruses (AAVs) allow rapid and efficient gene delivery to the nervous system, are widely used in neuroscience research, and are the basis of FDA-approved neuron-targeting gene therapies. Here we find that an innate immune response to the AAV genome reduces dendritic length and complexity and disrupts synaptic transmission in mouse somatosensory cortex. Dendritic loss is apparent 3 weeks after injection of experimentally relevant viral titers, is not restricted to a particular capsid serotype, transgene, promoter, or production facility, and cannot be explained by responses to surgery or transgene expression. AAV-associated dendritic loss is accompanied by a decrease in the frequency and amplitude of miniature excitatory postsynaptic currents and an increase in the proportion of GluA2-lacking, calcium-permeable AMPA receptors. The AAV genome is rich in unmethylated CpG DNA, which is recognized by the innate immunoreceptor Toll-like receptor 9 (TLR9), and acutely blocking TLR9 preserves dendritic complexity and AMPA receptor subunit composition in AAV-injected mice. These results reveal unexpected impacts of an immune response to the AAV genome on neuronal structure and function and identify approaches to improve the safety and efficacy of AAV-mediated gene delivery in the nervous system.
Collapse
Affiliation(s)
- Christos M Suriano
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA; Sokol Institute for Pharmaceutical Life Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Neerav Kumar
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Jessica L Verpeut
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Jie Ma
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Caroline Jung
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Connor E Dunn
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Brigett V Carvajal
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Ai Vy Nguyen
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA
| | - Lisa M Boulanger
- Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08540, USA.
| |
Collapse
|
4
|
Nachtigall EG, de C Myskiw J, Izquierdo I, Furini CRG. Cellular mechanisms of contextual fear memory reconsolidation: Role of hippocampal SFKs, TrkB receptors and GluN2B-containing NMDA receptors. Psychopharmacology (Berl) 2024; 241:61-73. [PMID: 37700085 DOI: 10.1007/s00213-023-06463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Memories are stored into long-term representations through a process that depends on protein synthesis. However, a consolidated memory is not static and inflexible and can be reactivated under certain circumstances, the retrieval is able to reactivate memories and destabilize them engaging a process of restabilization known as reconsolidation. Although the molecular mechanisms that mediate fear memory reconsolidation are not entirely known, so here we investigated the molecular mechanisms in the hippocampus involved in contextual fear conditioning memory (CFC) reconsolidation in male Wistar rats. We demonstrated that the blockade of Src family kinases (SFKs), GluN2B-containing NMDA receptors and TrkB receptors (TrkBR) in the CA1 region of the hippocampus immediately after the reactivation session impaired contextual fear memory reconsolidation. These impairments were blocked by the neurotrophin BDNF and the NMDAR agonist, D-Serine. Considering that the study of the link between synaptic proteins is crucial for understanding memory processes, targeting the reconsolidation process may provide new ways of disrupting maladaptive memories, such as those seen in post-traumatic stress disorder. Here we provide new insights into the cellular mechanisms involved in contextual fear memory reconsolidation, demonstrating that SFKs, GluN2B-containing NMDAR, and TrkBR are necessary for the reconsolidation process. Our findings suggest a link between BDNF and SFKs and GluN2B-containing NMDAR as well as a link between NMDAR and SFKs and TrkBR in fear memory reconsolidation. These preliminary pharmacological findings provide new evidence of the mechanisms involved in the reconsolidation of fear memory and have the potential to contribute to the development of treatments for psychiatric disorders involving maladaptive memories.
Collapse
Affiliation(s)
- Eduarda G Nachtigall
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Jociane de C Myskiw
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil
| | - Cristiane R G Furini
- Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 3rd floor, Porto Alegre, RS, 90610-000, Brazil.
- Memory Center, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - 2nd floor - HSL, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
5
|
Rao NS, Putra M, Meyer C, Almanza A, Thippeswamy T. The effects of Src tyrosine kinase inhibitor, saracatinib, on the markers of epileptogenesis in a mixed-sex cohort of adult rats in the kainic acid model of epilepsy. Front Mol Neurosci 2023; 16:1294514. [PMID: 38025259 PMCID: PMC10665569 DOI: 10.3389/fnmol.2023.1294514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegeneration and neuroinflammation are key processes of epileptogenesis in temporal lobe epilepsy (TLE). A considerable number (∼30%) of patients with epilepsy are resistant to currently available antiseizure drugs and thus there is a need to develop adjunct therapies to modify disease progression. A vast majority of interventional strategies to treat TLE have utilized males which limits the translational nature of the studies. In this study, we investigated the effects of repeated low-dose kainic acid (KA) injection on the initial status epilepticus (SE) and the effects of Src kinase inhibitor, saracatinib (SAR/AZD0530; 20 mg/kg, oral, daily for 7 days), in a mixed-sex cohort of adult Sprague Dawley rats during early epileptogenesis. There were no sex differences in response to KA-induced SE, and neither did the stage of estrus influence SE severity. KA-induced SE caused significant astrogliosis and microgliosis across the hippocampus, piriform cortex, and amygdala. SAR treatment resulted in a significant reduction of microgliosis across brain regions. Microglial morphometrics such as branch length and the endpoints strongly correlated with CD68 expression in the vehicle-treated group but not in the SAR-treated group, indicating mitigation by SAR. KA-induced SE caused significant neuronal loss, including parvalbumin-positive inhibitory neurons, in both vehicle (VEH) and SAR-treated groups. SAR treatment significantly mitigated FJB-positive neuronal counts as compared to the VEH group. There was an increase in C3-positive reactive astrocytes in the VEH-treated group, and SAR treatment significantly reduced the increase in the piriform cortex. C3-positive astrogliosis significantly correlated with CD68 expression in the amygdala (AMY) of VEH-treated rats, and SAR treatment mitigated this relationship. There was a significant increase of pSrc(Y419)-positive microglia in both KA-treated groups with a statistically insignificant reduction by SAR. KA-induced SE caused the development of classical glial scars in the piriform cortex (PIR) in both KA-treated groups, while SAR treatment led to a 42.17% reduction in the size of glial scars. We did not observe sex differences in any of the parameters in this study. SAR, at the dose tested in the rat kainate model for a week in this study mitigated some of the markers of epileptogenesis in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol 2022; 13:769827. [PMID: 35185557 PMCID: PMC8850722 DOI: 10.3389/fphar.2022.769827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongchun Li,
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Drug and Equipment, China Rongtong Bayi Orthopaedic Hospital, Chengdu, China
| |
Collapse
|
7
|
Sánchez-Hernández J, Aguilera P, Manjarrez-Marmolejo J, Franco-Pérez J. Fructose ingestion modifies NMDA receptors and exacerbates the seizures induced by kainic acid. Neurosci Lett 2022; 772:136476. [DOI: 10.1016/j.neulet.2022.136476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022]
|
8
|
Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, Thippeswamy T. Saracatinib, a Src Tyrosine Kinase Inhibitor, as a Disease Modifier in the Rat DFP Model: Sex Differences, Neurobehavior, Gliosis, Neurodegeneration, and Nitro-Oxidative Stress. Antioxidants (Basel) 2021; 11:61. [PMID: 35052568 PMCID: PMC8773289 DOI: 10.3390/antiox11010061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diisopropylfluorophosphate (DFP), an organophosphate nerve agent (OPNA), exposure causes status epilepticus (SE) and epileptogenesis. In this study, we tested the protective effects of saracatinib (AZD0530), a Src kinase inhibitor, in mixed-sex or male-only Sprague Dawley rats exposed to 4-5 mg/kg DFP followed by 2 mg/kg atropine and 25 mg/kg 2-pralidoxime. Midazolam (3 mg/kg) was given to the mixed-sex cohort (1 h post-DFP) and male-only cohort (~30 min post-DFP). Saracatinib (20 mg/kg, oral, daily for 7 days) or vehicle was given two hours later and euthanized eight days or ten weeks post-DFP. Brain immunohistochemistry (IHC) showed increased microgliosis, astrogliosis, and neurodegeneration in DFP-treated animals. In the 10-week post-DFP male-only group, there were no significant differences between groups in the novel object recognition, Morris water maze, rotarod, or forced swim test. Brain IHC revealed significant mitigation by saracatinib in contrast to vehicle-treated DFP animals in microgliosis, astrogliosis, neurodegeneration, and nitro-oxidative stressors, such as inducible nitric oxide synthase, GP91phox, and 3-Nitrotyrosine. These findings suggest the protective effects of saracatinib on brain pathology seem to depend on the initial SE severity. Further studies on dose optimization, including extended treatment regimen depending on the SE severity, are required to determine its disease-modifying potential in OPNA models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences and Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA; (M.G.); (M.P.); (L.W.); (K.D.); (M.G.); (C.G.-E.)
| |
Collapse
|
9
|
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, Thippeswamy T. Differential Impact of Severity and Duration of Status Epilepticus, Medical Countermeasures, and a Disease-Modifier, Saracatinib, on Brain Regions in the Rat Diisopropylfluorophosphate Model. Front Cell Neurosci 2021; 15:772868. [PMID: 34720886 PMCID: PMC8555467 DOI: 10.3389/fncel.2021.772868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acute organophosphate (OP) toxicity poses a significant threat to both military and civilian personnel as it can lead to a variety of cholinergic symptoms including the development of status epilepticus (SE). Depending on its severity, SE can lead to a spectrum of neurological changes including neuroinflammation and neurodegeneration. In this study, we determined the impact of SE severity and duration on disease promoting parameters such as gliosis and neurodegeneration and the efficacy of a disease modifier, saracatinib (AZD0530), a Src/Fyn tyrosine kinase inhibitor. Animals were exposed to 4 mg/kg diisopropylfluorophosphate (DFP, s.c.) followed by medical countermeasures. We had five experimental groups: controls (no DFP), animals with no continuous convulsive seizures (CS), animals with ∼20-min continuous CS, 31-60-min continuous CS, and > 60-min continuous CS. These groups were then assessed for astrogliosis, microgliosis, and neurodegeneration 8 days after DFP exposure. The 31-60-min and > 60-min groups, but not ∼20-min group, had significantly upregulated gliosis and neurodegeneration in the hippocampus compared to controls. In the piriform cortex and amygdala, however, all three continuous CS groups had significant upregulation in both gliosis and neurodegeneration. In a separate cohort of animals that had ∼20 and > 60-min of continuous CS, we administered saracatinib for 7 days beginning three hours after DFP. There was bodyweight loss and mortality irrespective of the initial SE severity and duration. However, in survived animals, saracatinib prevented spontaneous recurrent seizures (SRS) during the first week in both severity groups. In the ∼20-min CS group, compared to the vehicle, saracatinib significantly reduced neurodegeneration in the piriform cortex and amygdala. There were no significant differences in the measured parameters between the naïve control and saracatinib on its own (without DFP) groups. Overall, this study demonstrates the differential effects of the initial SE severity and duration on the localization of gliosis and neurodegeneration. We have also demonstrated the disease-modifying potential of saracatinib. However, its’ dosing regimen should be optimized based on initial severity and duration of CS during SE to maximize therapeutic effects and minimize toxicity in the DFP model as well as in other OP models such as soman.
Collapse
Affiliation(s)
- Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Crystal Gomez-Estrada
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Madison Golden
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Logan Wachter
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Megan Gard
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.,Neuroscience Interdepartmental Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Banote RK, Larsson D, Berger E, Kumlien E, Zelano J. Quantitative proteomic analysis to identify differentially expressed proteins in patients with epilepsy. Epilepsy Res 2021; 174:106674. [PMID: 34029912 DOI: 10.1016/j.eplepsyres.2021.106674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023]
Abstract
There is a great need for biomarkers in epilepsy, particularly markers of epileptogenesis. A first seizure will lead to epilepsy in 20-45 % of cases, but biomarkers that can identify these individuals are missing. The purpose of this study was to identify potential biomarkers of epilepsy/epileptogenesis in a cohort of adults with new-onset seizures, using quantitative proteomic analysis. Plasma was collected from 55 adults with new-onset seizures and sufficient follow-up to identify epilepsy. After a follow up period of two years, 63.6 % of the cohort had a diagnosis of epilepsy, whereas 36.4 % of patients only had a single seizure. Plasma proteins were extracted and labelled with tandem mass tags, then analyzed using mass spectrometry approach. Proteins that were up- or downregulated by ≥20 % and with a p-value of <0.05 were considered as differentially expressed and were also annotated to their processes and pathways. Several proteins were differentially expressed in the epilepsy group compared to controls. A total of 1075 proteins were detected, out of which 41 proteins were found to be significantly dysregulated in epilepsy patients. Many of these have been identified in experimental studies of epilepogenesis. We report plasma proteome profiling in new-onset epilepsy in a pilot study with 55 individuals. The identified proteins could be involved in pathways associated with epileptogenesis. The results should be seen as hypothesis-generating and targeted, confirmatory studies are needed.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - David Larsson
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Evelin Berger
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Eva Kumlien
- Department of Neuroscience, Uppsala University, Sweden
| | - Johan Zelano
- Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden.
| |
Collapse
|
11
|
Rajani V, Sengar AS, Salter MW. Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 2021; 193:108615. [PMID: 34051267 DOI: 10.1016/j.neuropharm.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The Src family kinases (SFKs) are cytoplasmic non-receptor tyrosine kinases involved in multiple signalling pathways. In the central nervous system (CNS), SFKs are key regulators of N-methyl-d-aspartate receptor (NMDAR) function and major points of convergence for neuronal transduction pathways. Physiological upregulation of NMDAR activity by members of the SFKs, namely Src and Fyn, is crucial for induction of plasticity at Schaffer collateral-CA1 synapses of the hippocampus. Aberrant SFK regulation of NMDARs is implicated in several pathological conditions in the CNS including schizophrenia and pain hypersensitivity. Here, evidence is presented to highlight the current understanding of the intermolecular interactions of SFKs within the NMDAR macromolecular complex, the upstream regulators of SFK activity on NMDAR function and the role Src and Fyn have in synaptic plasticity and metaplasticity. The targeting of SFK protein-protein interactions is discussed as a potential therapeutic strategy to restore signalling activity underlying glutamatergic dysregulation in CNS disease pathophysiology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
12
|
Heavner WE, Lautz JD, Speed HE, Gniffke EP, Immendorf KB, Welsh JP, Baertsch NA, Smith SEP. Remodeling of the Homer-Shank interactome mediates homeostatic plasticity. Sci Signal 2021; 14:14/681/eabd7325. [PMID: 33947797 DOI: 10.1126/scisignal.abd7325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurons maintain stable levels of excitability using homeostatic synaptic scaling, which adjusts the strength of a neuron's postsynaptic inputs to compensate for extended changes in overall activity. Here, we investigated whether prolonged changes in activity affect network-level protein interactions at the synapse. We assessed a glutamatergic synapse protein interaction network (PIN) composed of 380 binary associations among 21 protein members in mouse neurons. Manipulating the activation of cultured mouse cortical neurons induced widespread bidirectional PIN alterations that reflected rapid rearrangements of glutamate receptor associations involving synaptic scaffold remodeling. Sensory deprivation of the barrel cortex in live mice (by whisker trimming) caused specific PIN rearrangements, including changes in the association between the glutamate receptor mGluR5 and the kinase Fyn. These observations are consistent with emerging models of experience-dependent plasticity involving multiple types of homeostatic responses. However, mice lacking Homer1 or Shank3B did not undergo normal PIN rearrangements, suggesting that the proteins encoded by these autism spectrum disorder-linked genes serve as structural hubs for synaptic homeostasis. Our approach demonstrates how changes in the protein content of synapses during homeostatic plasticity translate into functional PIN alterations that mediate changes in neuron excitability.
Collapse
Affiliation(s)
- Whitney E Heavner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Haley E Speed
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen B Immendorf
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,University of Washington Autism Center, Seattle, WA 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA. .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Luo XM, Zhao J, Wu WY, Fu J, Li ZY, Zhang M, Lu J. Post-status epilepticus treatment with the Fyn inhibitor, saracatinib, improves cognitive function in mice. BMC Neurosci 2021; 22:2. [PMID: 33451301 PMCID: PMC7811255 DOI: 10.1186/s12868-020-00606-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Background Status epilepticus (SE) is a life-threatening neurological disorder. The hippocampus, as an important area of the brain that regulates cognitive function, is usually damaged after SE, and cognitive deficits often result from hippocampal neurons lost after SE. Fyn, a non-receptor Src family of tyrosine kinases, is potentially associated with the onset of seizure. Saracatinib, a Fyn inhibitor, suppresses epileptogenesis and reduces epileptiform spikes. However, whether saracatinib inhibits cognitive deficits after SE is still unknown. Methods In the present study, a pilocarpine-induced SE mouse model was used to answer this question by using the Morris water maze and normal object recognition behavioral tests. Results We found that saracatinib inhibited the loss in cognitive function following SE. Furthermore, we found that the number of hippocampal neurons in the saracatinib treatment group was increased, when compared to the SE group. Conclusions These results showed that saracatinib can improve cognitive functions by reducing the loss of hippocampal neurons after SE, suggesting that Fyn dysfunction is involved in cognitive deficits after SE, and that the inhibition of Fyn is a possible treatment to improve cognitive function in SE patients.
Collapse
Affiliation(s)
- Xin-Ming Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China. .,Institute of Neuroscience, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jing Zhao
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Wen-Yue Wu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zheng-Yu Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jie Lu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
14
|
Gage MC, Thippeswamy T. Inhibitors of Src Family Kinases, Inducible Nitric Oxide Synthase, and NADPH Oxidase as Potential CNS Drug Targets for Neurological Diseases. CNS Drugs 2021; 35:1-20. [PMID: 33515429 PMCID: PMC7893831 DOI: 10.1007/s40263-020-00787-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
Neurological diseases share common neuroinflammatory and oxidative stress pathways. Both phenotypic and molecular changes in microglia, astrocytes, and neurons contribute to the progression of disease and present potential targets for disease modification. Src family kinases (SFKs) are present in both neurons and glial cells and are upregulated following neurological insults in both human and animal models. In neurons, SFKs interact with post-synaptic protein domains to mediate hyperexcitability and neurotoxicity. SFKs are upstream of signaling cascades that lead to the modulation of neurotransmitter receptors and the transcription of pro-inflammatory cytokines as well as producers of free radicals through the activation of glia. Inducible nitric oxide synthase (iNOS/NOS-II) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), the major mediators of reactive nitrogen/oxygen species (RNS/ROS) production in the brain, are also upregulated along with the pro-inflammatory cytokines following neurological insult and contribute to disease progression. Persistent neuronal hyperexcitability, RNS/ROS, and cytokines can exacerbate neurodegeneration, a common pathognomonic feature of the most prevalent neurological disorders such as Alzheimer's disease, Parkinson's disease, and epilepsy. Using a wide variety of preclinical disease models, inhibitors of the SFK-iNOS-NOX2 signaling axis have been tested to cure or modify disease progression. In this review, we discuss the SFK-iNOS-NOX2 signaling pathway and their inhibitors as potential CNS targets for major neurological diseases.
Collapse
|
15
|
Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int J Mol Sci 2020; 21:ijms21124444. [PMID: 32580508 PMCID: PMC7352836 DOI: 10.3390/ijms21124444] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022] Open
Abstract
Fyn is a non-receptor or cytoplasmatic tyrosine kinase (TK) belonging to the Src family kinases (SFKs) involved in multiple transduction pathways in the central nervous system (CNS) including synaptic transmission, myelination, axon guidance, and oligodendrocyte formation. Almost one hundred years after the original description of Fyn, this protein continues to attract extreme interest because of its multiplicity of actions in the molecular signaling pathways underlying neurodevelopmental as well as neuropathologic events. This review highlights and summarizes the most relevant recent findings pertinent to the role that Fyn exerts in the brain, emphasizing aspects related to neurodevelopment and synaptic plasticity. Fyn is a common factor in healthy and diseased brains that targets different proteins and shapes different transduction signals according to the neurological conditions. We will primarily focus on Fyn-mediated signaling pathways involved in neuronal differentiation and plasticity that have been subjected to considerable attention lately, opening the fascinating scenario to target Fyn TK for the development of potential therapeutic interventions for the treatment of CNS injuries and certain neurodegenerative disorders like Alzheimer’s disease.
Collapse
|
16
|
Sun XD, Wang A, Ma P, Gong S, Tao J, Yu XM, Jiang X. Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus. J Neurosci Res 2019; 98:384-403. [PMID: 31407399 PMCID: PMC6916362 DOI: 10.1002/jnr.24516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/18/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
The cAMP‐dependent protein kinase A family (PKAs), protein kinase C family (PKCs), and Src family kinases (SFKs) are found to play important roles in pain hypersensitivity. However, more detailed investigations are still needed in order to understand the mechanisms underlying the actions of PKAs, PKCs, and SFKs. Neurons in the hypothalamic arcuate nucleus (ARC) are found to be involved in the regulation of pain hypersensitivity. Here we report that the action potential (AP) firing activity of ARC neurons in culture was up‐regulated by application of the adenylate cyclase activator forskolin or the PKC activator PMA, and that the forskolin or PMA application‐induced up‐regulation of AP firing activity could be blocked by pre‐application of the SFK inhibitor PP2. SFK activation also up‐regulated the AP firing activity and this effect could be prevented by pre‐application of the inhibitors of PKCs, but not of PKAs. Furthermore, we identified that forskolin or PMA application caused increases in the phosphorylation not only in PKAs at T197 or PKCs at S660 and PKCα/βII at T638/641, but also in SFKs at Y416. The forskolin or PMA application‐induced increase in the phosphorylation of PKAs or PKCs was not affected by pre‐treatment with PP2. The regulations of the SFK and AP firing activities by PKCs were independent upon the translocation of either PKCα or PKCβII. Thus, it is demonstrated that PKAs may act as an upstream factor(s) to enhance SFKs while PKCs and SFKs interact reciprocally, and thereby up‐regulate the AP firing activity in hypothalamic ARC neurons.
Collapse
Affiliation(s)
- Xiao-Dong Sun
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Anqi Wang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Peng Ma
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Shan Gong
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Jin Tao
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xian-Min Yu
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| | - Xinghong Jiang
- Key Laboratory of Pain Basic Research and Clinical Therapy, Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Ding X, Liang YJ, Su L, Liao FF, Fang D, Tai J, Xing GG. BDNF contributes to the neonatal incision-induced facilitation of spinal long-term potentiation and the exacerbation of incisional pain in adult rats. Neuropharmacology 2018; 137:114-132. [PMID: 29729892 DOI: 10.1016/j.neuropharm.2018.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 04/29/2018] [Indexed: 01/16/2023]
Abstract
Neonatal surgical injury exacerbates spinal microglial reactivity, modifies spinal synaptic function, leading to exaggerated pain hypersensitivity after adult repeated incision. Whether and how the alteration in microglial reactivity and synaptic plasticity are functionally related remain unclear. Previously, we and others have documented that spinal brain-derived neurotrophic factor (BDNF), secreted from microglia, contributes to long-term potentiation (LTP) in adult rodents with neuropathic pain. Here, we demonstrated that the mRNA and protein expression of spinal BDNF are significantly upregulated in adult rats subjected to neonatal incision and adult repeated incision (nIN-IN). Neonatal incision facilitates spinal LTP induced by BDNF or high frequency electrical stimulation after adult incision, including a decreased induction threshold and an increased magnitude of LTP. Coincidently, inhibition of spinal BDNF abrogates the LTP facilitation, alleviates the mechanical allodynia and thermal hyperalgesia in nIN-IN rats. By contrast, spinal application of exogenous BDNF in the adult rats with a single neonatal incision mimics the LTP facilitation and pain hypersensitivity, which have been found in nIN-IN rats. Exogenous BDNF-induced exacerbation of pain hypersensitivity could be blocked by BDNF inhibitor. In addition, blockade of microglial reactivity by intrathecal application of minocycline attenuates the elevation of BDNF and the LTP facilitation, and also, alleviates pain hypersensitivity in nIN-IN rats. In conclusion, spinal BDNF, at least partly derived from microglia, contributes to the neonatal incision-induced facilitation of spinal LTP and to the exacerbation of incisional pain in adult rats. Thus, spinal BDNF may combine the changes of microglial reactivity and synaptic plasticity in nIN-IN rats.
Collapse
Affiliation(s)
- Xu Ding
- Nutrition Research Unit, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Ya-Jing Liang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Key Lab for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China.
| | - Li Su
- Center of Medical and Health Analysis, Peking University, Beijing, China.
| | - Fei-Fei Liao
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Key Lab for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China.
| | - Dong Fang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Key Lab for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China.
| | - Jun Tai
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute, Peking University, Key Lab for Neuroscience, Ministry of Education of China and National Committee of Health and Family Planning of China, Peking University, Beijing 100083, China.
| |
Collapse
|
18
|
Rajmohan R, Reddy PH. Amyloid-Beta and Phosphorylated Tau Accumulations Cause Abnormalities at Synapses of Alzheimer's disease Neurons. J Alzheimers Dis 2018; 57:975-999. [PMID: 27567878 DOI: 10.3233/jad-160612] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloid-beta (Aβ) and hyperphosphorylated tau are hallmark lesions of Alzheimer's disease (AD). However, the loss of synapses and dysfunctions of neurotransmission are more directly tied to disease severity. The role of these lesions in the pathoetiological progression of the disease remains contested. Biochemical, cellular, molecular, and pathological studies provided several lines of evidence and improved our understanding of how Aβ and hyperphosphorylated tau accumulation may directly harm synapses and alter neurotransmission. In vitro evidence suggests that Aβ and hyperphosphorylated tau have both direct and indirect cytotoxic effects that affect neurotransmission, axonal transport, signaling cascades, organelle function, and immune response in ways that lead to synaptic loss and dysfunctions in neurotransmitter release. Observations in preclinical models and autopsy studies support these findings, suggesting that while the pathoetiology of positive lesions remains elusive, their removal may reduce disease severity and progression. The purpose of this article is to highlight the need for further investigation of the role of tau in disease progression and its interactions with Aβ and neurotransmitters alike.
Collapse
Affiliation(s)
- Ravi Rajmohan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
19
|
Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, Kanthasamy AG, Thippeswamy T. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis 2018; 110:102-121. [PMID: 29197620 PMCID: PMC5753797 DOI: 10.1016/j.nbd.2017.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) induces neuroinflammation and epileptogenesis, but the mechanisms are not yet fully delineated. The Fyn, a non-receptor Src family tyrosine kinase (SFK), and its immediate downstream target, PKCδ are emerging as potential mediators of neuroinflammation. In order to first determine the role of Fyn kinase signaling in SE, we tested the efficacy of a SFK inhibitor, saracatinib (25mg/kg, oral) in C57BL/6J mouse kainate model of acute seizures. Saracatinib pretreatment dampened SE severity and completely prevented mortality. We further utilized fyn-/- and fyn+/+ mice (wildtype control for the fyn-/- mice on same genetic background), and the rat kainate model, treated with saracatinib post-SE, to validate the role of Fyn/SFK in SE and epileptogenesis. We observed significant reduction in SE severity, epileptiform spikes, and electrographic non-convulsive seizures in fyn-/- mice when compared to fyn+/+ mice. Interestingly, significant reductions in phosphorylated pSrc-416 and PKCδ (pPKCδ-507) and naive PKCδ were observed in fyn-/- mice as compared to fyn+/+ mice suggesting that PKCδ signaling is a downstream mediator of Fyn in SE and epileptogenesis. Notably, fyn-/- mice also showed a reduction in key proinflammatory mediators TNF-α, IL-1β, and iNOS mRNA expression; serum IL-6 and IL-12 levels; and nitro-oxidative stress markers such as 4-HNE, gp91phox, and 3-NT in the hippocampus. Immunohistochemistry revealed a significant increase in reactive microgliosis and neurodegeneration in the hippocampus and hilus of dentate gyrus in fyn+/+ mice in contrast to fyn-/- mice. Interestingly, we did not observe upregulation of Fyn in pyramidal neurons of the hippocampus during post-SE in fyn+/+ mice, but it was upregulated in hilar neurons of the dentate gyrus when compared to naïve control. In reactive microglia, both Fyn and PKCδ were persistently upregulated during post-SE suggesting that Fyn-PKCδ may drive neuroinflammation during epileptogenesis. Since disabling the Fyn kinase prior to SE, either by treating with saracatinib or fyn gene knockout, suppressed seizures and the subsequent epileptogenic events, we further tested whether Fyn/SFK inhibition during post-SE modifies epileptogenesis. Telemetry-implanted, SE-induced, rats were treated with saracatinib and continuously monitored for a month. At 2h post-diazepam, the saracatinib (25mg/kg) or the vehicle was administered orally and repeated twice daily for first three days followed by a single dose/day for the next four days. The saracatinib post-treatment prevented epileptogenesis in >50% of the rats and significantly reduced spontaneous seizures and epileptiform spikes in the rest (one animal did not respond) when compared to the vehicle treated group, which had >24 seizures in a month. Collectively, the findings suggest that Fyn/SFK is a potential mediator of epileptogenesis and a therapeutic target to prevent/treat seizures and epileptogenesis.
Collapse
Affiliation(s)
- Shaunik Sharma
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Steven Carlson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Sreekanth Puttachary
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Lucas Showman
- W.M. Keck Metabolomics Research Laboratory, Iowa State University, Ames 50011, USA
| | - Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011, USA.
| |
Collapse
|
20
|
Berrout L, Isokawa M. Ghrelin upregulates the phosphorylation of the GluN2B subunit of the NMDA receptor by activating GHSR1a and Fyn in the rat hippocampus. Brain Res 2017; 1678:20-26. [PMID: 28993142 DOI: 10.1016/j.brainres.2017.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/03/2017] [Accepted: 09/24/2017] [Indexed: 11/18/2022]
Abstract
Ghrelin and its receptor GHSR1a have been shown to exert numerous physiological functions in the brain, in addition to the well-established orexigenic role in the hypothalamus. Earlier work indicated that ghrelin stimulated the phosphorylation of the GluN1 subunit of the NMDA receptor (NMDAR) and enhanced synaptic transmission in the hippocampus. In the present study, we report that the exogenous application of ghrelin increased GluN2B phosphorylation. This increase was independent of GluN2B subunit activity or NMDAR channel activity. However, it depended on the activation of GHSR1a and Fyn as it was blocked by D-Lys3-GHRP-6 and PP2, respectively. Inhibitors for G-protein-regulated second messengers, such as Rp-cAMP, H89, TBB, ryanodine, and thapsigargin, unexpectedly enhanced GluN2B phosphorylation, suggesting that cAMP, PKA, casein kinase II, and cytosolic calcium signaling may oppose to the effect of ghrelin on the phosphorylation of GluN2B. Our findings suggest that 1) GluN2B is likely a molecular target of ghrelin and GHSR1a-driven signaling cascades, and 2) the ghrelin-mediated phosphorylation of GluN2B depends on Fyn activation under complex negative regulation by other second messengers.
Collapse
Affiliation(s)
- Liza Berrout
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States
| | - Masako Isokawa
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, 1W University Blvd., Brownsville, TX 78520, United States.
| |
Collapse
|
21
|
Li S, Cai J, Feng ZB, Jin ZR, Liu BH, Zhao HY, Jing HB, Wei TJ, Yang GN, Liu LY, Cui YJ, Xing GG. BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation. Neurochem Res 2017; 42:2712-2729. [PMID: 28497343 DOI: 10.1007/s11064-017-2274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
22
|
Rubenstein R, Chang B, Grinkina N, Drummond E, Davies P, Ruditzky M, Sharma D, Wang K, Wisniewski T. Tau phosphorylation induced by severe closed head traumatic brain injury is linked to the cellular prion protein. Acta Neuropathol Commun 2017; 5:30. [PMID: 28420443 PMCID: PMC5395835 DOI: 10.1186/s40478-017-0435-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/08/2017] [Indexed: 12/30/2022] Open
Abstract
Studies in vivo and in vitro have suggested that the mechanism underlying Alzheimer's disease (AD) neuropathogenesis is initiated by an interaction between the cellular prion protein (PrPC) and amyloid-β oligomers (Aβo). This PrPC-Aβo complex activates Fyn kinase which, in turn, hyperphosphorylates tau (P-Tau) resulting in synaptic dysfunction, neuronal loss and cognitive deficits. AD transgenic mice lacking PrPC accumulate Aβ, but show normal survival and no loss of spatial learning and memory suggesting that PrPC functions downstream of Aβo production but upstream of intracellular toxicity within neurons. Since AD and traumatic brain injury (TBI)-linked chronic traumatic encephalopathy are tauopathies, we examined whether similar mechanistic pathways are responsible for both AD and TBI pathophysiologies. Using transgenic mice expressing different levels of PrPC, our studies investigated the influence and necessity of PrPC on biomarker (total-tau [T-Tau], P-Tau, GFAP) levels in brain and blood as measured biochemically following severe TBI in the form of severe closed head injury (sCHI). We found that following sCHI, increasing levels of T-Tau and P-Tau in the brain were associated with the PrPC expression levels. A similar relationship between PrPC expression and P-Tau levels following sCHI were found in blood in the absence of significant T-Tau changes. This effect was not seen with GFAP which increased within 24 h following sCHI and progressively decreased by the 7 day time point regardless of the PrPC expression levels. Changes in the levels of all biomarkers were independent of gender. We further enhanced and expanded the quantitation of brain biomarkers with correlative studies using immunohisochemistry. We also demonstrate that a TBI-induced calpain hyperactivation is not required for the generation of P-Tau. A relationship was demonstrated between the presence/absence of PrPC, the levels of P-Tau and cognitive dysfunction. Our studies suggest that PrPC is important in mediating TBI related pathology.
Collapse
Affiliation(s)
- Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA.
| | - Binggong Chang
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Natalia Grinkina
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Eleanor Drummond
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| | - Peter Davies
- Litwin-Zucker Center for Research in Alzheimer's Disease, Feinstein Institute for Medical Research, Manhasset, 11030, NY, USA
| | - Meir Ruditzky
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Deep Sharma
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/ Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, 11203-2098, NY, USA
| | - Kevin Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, 32611, FL, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, Pathology and Psychiatry, New York University School of Medicine, Alexandria ERSP, 450 East 29th Street, New York, 10016, NY, USA
| |
Collapse
|
23
|
Suo ZW, Liu JP, Xue M, Yang YH, Yang X, Xie J, Hu XD. Striatal-enriched phosphatase 61 inhibited the nociceptive plasticity in spinal cord dorsal horn of rats. Neuroscience 2017; 352:97-105. [PMID: 28389375 DOI: 10.1016/j.neuroscience.2017.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 01/09/2023]
Abstract
Striatal-enriched phosphatase 61 (STEP61) is a member of intracellular protein tyrosine phosphatases, which is involved in the regulation of synaptic plasticity and a line of neuropsychiatric disorders. This protein tyrosine phosphatase is also abundant in pain-related spinal cord dorsal horn neurons. However, whether and how this tyrosine phosphatase modulates the nociceptive plasticity and behavioral hypersensitivity remain largely unknown. The present study recorded the long-term potentiation (LTP) of primary afferent C fiber-evoked field potentials in vivo in superficial dorsal horn of rats, and tested the possible role of STEP61 in spinal LTP. We found that LTP induction significantly increased STEP61 phosphorylation at Ser221 residue, a key molecular event that has been shown to impair the phosphatase activity. The STEP61 hypoactivity allowed for the activation of three substrates, GluN2B subunit-containing N-methyl-d-aspartate-subtype glutamate receptors, Src-family protein tyrosine kinase member Fyn and extracellular signal-regulated kinase 1/2, through which the thresholds for LTP induction were noticeably decreased. To reinstate STEP61 activity, we overexpressed wild-type STEP61 [STEP61(WT)] in spinal dorsal horn, finding that STEP61(WT) completely blunted LTP induction. Behavioral tests showed that LTP blockade by STEP61(WT) correlated with a long-lasting alleviation of thermal hypersensitivity and mechanical allodynia induced by chronic constriction injury of sciatic nerves. These data implicated that STEP61 exerted a negative control over spinal nociceptive plasticity, which might have therapeutic benefit in pathological pain.
Collapse
Affiliation(s)
- Zhan-Wei Suo
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jiang-Ping Liu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Man Xue
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yun-Hui Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Xian Yang
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jun Xie
- The Central Blood Station of Jiuquan, Gansu Province, PR China
| | - Xiao-Dong Hu
- Department of Molecular Pharmacology, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
24
|
Luo HB, Li Y, Liu ZJ, Cao L, Zhang ZQ, Wang Y, Zhang XY, Liu Z, Shi XQ. Protective effect of tetrahydroxy stilbene glucoside on learning and memory by regulating synaptic plasticity. Neural Regen Res 2016; 11:1480-1486. [PMID: 27857754 PMCID: PMC5090853 DOI: 10.4103/1673-5374.191223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Damage to synaptic plasticity induced by neurotoxicity of amyloid-beta is regarded to be one of the pathological mechanisms of learning and memory disabilities in Alzheimer's disease patients. This study assumed that the damage of amyloid-beta to learning and memory abilities was strongly associated with the changes in the Fyn/N-methyl-D-aspartate receptor 2B (NR2B) expression. An APP695V7171 transgenic mouse model of Alzheimer's disease was used and treatment with tetrahydroxy-stilbene glucoside was administered intragastrically. Results showed that intragastric administration of tetrahydroxy-stilbene glucoside improved the learning and memory abilities of the transgenic mice through increasing NR2B receptors and Fyn expression. It also reversed parameters for synaptic interface structure of gray type I. These findings indicate that tetrahydroxy stilbene glucoside has protective effects on the brain, and has prospects for its clinical application to improve the learning and memory abilities and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Hong-Bo Luo
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yun Li
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zun-Jing Liu
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Li Cao
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhi-Qiang Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Yong Wang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiao-Yan Zhang
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Zhao Liu
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| | - Xiang-Qun Shi
- Department of Neurology, Lanzhou General Hospital, Lanzhou Military Area Command, Lanzhou, Gansu Province, China
| |
Collapse
|
25
|
Zhang ZC, Luan F, Xie CY, Geng DD, Wang YY, Ma J. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain. Neural Regen Res 2015. [PMID: 26199608 PMCID: PMC4498353 DOI: 10.4103/1673-5374.158356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
Collapse
Affiliation(s)
- Zhan-Chi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Feng Luan
- Department of Otorhinolaryngology, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Chun-Yan Xie
- Second Surgical Department, Qinghe Public Hospital of Hebei Province, Xingtai, Hebei Province, China
| | - Dan-Dan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yan-Yong Wang
- Department of Neurology, First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| | - Jun Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei Province, China ; Hebei Key Laboratory for Brain Aging and Cognitive Neuroscience, Shijiazhuang, Hebei Province, China
| |
Collapse
|
26
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
27
|
Nygaard HB, van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2014; 6:8. [PMID: 24495408 PMCID: PMC3978417 DOI: 10.1186/alzrt238] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, afflicting more than one-third of people over the age of 85. While many therapies for AD are in late-stage clinical testing, rational drug design based on distinct signaling pathways in this disorder is only now emerging. Here we review the putative signaling pathway of amyloid-beta (Aβ), by which the tyrosine kinase Fyn is activated via cell surface binding of Aβ oligomers to cellular prion protein. Several lines of evidence implicate Fyn in the pathogenesis of AD, and its interaction with both Aβ and Tau renders Fyn a unique therapeutic target that addresses both of the major pathologic hallmarks of AD. We are currently enrolling patients in a phase Ib study of saracatinib (AZD0530), a small molecule inhibitor with high potency for Src and Fyn, for the treatment of AD. The results of this trial and a planned phase IIa multisite study will provide important data regarding the potential for this therapeutic strategy in AD.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Department of Neurology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA ; Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Avenue, BCMM 436, New Haven, CT 06536, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, 1 Church Street, Suite 600, New Haven, CT 06510, USA ; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA ; Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Avenue, BCMM 436, New Haven, CT 06536, USA
| |
Collapse
|
28
|
Liu Y, Yang X, Suo Z, Xu Y, Hu X. Fyn kinase-regulated NMDA receptor- and AMPA receptor-dependent pain sensitization in spinal dorsal horn of mice. Eur J Pain 2014; 18:1120-8. [DOI: 10.1002/j.1532-2149.2014.00455.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Y.N. Liu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
- College of Chemistry and Chemical Engineering; Lanzhou University; Gansu China
| | - X. Yang
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - Z.W. Suo
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - Y.M. Xu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| | - X.D. Hu
- Department of Molecular Pharmacology; School of Pharmacy; Lanzhou University; Gansu China
| |
Collapse
|
29
|
Dabrowska J, Hazra R, Guo JD, Li C, DeWitt S, Xu J, Lombroso PJ, Rainnie DG. Striatal-enriched protein tyrosine phosphatase-STEPs toward understanding chronic stress-induced activation of corticotrophin releasing factor neurons in the rat bed nucleus of the stria terminalis. Biol Psychiatry 2013; 74:817-26. [PMID: 24012328 PMCID: PMC3818357 DOI: 10.1016/j.biopsych.2013.07.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein tyrosine phosphatase that opposes the development of synaptic strengthening and the consolidation of fear memories. In contrast, stress facilitates fear memory formation, potentially by activating corticotrophin releasing factor (CRF) neurons in the anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG). METHODS Here, using dual-immunofluorescence, single-cell reverse transcriptase polymerase chain reaction, quantitative reverse transcriptase polymerase chain reaction, Western blot, and whole-cell patch-clamp electrophysiology, we examined the expression and role of STEP in regulating synaptic plasticity in rat BNSTALG neurons and its modulation by stress. RESULTS Striatal-enriched protein tyrosine phosphatase was selectively expressed in CRF neurons in the oval nucleus of the BNSTALG. Following repeated restraint stress (RRS), animals displayed a significant increase in anxiety-like behavior, which was associated with a downregulation of STEP messenger RNA and protein expression in the BNSTALG, as well as selectively enhancing the magnitude of long-term potentiation (LTP) induced in Type III, putative CRF neurons. To determine if the changes in STEP expression following RRS were mechanistically related to LTP facilitation, we examined the effects of intracellular application of STEP on the induction of LTP. STEP completely blocked the RRS-induced facilitation of LTP in BNSTALG neurons. CONCLUSIONS Hence, STEP acts to buffer CRF neurons against excessive activation, while downregulation of STEP after chronic stress may result in pathologic activation of CRF neurons in the BNSTALG and contribute to prolonged states of anxiety. Thus, targeted manipulations of STEP activity might represent a novel treatment strategy for stress-induced anxiety disorders.
Collapse
Affiliation(s)
- Joanna Dabrowska
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Rimi Hazra
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Ji-Dong Guo
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - ChenChen Li
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Sarah DeWitt
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329
| | - Jian Xu
- Laboratory of Molecular Neurobiology, Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, CT, 06520
| | - Paul J. Lombroso
- Laboratory of Molecular Neurobiology, Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, CT, 06520
| | - Donald G. Rainnie
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329,Corresponding author: Dr. Donald. G. Rainnie, Associate Professor Emory University, Department of Psychiatry, Yerkes National Primate Research Center 954 Gatewood Rd, Atlanta, GA 30329, USA Telephone: +1404-712-9714, Fax: +1404-727- 9645
| |
Collapse
|
30
|
Role of a hippocampal SRC-family kinase-mediated glutamatergic mechanism in drug context-induced cocaine seeking. Neuropsychopharmacology 2013; 38:2657-65. [PMID: 23872878 PMCID: PMC3828537 DOI: 10.1038/npp.2013.175] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022]
Abstract
Glutamatergic neurotransmission in the dorsal hippocampus (DH) is necessary for drug context-induced reinstatement of cocaine-seeking behavior in an animal model of drug relapse. Furthermore, in vitro studies suggest that the Src family of tyrosine kinases critically regulates glutamatergic cellular functions within the DH. Thus, Src-family kinases in the DH may similarly control contextual cocaine-seeking behavior. To test this hypothesis, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after AP5 (N-methyl-D-aspartate glutamate (NMDA) receptor (NMDAR) antagonist; 0.25 or 2.5 μg/0.5 μl/hemisphere), PP2 (Src-family kinase inhibitor; 6.25 or 62.5 ng/0.5 μl/hemisphere), Ro25-6981 (NR2B subunit-containing NMDAR antagonist; 0.2 or 2 μg/0.5 μl/hemisphere), or vehicle administration into the DH. Administration of AP5, PP2, or Ro25-6981 into the DH dose-dependently impaired drug context-induced reinstatement of cocaine-seeking behavior relative to vehicle, without altering instrumental behavior in the extinction context or food-reinforced instrumental responding and general motor activity in control experiments. Cocaine-seeking behavior during the first 20 min of the test session in the cocaine-paired context was associated with an increase in NR2B subunit activation, and intra-DH PP2 pretreatment disrupted this relationship. Together, these findings suggest that Src-family kinase activation, NMDAR stimulation, and likely Src-family kinase-mediated NR2B subunit-containing NMDAR activation in the DH are necessary for incentive motivational and/or memory processes that promote contextual cocaine-seeking behavior.
Collapse
|
31
|
Bach SA, de Siqueira LV, Müller AP, Oses JP, Quatrim A, Emanuelli T, Vinadé L, Souza DO, Moreira JD. Dietary omega-3 deficiency reduces BDNF content and activation NMDA receptor and Fyn in dorsal hippocampus: implications on persistence of long-term memory in rats. Nutr Neurosci 2013; 17:186-92. [PMID: 24621058 DOI: 10.1179/1476830513y.0000000087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) fatty acids are important for adequate brain function and cognition. The aim of the present study was to evaluate how n-3 fatty acids influence the persistence of long-term memory (LTM) in an aversive memory task and to explore the putative mechanism involved. Female rats received isocaloric diets that included n-3 (n-3 group) or not (D group). The adult litters were subjected to an inhibitory avoidance task (0.7 mA, 1.0 seconds foot shock) to elicit persistent LTM. Twelve hours after the training session, the fatty acid profile and the brain derived neurotrophic factor (BDNF) content of the dorsal hippocampus were assessed. In addition, we measured the activation of the NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor and the SRC family protein Fyn. Despite pronounced learning in both groups, the persistence of LTM was abolished in the D group 7 days after the training session. We also observed that the D group presented reductions in hippocampal DHA (22:6 n-3) and BDNF content. Twelve hours after the training session, the D group showed decreased NR2B and Fyn phosphorylation in the dorsal hippocampus, with no change in the total content of these proteins. Further, there was a decrease in the interaction of Fyn with NR2B in the D group, as observed by co-immunoprecipitation. Taken together, these data suggest that n-3 fatty acids influence the persistence of LTM by maintaining adequate levels of DHA and BDNF as well as by influencing the activation of NR2B and Fyn during the period of memory formation.
Collapse
|
32
|
Boehm J. A ‘danse macabre’: tau and Fyn in STEP with amyloid beta to facilitate induction of synaptic depression and excitotoxicity. Eur J Neurosci 2013; 37:1925-30. [DOI: 10.1111/ejn.12251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Jannic Boehm
- Département de Physiologie; Groupe de Recherche sur le Système Nerveux Central; Université de Montréal; Montréal; QC; H3T 1J4; Canada
| |
Collapse
|
33
|
Knox R, Zhao C, Miguel-Perez D, Wang S, Yuan J, Ferriero D, Jiang X. Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol Dis 2013; 51:113-9. [PMID: 23127881 PMCID: PMC3595007 DOI: 10.1016/j.nbd.2012.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/12/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022] Open
Abstract
The Src family kinases (SFKs) Src and Fyn are implicated in hypoxic-ischemic (HI) injury in the developing brain. However, it is unclear how these particular SFKs contribute to brain injury. Using neuron-specific Fyn overexpressing (OE) mice, we investigated the role of neuronal Fyn in neonatal brain HI. Wild type (WT) and Fyn OE mice were subjected to HI using the Vannucci model at postnatal day 7. Brains were scored five days later for evaluation of damage using cresyl violet and iron staining. Western blotting with postsynaptic density (PSD)-associated synaptic membrane proteins and co-immunoprecipitation with cortical lysates were performed at various time points after HI to determine NMDA receptor tyrosine phosphorylation and Fyn kinase activity. Fyn OE mice had significantly higher mortality and brain injury compared to their WT littermates. Neuronal Fyn overexpression led to sustained NR2A and NR2B tyrosine phosphorylation and enhanced NR2B phosphorylation at tyrosine (Y) 1472 and Y1252 in synaptic membranes. These early changes correlated with higher calpain activity 24h after HI in Fyn OE mice relative to WT animals. Our findings suggest a role for Fyn kinase in neuronal death after neonatal HI, possibly via up-regulation of NMDA receptor tyrosine phosphorylation.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94158, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, 94158, USA
| | - Chong Zhao
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Dario Miguel-Perez
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Steven Wang
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Jinwei Yuan
- Icon Clinical Research, Redwood City, CA 94065, USA
| | - Donna Ferriero
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California, San Francisco, CA, 94158, USA
| | - Xiangning Jiang
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| |
Collapse
|
34
|
|
35
|
Gibb SL, Hamida SB, Lanfranco MF, Ron D. Ethanol-induced increase in Fyn kinase activity in the dorsomedial striatum is associated with subcellular redistribution of protein tyrosine phosphatase α. J Neurochem 2011; 119:879-89. [PMID: 21919909 DOI: 10.1111/j.1471-4159.2011.07485.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo exposure of rodents to ethanol leads to a long-lasting increase in Fyn kinase activity in the dorsomedial striatum (DMS). In this study, we set out to identify a molecular mechanism that contributes to the enhancement of Fyn activity in response to ethanol in the DMS. Protein tyrosine phosphatase α (PTPα) positively regulates the activity of Fyn, and we found that repeated systemic administration or binge drinking of ethanol results in an increase in the synaptic localization of PTPα in the DMS, the same site where Fyn resides. We also demonstrate that binge drinking of ethanol leads to an increase in Fyn activity and to the co-localization of Fyn and PTPα in lipid rafts in the DMS. Finally, we show that the level of tyrosine phosphorylated (and thus active) PTPα in the synaptic fractions is increased in response to contingent or non-contingent exposure of rats to ethanol. Together, our results suggest that the redistribution of PTPα in the DMS into compartments where Fyn resides is a potential mechanism by which the activity of the kinase is increased upon ethanol exposure. Such neuroadaptations could be part of a mechanism that leads to the development of excessive ethanol consumption.
Collapse
Affiliation(s)
- Stuart L Gibb
- Ernest Gallo Research Center, University of California San Francisco, Emeryville, California, USA
| | | | | | | |
Collapse
|
36
|
Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 2011; 70:385-409. [PMID: 21555068 DOI: 10.1016/j.neuron.2011.03.024] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/22/2022]
Abstract
Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking.
Collapse
Affiliation(s)
- Bernhard Luscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
37
|
Jurd R, Tretter V, Walker J, Brandon NJ, Moss SJ. Fyn kinase contributes to tyrosine phosphorylation of the GABA(A) receptor gamma2 subunit. Mol Cell Neurosci 2010; 44:129-34. [PMID: 20233604 DOI: 10.1016/j.mcn.2010.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/22/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022] Open
Abstract
Phosphorylation of GABA(A) receptors is an important mechanism for dynamically modulating inhibitory synaptic function in the mammalian brain. In particular, phosphorylation of tyrosine residues 365 and 367 (Y365/7) within the GABA(A) receptor gamma2 subunit negatively regulates the endocytosis of GABA(A) receptors and enhances synaptic inhibition. Here we show that Fyn, a Src family kinase (SFK), interacts with the gamma2 subunit in a phosphorylation-dependent manner. Furthermore, we demonstrate that Fyn binds within a region of the gamma2 intracellular domain that is centered on residues Y365/7, with the phosphorylation of Y367 being particularly important for mediating this interaction. Tyrosine phosphorylation of the gamma2 subunit is significantly reduced in the hippocampus of Fyn knockout mice, suggesting that Fyn is an important kinase that contributes to the phosphorylation of this subunit in vivo. Tyrosine phosphorylation of the gamma2 subunit is not completely abolished in Fyn kinase mice, suggesting that other SFKs, such as Src, also contribute to maintaining and regulating the endogenous phosphorylation level of gamma2-containing GABA(A) receptors. In summary, we demonstrate Fyn as one of the SFKs that binds to and phosphorylates the gamma2 subunit of the GABA(A) receptor. This has important implications for the regulation of synaptic GABA(A) receptors via signaling pathways that lead to the activation of Fyn kinase.
Collapse
Affiliation(s)
- Rachel Jurd
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | | | | | | |
Collapse
|
38
|
Schumann J, Michaeli A, Yaka R. Src-protein tyrosine kinases are required for cocaine-induced increase in the expression and function of the NMDA receptor in the ventral tegmental area. J Neurochem 2008; 108:697-706. [PMID: 19046409 DOI: 10.1111/j.1471-4159.2008.05794.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine-induced long-term potentiation of glutamatergic synapses in the ventral tegmental area (VTA) has been proposed as a key process that contributes to the development of addictive behaviors. In particular, the activation of ionotrophic glutamate NMDA receptor (NMDAR) in the VTA is critical for the initiation of cocaine sensitization. Here we show that application of cocaine both in slices and in vivo induced an increase in tyrosine phosphorylation of the NR2A, but not the NR2B subunit of the NMDAR in juvenile rats. Cocaine induced an increase in the activity of both Fyn and Src kinases, and the Src-protein tyrosine kinase (Src-PTKs) inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), abolished both cocaine-induced increase in tyrosine phosphorylation of the NR2A subunit and the increase in the expression of NR1, NR2A, and NR2B in the VTA. Moreover, cocaine-induced enhancement in NMDAR-mediated excitatory post-synaptic currents was completely abolished by PP2. Taken together, these results suggest that acute cocaine induced an increase in the expression of NMDAR subunits and enhanced tyrosine phosphorylation of NR2A-containing NMDAR through members of the Src-PTKs. This in turn, increased NMDAR-mediated currents in VTA dopamine neurons. These results provide a potential cellular mechanism by which cocaine triggers NMDAR-dependent synaptic plasticity of VTA neurons that may underlie the development of behavioral sensitization.
Collapse
Affiliation(s)
- Johanna Schumann
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
39
|
|
40
|
Bukalo O, Schachner M, Dityatev A. Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. J Neurosci 2007; 27:6019-28. [PMID: 17537973 PMCID: PMC6672247 DOI: 10.1523/jneurosci.1022-07.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Predisposition of synapses to undergo plastic changes can be dynamically adjusted according to the history of synaptic activity (i.e., synapses are metaplastic). In search of a molecular mechanism underlying metaplasticity, we investigated mice deficient in the glycoprotein tenascin-R (TNR), based on the observations that this mutant exhibits elevated basal excitatory synaptic transmission and reduced perisomatic GABAergic inhibition. TNR is a major extracellular matrix glycoprotein of the CNS and carries the HNK-1 carbohydrate (human natural killer cell glycan), which has been identified as the functional epitope mediating regulation of GABAergic transmission via GABA(B) receptors. Here, we used patch-clamp recordings in hippocampal slices to determine the critical levels of postsynaptic neuron depolarization necessary for induction of long-term potentiation (LTP) at CA3-CA1 synapses and found that deficiency in TNR leads to a metaplastic increase in the threshold for induction of LTP. Reconstitution of slices from TNR-deficient mice with an HNK-1 glycomimetic or pharmacological treatment with either a GABA(A) receptor agonist, a GABA(B) receptor antagonist, an L-type voltage-dependent Ca2+ channel blocker, or an inhibitor of protein serine/threonine phosphatases restored LTP to the levels seen in wild-type mice. We propose that a chain of events initiated by reduced GABAergic transmission and proceeding via Ca2+ entry into cells and elevated activity of phosphatases mediates homeostatic adjustment of hippocampal plasticity in the absence of TNR. These data uncover a novel mechanism by which an extracellular matrix molecule and its associated carbohydrate provide conditions beneficial for induction of LTP in the CA1 region of the hippocampus.
Collapse
Affiliation(s)
- Olena Bukalo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, and
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Institut für Neurophysiologie und Pathophysiologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
41
|
Kojima N, Sakamoto T, Endo S, Niki H. Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci 2005; 21:1359-69. [PMID: 15813945 DOI: 10.1111/j.1460-9568.2005.03955.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously demonstrated that transgenic mice overexpressing Fyn tyrosine kinase exhibit higher seizure susceptibility and enhanced tyrosine phosphorylation of several proteins, including the N-methyl-D-aspartate (NMDA) receptor subunit 2B (NR2B). In the present study, we analysed behavioural phenotypes, especially conditioned fear responses, of Fyn-transgenic (TG) mice to better understand the role of Fyn in learned emotional behaviour. Tone-dependent conditioned freezing was significantly attenuated in Fyn-TG mice, whereas context-dependent freezing was unaffected. Neither massed nor spaced conditioning ameliorated the attenuation of tone-dependent freezing. However, the selective NR2B antagonist ifenprodil, when administered before conditioning, restored tone-dependent freezing in Fyn-TG mice at a dose that did not affect freezing in wild-type (WT) mice. These results suggest that impairment of tone-dependent conditioned freezing in Fyn-TG mice is caused by disruption of the NR2B-containing NMDA receptor function. Tyrosine phosphorylation of brain proteins, including NR2B, was enhanced in Fyn-TG mice compared with that in WT mice. We also found that ifenprodil significantly suppressed the enhanced tyrosine phosphorylation. Thus, our data support the notion that NMDA receptor activity is tightly correlated with protein tyrosine phosphorylation, and Fyn might be one key molecule that controls tone-dependent conditioned freezing through the regulation of NMDA receptor function.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Amygdala/drug effects
- Amygdala/physiology
- Animals
- Behavior, Animal
- Blotting, Western/methods
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Electroshock/adverse effects
- Evoked Potentials/drug effects
- Evoked Potentials/radiation effects
- Excitatory Amino Acid Antagonists/pharmacology
- Fear
- Freezing Reaction, Cataleptic/drug effects
- Freezing Reaction, Cataleptic/physiology
- Freezing Reaction, Cataleptic/radiation effects
- Immunohistochemistry/methods
- Injections, Intraventricular/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Phosphorylation/drug effects
- Phosphorylation/radiation effects
- Piperidines/pharmacology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-fyn
- Reaction Time/drug effects
- Reaction Time/radiation effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Synaptosomes/radiation effects
- Time Factors
- Tyrosine/metabolism
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- N Kojima
- Laboratory for Neurobiology of Emotion, RIKEN Brain Science Institute, Hirosawa 2-1, Wako 351-0198, Japan
| | | | | | | |
Collapse
|
42
|
Wei FY, Tomizawa K, Ohshima T, Asada A, Saito T, Nguyen C, Bibb JA, Ishiguro K, Kulkarni AB, Pant HC, Mikoshiba K, Matsui H, Hisanaga SI. Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. J Neurochem 2005; 93:502-12. [PMID: 15816873 DOI: 10.1111/j.1471-4159.2005.03058.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the roles of cyclin-dependent kinase 5 (Cdk5) in neurodevelopment and neurodegeneration have been studied extensively, regulation of Cdk5 activity has remained largely unexplored. We report here that glutamate, acting via NMDA or kainate receptors, can induce a transient Ca(2+)/calmodulin-dependent activation of Cdk5 that results in enhanced autophosphorylation and proteasome-dependent degradation of a Cdk5 activator p35, and thus ultimately down-regulation of Cdk5 activity. The relevance of this regulation to synaptic plasticity was examined in hippocampal slices using theta burst stimulation. p35(-/-) mice exhibited a lower threshold for induction of long-term potentiation. Thus excitatory glutamatergic neurotransmission regulates Cdk5 activity through p35 degradation, and this pathway may contribute to plasticity.
Collapse
Affiliation(s)
- Fan-Yan Wei
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa, Hachiohji, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Boehm SL, Peden L, Jennings AW, Kojima N, Harris RA, Blednov YA. Over-expression of the fyn-kinase gene reduces hypnotic sensitivity to ethanol in mice. Neurosci Lett 2004; 372:6-11. [PMID: 15531078 DOI: 10.1016/j.neulet.2004.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/13/2004] [Accepted: 08/13/2004] [Indexed: 11/22/2022]
Abstract
Our previous work indicated a role for fyn-kinase in mediating several ethanol- and GABA(A) agonist-mediated behaviors. In the present work we investigate behavioral sensitivity to ethanol and several GABA(A) compounds in mice that over-express fyn-kinase in forebrain to further characterize the role of this non-receptor tyrosine kinase in the mediation of ethanol sensitivity. Transgenic mice over-expressing fyn-kinase were tested for sensitivity to ethanol-induced loss of righting reflex and ethanol preference drinking using a two-bottle choice drinking paradigm. Loss of righting reflex induced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; GABA(A) agonist) and etomidate (GABA(A) positive allosteric modulator) were also assessed. Fyn over-expressing mice exhibited shorter durations of ethanol-induced loss of righting reflex in the absence of differences in the rate of blood ethanol clearance, and exhibited reduced ethanol preference drinking. The genotypes did not differ in initial sensitivity to ethanol-induced loss of righting reflex suggesting development of greater acute tolerance to this ethanol action. Fyn over-expressing and wild-type mice also did not differ in sensitivity to loss of righting reflex induced by THIP and etomidate. The present results suggest regional specificity for fyn-kinase in the modulation of ethanol and GABAergic behavioral sensitivity. Fyn-kinase over-expression in forebrain structures modulates ethanol's hypnotic actions, as well as ethanol preference and consumption. Moreover, fyn over-expression in forebrain does not alter hypnotic sensitivity to THIP or etomidate, supporting data from fyn null mutant mice suggesting that cerebellar structures mediate the hypnotic actions of these GABAergic compounds.
Collapse
Affiliation(s)
- Stephen L Boehm
- Waggoner Center for Alcohol and Addiction Research, University of Texas, 2500 Speedway, MBB 1.124, Austin, TX 78712, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Yaka R, Tang KC, Camarini R, Janak PH, Ron D. Fyn kinase and NR2B-containing NMDA receptors regulate acute ethanol sensitivity but not ethanol intake or conditioned reward. Alcohol Clin Exp Res 2004; 27:1736-42. [PMID: 14634488 PMCID: PMC1193705 DOI: 10.1097/01.alc.0000095924.87729.d8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The tyrosine kinase Fyn previously has been shown to play a key role in mediating acute tolerance to ethanol. Recently, we found that the compartmentalization of Fyn to the NR2B subunit of the NMDA receptor (NMDAR) in the hippocampus regulates Fyn phosphorylation of NR2B in response to ethanol, which mediates the acute tolerance of NMDAR to ethanol inhibition in hippocampal slices. In this study we determined, first, whether acute tolerance to ethanol inhibition is mediated via NR2B-containing NMDARs in vivo and, second, whether the increase in acute sensitivity to ethanol in the Fyn-/- mice influences ethanol consumption or ethanol's conditioned rewarding effects. METHODS A loss of righting reflex test was used to study the acute/sedative effects of ethanol after intraperitoneal injections of sedative doses of ethanol. Conditioned place preference was used to study the rewarding properties of ethanol. The two-bottle choice protocol was used to measure oral ethanol self-administration and preference as described previously. RESULTS We found that systemic injection of the NR2B-containing NMDAR selective antagonist, ifenprodil, abolished the differences between Fyn+/+ and Fyn-/- mice in sensitivity to the acute sedative effects of ethanol. Moreover, we found that Fyn-/- and Fyn+/+ mice did not differ in their voluntary ethanol consumption or in the rewarding properties of ethanol. CONCLUSIONS Our results suggest that the interaction between Fyn and NR2B mediates the acute sedative effects of ethanol, and that alteration in acute ethanol sensitivity does not necessarily correlate with levels of ethanol consumption or the rewarding properties of ethanol.
Collapse
Affiliation(s)
| | | | | | | | - Dorit Ron
- Reprint requests: Dorit Ron, PhD, Ernest Gallo Clinic and Research Center, 5858 Horton St., Suite 200, Emeryville, CA 94608; Fax: 510-985-3101; E-mail:
| |
Collapse
|
45
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
46
|
Gulyaeva NV, Kudryashov IE, Kudryashova IV. Caspase activity is essential for long-term potentiation. J Neurosci Res 2003; 73:853-64. [PMID: 12949912 DOI: 10.1002/jnr.10730] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Slices from rat hippocampus were incubated with the caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethylketone (Z-DEVD-FMK) or with the inactive peptide N-benzyloxycarbonyl-Phe-Ala fluoromethylketone (Z-Phe-Ala-FMK) for 30 min. The peptides changed neither input-output curves nor paired-pulse effects at 70-msec interpulse intervals, nor amplitudes of pop spikes in the CA1 region 1.0-6.9 hr after the incubation. Slices taken 1.0-1.4 hr after Z-DEVD-FMK or inactive peptide treatment demonstrated similar long-term potentiation (LTP) curves; however, LTP was suppressed significantly (P<0.001) 1.5-3.4 hr after Z-DEVD-FMK treatment when compared to the corresponding inactive peptide group. LTP magnitude correlated with time after Z-DEVD-FMK (r= -0.74; P<0.02) but did not depend on time after the inactive peptide treatment. After 3.5 hr, LTP was blocked completely. Z-DEVD-FMK did not have a significant effect on presynaptic function. The results are the first evidence that inhibition of caspase-3 significantly decreases or fully blocks LTP in the CA1 region and suggest that caspase-3 is essential for LTP. Candidate caspase-3 substrates that may be cleaved for LTP induction and maintenance are discussed.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
47
|
Focal adhesion kinase is required, but not sufficient, for the induction of long-term potentiation in dentate gyrus neurons in vivo. J Neurosci 2003. [PMID: 12764094 DOI: 10.1523/jneurosci.23-10-04072.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tyrosine kinase phosphorylation plays an important role in the induction of long-term potentiation (LTP). Focal adhesion kinase (FAK) is a 125 kDa nonreceptor tyrosine kinase that shows decreased phosphorylation in fyn mutant mice, and Fyn plays a critical role in LTP induction. By examining the role of FAK involved in LTP induction in dentate gyrus in vivo with medial perforant path stimulation, we found that both FAK and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) phosphorylation were increased significantly 5 and 10 min after LTP induction, whereas cAMP-responsive element binding protein (CREB) phosphorylation was increased 40 min later. Transfection of the dominant-negative FAK mutant construct HA-FAK(Y397F) impaired LTP, whereas transfection of the constitutively activated form HA-FAK(Delta1-100) reduced the threshold for LTP induction. Transfection of HA-FAK(Delta1-100) by itself did not induce long-lasting potentiation. Further, transfection of the HA-FAK(Y397F) construct decreased FAK, MAPK/ERK, and CREB phosphorylation, and the inhibition of MAPK/ERK decreased CREB phosphorylation. Moreover, blockade of NMDA receptor (NMDAR) did not decrease FAK, MAPK/ERK, and CREB phosphorylation although LTP induction was blunted by NMDAR antagonist. These biochemical changes were not associated with low-frequency stimulation either. Immunoprecipitation results revealed that tyrosine phosphorylation of NR2A and NR2B as well as the association of phosphorylated FAK with NR2A and NR2B was increased with LTP induction. These results together suggest that FAK is required, but not sufficient, for the induction of LTP in a NMDAR-independent manner and that MAPK/ERK and CREB are the downstream events of FAK activation. Further, FAK may interact with NR2A and NR2B to modulate LTP induction.
Collapse
|
48
|
Foster TC. Regulation of synaptic plasticity in memory and memory decline with aging. PROGRESS IN BRAIN RESEARCH 2002; 138:283-303. [PMID: 12432775 DOI: 10.1016/s0079-6123(02)38083-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas C Foster
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
49
|
Casey M, Maguire C, Kelly A, Gooney MA, Lynch MA. Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein. Hippocampus 2002; 12:377-85. [PMID: 12099488 DOI: 10.1002/hipo.10036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A great deal of recent evidence points to a role for tyrosine kinase in expression of LTP. Data have been presented that are consistent with the idea that tyrosine phosphorylation of proteins occurs in both the presynaptic and postsynaptic areas. In this study, we set out to investigate the role that tyrosine kinase might play presynaptically to modulate release of glutamate in an effort to understand the mechanism underlying the persistent increase in release that accompanies LTP in perforant path-granule cell synapses. We report that LTP was associated with increased calcium influx and glutamate release. LTP was also associated with an increase in phosphorylation of the alpha-subunit of calcium channels and ERK in synaptosomes prepared from dentate gyrus, and these effects were inhibited when LTP was blocked by the tyrosine kinase inhibitor, genistein. LTP was accompanied by increased protein synthesis and increased phosphorylation of CREB in entorhinal cortex, effects that were also blocked by genistein. We conclude that tetanic stimulation leads to enhanced tyrosine phosphorylation of certain presynaptically located proteins that modulate glutamate release and contribute to expression of LTP.
Collapse
Affiliation(s)
- M Casey
- Physiology Department, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
50
|
SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci 2002. [PMID: 12427827 DOI: 10.1523/jneurosci.22-22-09721.2002] [Citation(s) in RCA: 249] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At excitatory synapses, the postsynaptic scaffolding protein postsynaptic density 95 (PSD-95) couples NMDA receptors (NMDARs) to the Ras GTPase-activating protein SynGAP. The close association of SynGAP and NMDARs suggests that SynGAP may have an important role in NMDAR-dependent activation of Ras signaling pathways, such as the MAP kinase pathway, and in synaptic plasticity. To explore this issue, we examined long-term potentiation (LTP), p42 MAPK (ERK2) signaling, and spatial learning in mice with a heterozygous null mutation of the SynGAP gene (SynGAP(-/+)). In SynGAP(-/+) mutant mice, the induction of LTP in the hippocampal CA1 region was strongly reduced in the absence of any detectable alteration in basal synaptic transmission and NMDAR-mediated synaptic currents. Although basal levels of activated ERK2 were elevated in hippocampal extracts from SynGAP(-/+) mice, NMDAR stimulation still induced a robust increase in ERK activation in slices from SynGAP(-/+) mice. Thus, although SynGAP may regulate the ERK pathway, its role in LTP most likely involves additional downstream targets. Consistent with this, the amount of potentiation induced by stimulation protocols that induce an ERK-independent form of LTP were also significantly reduced in slices from SynGAP(-/+) mice. An elevation of basal phospho-ERK2 levels and LTP deficits were also observed in SynGAP(-/+)/H-Ras(-)/- double mutants, suggesting that SynGAP may normally regulate Ras isoforms other than H-Ras. A comparison of SynGAP and PSD-95 mutants suggests that PSD-95 couples NMDARs to multiple downstream signaling pathways with very different roles in LTP and learning.
Collapse
|