1
|
Albright MJ, Weston MC, Inan M, Rosenmund C, Crair MC. Increased thalamocortical synaptic response and decreased layer IV innervation in GAP-43 knockout mice. J Neurophysiol 2007; 98:1610-25. [PMID: 17581849 DOI: 10.1152/jn.00219.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growth-associated protein, GAP-43, is an axonally localized neuronal protein with high expression in the developing brain and in regenerating neurites. Mice that lack GAP-43 (GAP-43 -/-) fail to form a whisker-related barrel map. In this study, we use GAP-43 -/- mice to examine GAP-43 synaptic function in the context of thalamocortical synapse development and cortical barrel map formation. Examination of thalamocortical synaptic currents in an acute brain slice preparation and in autaptic thalamic neurons reveals that GAP-43 -/- synapses have larger alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor (AMPAR)-mediated currents than controls despite similar AMPAR function and normal probability of vesicular release. Interestingly, GAP-43 -/- synapses are less sensitive to blockade by a competitive glutamate receptor antagonist, suggesting higher levels of neurotransmitter in the cleft during synaptic transmission. Field excitatory postsynaptic potentials (EPSPs) from GAP-43 -/- thalamocortical synapses reveal a reduced fiber response, and anatomical analysis shows reduced thalamic innervation of barrel cortex in GAP-43 -/- mice. Despite this fact synaptic responses in the field EPSPs are similar in GAP-43 -/- mice and wild-type littermate controls, and the ratio of AMPAR-mediated to N-methyl-d-aspartate receptor (NMDAR)-mediated currents (AMPAR:NMDAR ratio) is larger than normal. This suggests that GAP-43 -/- mice form fewer thalamocortical synapses in layer IV because of decreased anatomical innervation of the cortex, but the remaining contacts are individually stronger possibly due to increased neurotransmitter concentration in the synaptic cleft. Together, these results indicate that in addition to its well known role in axonal pathfinding GAP-43 plays a functional role in regulating neurotransmitter release.
Collapse
Affiliation(s)
- Michael J Albright
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
2
|
Noraberg J, Jensen CV, Bonde C, Montero M, Nielsen JV, Jensen NA, Zimmer J. The developmental expression of fluorescent proteins in organotypic hippocampal slice cultures from transgenic mice and its use in the determination of excitotoxic neurodegeneration. Altern Lab Anim 2007; 35:61-70. [PMID: 17411353 DOI: 10.1177/026119290703500121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transgenic mice, expressing fluorescent proteins in neurons and glia, provide new opportunities for real-time microscopic monitoring of degenerative and regenerative structural changes. We have previously validated and compared a number of quantifiable markers for neuronal damage and cell death in organotypic brain slice cultures, such as cellular uptake of propidium iodide (PI), loss of microtubule-associated protein 2 (MAP2), Fluoro-Jade (FJ) cell staining, and the release of cytosolic lactate dehydrogenase (LDH). An important supplement to these markers would be data on corresponding morphological changes, as well as the opportunity to monitor reversible changes or long-term effects in the event of minor damage. As a first step, we present: a) the developmental expression in organotypic hippocampal brain slice cultures of transgenic fluorescent proteins, useful for the visualisation of neuronal subpopulations and astroglial cells; and b) examples of excitotoxic, glutamate receptor-induced degeneration of hippocampal CA1 pyramidal cells, with corresponding astroglial reactivity in such cultures. The slice cultures were set up according to standard techniques, by using one-week old pups from four transgenic mouse strains which express fluorescent proteins in their neurons and/or astroglial cells. From the time of explantation, and subsequently for up to nine weeks in culture, the transgenic neuronal fluorescence displayed the expected characteristics of a developmental, in vivo-like increase, including both the number and localisation of cells, as well as the intensity of fluorescence. At that stage and later, the transgenic fluorescence clearly permitted the visualisation of cell bodies, larger and smaller dendritic branches, spines and axons. In separate experiments, with a 24-hour exposure of matured sliced cultures to 100 microM of the glutamate agonist, N-methyl-D-aspartate (NMDA), we observed, by time-lapse recording, a gradual, but rapid loss of fluorescent CA1 pyramidal cells, accompanied by astrogliosis of transgene fluorescent astroglial cells. Based on these results, we consider that organotypic brain slice cultures from transgenic mice, with fluorescent neurons and glia, combined with detailed visualisation by time-lapse fluorescence microscopy, have great potential for investigating both major irreversible and minor reversible structural changes in neurons and glia, induced by neurotoxins and other neurodegenerative compounds and conditions.
Collapse
Affiliation(s)
- Jens Noraberg
- Anatomy and Neurobiology, University of Southern Denmark, Odense, Denmark.
| | | | | | | | | | | | | |
Collapse
|
3
|
Basu J, Betz A, Brose N, Rosenmund C. Munc13-1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J Neurosci 2007; 27:1200-10. [PMID: 17267576 PMCID: PMC6673179 DOI: 10.1523/jneurosci.4908-06.2007] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synapses need to encode a wide dynamic range of action potential frequencies. Essential vesicle priming proteins of the Munc13 (mammalian Unc13) family play an important role in adapting vesicle supply to variable demand and thus influence short-term plasticity characteristics and synaptic function. Structure-function analyses of Munc13s have identified a "catalytic" C-terminal domain and several N-terminal modulatory domains, including a diacylglycerol/phorbol ester [4beta-phorbol-12, 13-dibutyrate (PDBu)] binding C1 domain. Although still allowing basal priming, a Munc13-1 C1 domain mutation (H567K) prevents PDBu induced potentiation of evoked transmitter release, leads to strong depression during trains of synaptic activity, and causes perinatal lethality in mice. To understand the mechanism of C1 domain-mediated modulation of Munc13 function, we examined how PDBu increases neurotransmitter release. Analyses of osmotically induced release as well as Ca2+ triggered and spontaneous release showed that PDBu increases the vesicular release rate without affecting the size of the readily releasable vesicle pool, linking C1 domain activation to a lowering of the energy barrier for vesicle fusion. PDBu binding-deficient mutant Munc13-1(H567K) synapses mirrored the vesicular release properties of PDBu-potentiated wild-type synapses, indicating that Munc13-1(H567K) is a gain-of-function mutant, which conformationally mimics the PDBu-activated state of Munc13-1. We propose a PKC analogous two-state model of regulation of Munc13s, in which the basal state of Munc13s is disinhibited by C1 domain activation into a state of facilitated vesicle release, regardless of whether the release is spontaneous or action potential triggered.
Collapse
Affiliation(s)
- Jayeeta Basu
- Departments of Neuroscience and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| | - Andrea Betz
- Max-Planck-Institute for Experimental Medicine, Department of Molecular Neurobiology, D-37075 Göttingen, Germany
| | - Nils Brose
- Max-Planck-Institute for Experimental Medicine, Department of Molecular Neurobiology, D-37075 Göttingen, Germany
| | - Christian Rosenmund
- Departments of Neuroscience and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
4
|
Hanson JE, Blank M, Valenzuela RA, Garner CC, Madison DV. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome. J Physiol 2006; 579:53-67. [PMID: 17158177 PMCID: PMC2075378 DOI: 10.1113/jphysiol.2006.114868] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Down's syndrome (DS) is the most common cause of mental retardation, and memory impairments are more severe in DS than in most if not all other causes of mental retardation. The Ts65Dn mouse, a genetic model of DS, exhibits phenotypes of DS, including memory impairments indicative of hippocampal dysfunction. We examined functional synaptic connectivity in area CA3 of the hippocampus of Ts65Dn mice using organotypic slice cultures as a model. We found reductions in multiple measures of synaptic function in both excitatory and inhibitory inputs to pyramidal neurons in CA3 of the Ts65Dn hippocampus. However, associational synaptic connections between pyramidal neurons were more abundant and more likely to be active rather than silent in the Ts65Dn hippocampus. Synaptic potentiation was normal in these associational connections. Decreased overall functional synaptic input onto pyramidal neurons expressed along with the specific hyperconnectivity of associational connections between pyramidal neurons will result in predictable alterations of CA3 network function, which may contribute to the memory impairments seen in DS.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | | | | | |
Collapse
|
5
|
Robinson DA, Zhuo M. Modulation of presynaptic activity by phosphorylation in cultured rat spinal dorsal horn neurons. THE JOURNAL OF PAIN 2004; 5:329-37. [PMID: 15336637 DOI: 10.1016/j.jpain.2004.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Phosphorylation, in particular by protein kinase C (PKC), modulates spinal sensory transmission and nociceptive behaviors. Whereas PKC's postsynaptic actions are well established, its presynaptic effects in spinal sensory neurons are mostly inferred from postsynaptic recordings. Here we first show that the amphipathic styryl dye FM 1-43 can be used to image presynaptic activity in cultured spinal dorsal horn cultures and then test whether PKC modulates presynaptic activity in cultured spinal dorsal horn neurons. Pretreatment with the broad-spectrum kinase inhibitor staurosporine (2 micromol/L) inhibited dye release. Bisindolylmaleimide I, a PKC inhibitor, potentiated dye release at low doses (200 nmol/L and 1 micromol/L), while inhibiting it at a higher dose (5 micromol/L). Activating PKC with phorbol dibutyrate (0.5 micromol/L) induced an increase in exocytosis, which is partially blocked by bisindolylmaleimide I. These results indicate that styryl dyes can be used to observe presynaptic regulation of spinal dorsal horn neurons, and that PKC acts presynaptically to modulate spinal sensory transmission. PERSPECTIVE With dye imaging technique, we demonstrate here that PKC presynaptically regulates sensory transmission in spinal dorsal horn neurons. In combination with conventional whole-cell patch-clamp recording technique, the present study provides a new methodology for studying spinal sensory transmission and modulation and facilitates our understanding of pain mechanism.
Collapse
Affiliation(s)
- Daphné A Robinson
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, Missouri, USA
| | | |
Collapse
|
6
|
McIlvain VA, Robertson DR, Maimone MM, McCasland JS. Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice. J Comp Neurol 2003; 462:252-64. [PMID: 12794747 DOI: 10.1002/cne.10725] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
GAP-43 has been implicated in axonal pathfinding and sprouting, synaptic plasticity, and neurotransmitter release. However, its effect on cortical development in vivo is poorly understood. We have previously shown that GAP-43 knockout (-/-) mice fail to develop whisker-related barrels or an ordered whisker map in the cortex. Here we used cytochrome oxidase (CO) histochemistry to demonstrate that GAP-43 heterozygous (+/-) mice develop larger than normal barrels at postnatal day 7 (P7), despite normal body and brain weight. Using serotonin transporter (5HT-T) histochemistry to label thalamocortical afferents (TCAs), we found no obvious abnormalities in other somatosensory areas or primary visual cortex of GAP-43 (+/-) mice. However, TCA projections to (+/-) primary auditory cortex were not as clearly defined. To clarify the mechanism underlying the large-barrel phenotype, we used lipophilic (DiI) axon labeling. We found evidence for multiple pathfinding abnormalities among GAP-43 (+/-) TCAs. These axons show increased fasciculation within the internal capsule, as well as abnormal turning and branching in the subcortical white matter. These pathfinding errors most likely reflect failures of signal recognition and/or transduction by ingrowing TCAs. In addition, many DiI-labeled (+/-) TCAs exhibit widespread, sparsely branched terminal arbors in layer IV, reflecting the large-barrel phenotype. They also resemble those found in rat barrel cortex deprived of whisker inputs from birth, suggesting a failure of activity-dependent synaptogenesis and/or synaptic stabilization in (+/-) cortex. Our findings suggest that reduced GAP-43 expression can alter the fine-tuning of a cortical map through a combination of pathfinding and synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Vera A McIlvain
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
7
|
Baldwin ML, Rostas JAP, Sim ATR. Two modes of exocytosis from synaptosomes are differentially regulated by protein phosphatase types 2A and 2B. J Neurochem 2003; 85:1190-9. [PMID: 12753078 DOI: 10.1046/j.1471-4159.2003.01779.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The inhibitors okadaic acid (OA), fostriecin (FOS) and cyclosporin A (CsA), were used to investigate the roles of protein phosphatases in regulating exocytosis in rat brain synaptosomes by measuring glutamate release and the release of the styryl dye FM 2-10. Depolarization was induced by 30 mM KCl, or 0.3 mM or 1 mM 4-aminopyridine (4AP). OA and FOS produced a similar partial inhibition of KCl- and 0.3 mM 4AP- evoked exocytosis in both assays, but had little effect upon exocytosis evoked by 1 mM 4AP. In contrast, CsA had no effect upon KCl- and 0.3 mM 4AP-evoked exocytosis, but significantly enhanced glutamate release but not FM 2-10 dye release evoked by 1 mM 4AP. None of the phosphatase inhibitors changed calcium signals from FURA-2-loaded synaptosomes either before or after depolarization. Pretreatment with 100 nM phorbol 12-myristate 13-acetate abolished the inhibitory effect of OA on exocytosis induced by 0.3 mM 4AP. Taken together, these results show that exocytosis from synaptosomes has a phosphatase-sensitive and phosphatase-insensitive component, and that there are two modes of phosphatase-sensitive exocytosis that can be elicited by different depolarization conditions. Moreover, these two modes are differentially sensitive to phosphatase 2A and 2B.
Collapse
Affiliation(s)
- Monique L Baldwin
- School of Biomedical Sciences, University of Newcastle and Clinical Neuroscience Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | | | | |
Collapse
|
8
|
Brager DH, Cai X, Thompson SM. Activity-dependent activation of presynaptic protein kinase C mediates post-tetanic potentiation. Nat Neurosci 2003; 6:551-2. [PMID: 12754518 DOI: 10.1038/nn1067] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Accepted: 04/28/2003] [Indexed: 11/08/2022]
Abstract
Vesicle exocytosis is mediated by the complex interaction between synaptic vesicle and plasma membrane proteins, many of which are substrates for protein kinases. Exogenous protein kinase activators increase release probability at several mammalian CNS synapses, but the physiological conditions under which presynaptic protein kinases become activated are not known. We report here that calcium/phospholipid-dependent protein kinase C (PKC) is activated by high-frequency stimulation and mediates post-tetanic potentiation (PTP) in the rat hippocampus.
Collapse
Affiliation(s)
- Darrin H Brager
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
9
|
Takahashi M, Itakura M, Kataoka M. New Aspects of Neurotransmitter Releasee and Exocytosis: Regulation of Neurotransmitter Release by Phosphorylation. J Pharmacol Sci 2003; 93:41-5. [PMID: 14501150 DOI: 10.1254/jphs.93.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Synaptic transmission is conducted by neurotransmitters released from nerve terminals. Neurotransmitter release is regulated both positively and negatively by multiple mechanisms, and its regulation is believed to be one of the important mechanisms of synaptic plasticity underlying learning and memory. Various protein kinases play important roles in the regulation, and candidates for protein substrates essential for the regulation have been identified.
Collapse
Affiliation(s)
- Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Kanagawa, Japan.
| | | | | |
Collapse
|
10
|
Hulo S, Alberi S, Laux T, Muller D, Caroni P. A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur J Neurosci 2002; 15:1976-82. [PMID: 12099903 DOI: 10.1046/j.1460-9568.2002.02026.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The growth-associated protein GAP-43 (or neuromodulin or B-50) plays a critical role during development in mechanisms of axonal growth and formation of synaptic networks. At later times, GAP-43 has also been implicated in the regulation of synaptic transmission and properties of plasticity such as long-term potentiation. In a molecular approach, we have analyzed transgenic mice overexpressing different mutated forms of GAP-43 or deficient in GAP-43 to investigate the role of the molecule in short-term and long-term plasticity. We report that overexpression of a mutated form of GAP-43 that mimics constitutively phosphorylated GAP-43 results in an enhancement of long-term potentiation in CA1 hippocampal slices. This effect is specific, because LTP was affected neither in transgenic mice overexpressing mutated forms of non-phosphorylatable GAP-43 nor in GAP-43 deficient mice. The increased LTP observed in transgenic mice expressing a constitutively phosphorylated GAP-43 was associated with an increased paired-pulse facilitation as well as an increased summation of responses during high frequency bursts. These results indicate that, while GAP-43 is not necessary for LTP induction, its phosphorylation may regulate presynaptic properties, thereby affecting synaptic plasticity and the induction of LTP.
Collapse
Affiliation(s)
- S Hulo
- Neuropharmacology, Centre Médical Universitaire, rue M. Servet 1, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Brager DH, Capogna M, Thompson SM. Short-term synaptic plasticity, simulation of nerve terminal dynamics, and the effects of protein kinase C activation in rat hippocampus. J Physiol 2002; 541:545-59. [PMID: 12042358 PMCID: PMC2290341 DOI: 10.1113/jphysiol.2001.015842] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phorbol esters are hypothesised to produce a protein kinase C (PKC)-dependent increase in the probability of transmitter release via two mechanisms: facilitation of vesicle fusion or increases in synaptic vesicle number and replenishment. We used a combination of electrophysiology and computer simulation to distinguish these possibilities. We constructed a stochastic model of the presynaptic contacts between a pair of hippocampal pyramidal cells that used biologically realistic processes and was constrained by electrophysiological data. The model reproduced faithfully several forms of short-term synaptic plasticity, including short-term synaptic depression (STD), and allowed us to manipulate several experimentally inaccessible processes. Simulation of an increase in the size of the readily releasable vesicle pool and the time of vesicle replenishment decreased STD, whereas simulation of a facilitation of vesicle fusion downstream of Ca(2+) influx enhanced STD. Because activation of protein kinase C with phorbol ester enhanced STD of EPSCs in rat hippocampal slice cultures, we conclude that an increase in the sensitivity of the release process for Ca(2+) underlies the potentiation of neurotransmitter release by PKC.
Collapse
Affiliation(s)
- Darrin H Brager
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
12
|
Abstract
Presynaptic action potentials trigger the exocytosis of neurotransmitters. However, even in the absence of depolarisation-dependent Ca2+ entry nearby release sites, spontaneous vesicular release still occurs. Even though this happens at low rate, such spontaneous release may play a trophic role in maintaining the shape of dendritic structures. Like evoked responses, action potential-independent release is subject to modulation. This review describes some of the regulatory factors that rapidly and presynaptically regulate the ongoing Ca2+-independent release of neurotransmitters in the hippocampus. For instance, the electrical activity of the nerve ending, neurotransmitters, hypertonic solutions, neurotoxins, polycations, neurotrophic factors, immunoglobulins, cyclothiazide and psychotropic drugs can all modify the rate of spontaneous release. This can be achieved through various mechanisms that can be Ca2+-dependent or Ca2+-independent, protein kinase-dependent or independent. Since action potential-independent release contributes to the maintenance of dendritic structures, neuromodulators are likely to influence the density and/or length of dendritic spines, which in turn may modulate information processing in the central nervous system (CNS).
Collapse
Affiliation(s)
- A Bouron
- CNRS UMR 5091, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Cedex, Bordeaux, France.
| |
Collapse
|
13
|
Honda I, Kamiya H, Yawo H. Re-evaluation of phorbol ester-induced potentiation of transmitter release from mossy fibre terminals of the mouse hippocampus. J Physiol 2000; 529 Pt 3:763-76. [PMID: 11118504 PMCID: PMC2270214 DOI: 10.1111/j.1469-7793.2000.00763.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
To investigate the mechanisms by which phorbol esters potentiate transmitter release from mossy fibre terminals we used fura dextran to measure the intraterminal Ca2+ concentration in mouse hippocampal slices. A phorbol ester, phorbol 12,13-diacetate (PDAc), potentiated the field excitatory postsynaptic potential (fEPSP) slope. PDAc also enhanced the stimulation-dependent increase of [Ca2+]i in the mossy fibre terminal (Delta[Ca2+]pre). The magnitude of the PDAc-induced fEPSP potentiation (463+/-57% at 10 microM) was larger than that expected from the enhancement of Delta[Ca2+]pre (153+/-5%). The Delta[Ca2+]pre was suppressed by omega-agatoxin IVA (omega-AgTxIVA, 200 nM), a P/Q-type Ca2+ channel-specific blocker, by 31%. The effect of PDAc did not select between omega-AgTxIVA-sensitive and -resistant components. The PDAc-induced potentiation of the fEPSP slope was partially antagonized by the protein kinase C (PKC) inhibitor bisindolylmaleimide I (BIS-I, 10 microM), whereas the Delta[Ca2+]pre was completely blocked by BIS-I. Although the BIS-I-sensitive fEPSP potentiation was accompanied by a reduction of the paired-pulse ratio (PPR), the BIS-I-resistant component was not. Whole-cell patch clamp recording from a CA3 pyramidal neuron in a BIS-I-treated slice demonstrated that PDAc (10 microM) increased the frequency of miniature excitatory postsynaptic currents (mEPSCs, 259+/-33% of control) without a noticeable change in their amplitude (102+/-5% of control). These results suggest that PKC potentiates transmitter release by at least two distinct mechanisms, one Delta[Ca2+]pre dependent and the other Delta[Ca2+]pre independent. In addition, some phorbol ester-mediated potentiation of synaptic transmission appears to occur without activating PKC.
Collapse
Affiliation(s)
- I Honda
- Department of Neurophysiology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | | | | |
Collapse
|
14
|
Abstract
KCl and 4-aminopyridine (4-AP) evoke glutamate release from rat brain cortical nerve terminals by voltage clamping or by Na(+) channel-generated repetitive action potentials, respectively. Stimulation by 4-AP but not KCl is largely mediated by protein kinase C (PKC). To determine whether KCl and 4-AP utilise the same mechanism to release glutamate, we correlated glutamate release with release of the hydrophobic synaptic vesicle (SV) marker FM2-10. A strong correlation was observed for increasing concentrations of KCl and after application of phorbol 12-myristate 13-acetate (PMA) or staurosporine. The parallel increase in exocytosis measured by two approaches suggested it occurred by a PKC-independent mechanism involving complete fusion of SVs with the plasma membrane. At low concentrations of 4-AP, alone or with staurosporine, glutamate and FM2-10 release also correlated. However, higher concentrations of 4-AP or of 4-AP plus PMA greatly increased glutamate release but did not further increase FM2-10 release. This divergence suggests that 4-AP recruits an additional mechanism of release during strong stimulation that is PKC dependent and is superimposed upon the first mechanism. This second mechanism is characteristic of kiss-and-run, which is not detectable by styryl dyes. Our data suggest that glutamate release in nerve terminals occurs via two mechanisms: (1) complete SV fusion, which is PKC independent; and (2) a kiss-and-run-like mechanism, which is PKC dependent. Recruitment of a second release mechanism may be a widespread means to facilitate neurotransmitter release in central neurons.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, New South Wales, Australia.
| | | |
Collapse
|
15
|
Gagliardini V, Dusart I, Fankhauser C. Absence of GAP-43 can protect neurons from death. Mol Cell Neurosci 2000; 16:27-33. [PMID: 10882480 DOI: 10.1006/mcne.2000.0850] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The main function of GAP-43 is thought to be regulating growth cone motility and axon guidance signals. GAP-43 is highly expressed during development and in regenerating nerves and in particular regions of the adult brain. We here present the first evidence that GAP-43 can modulate guidance signals emanating from Semaphorin III (SemaIII) in cultured NGF-dependent sensory neurons. We further show that absence of GAP-43 dramatically increases resistance of specific sensory neurons to apoptotic stimuli in vitro. NGF-dependent sensory neurons from GAP-43 (+/-) and null mutant mice are strongly protected against SemaIII-induced death. Furthermore, NGF- and BDNF-dependent neurons, but not NT-3-dependent neurons, from GAP-43 null mutant mice are much more resistant to apoptosis induced by trophic factor deprivation. We also show that early postnatal Purkinje cells from GAP-43 (+/-) mice are more resistant to cell death in organotypic cultures. We conclude that GAP-43 can influence neuronal survival and modulate repulsive axon guidance signals.
Collapse
Affiliation(s)
- V Gagliardini
- Brain Research Institute, Department of Neuromorphology, University of Zurich and Swiss Federal Institute of Technology Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | | | | |
Collapse
|