1
|
A Runner's High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021; 11:biom11081077. [PMID: 34439743 PMCID: PMC8392752 DOI: 10.3390/biom11081077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise has wide-ranging benefits to cognitive functioning and mental state, effects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis has been implicated in many of these mental benefits of exercise. However, precise mechanisms behind these effects are not well known. Released peripherally during exercise, beta-endorphins are an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits of exercise. Although historically ignored due to their peripheral release and status as a peptide hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis, and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin appears to be a promising mechanism for understanding the specific ways that exercise promotes adult neurogenesis specifically and brain health broadly.
Collapse
|
2
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Cho C, Michailidis V, Martin LJ. Revealing brain mechanisms of mTOR-mediated translational regulation: Implications for chronic pain. NEUROBIOLOGY OF PAIN 2018; 4:27-34. [PMID: 31194026 PMCID: PMC6550104 DOI: 10.1016/j.ynpai.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
mTOR is a major regulator of protein translation. mTOR serves an important role in neural plasticity. mTOR signalling in the brain as a pathology for neurological disorder is known. mTOR signalling in the brain as a chronic pain mechanism is understudied.
In the spinal cord, altered protein transcription and translation have received a lot of recent attention for their role in neural plasticity, a major mechanism leading to the development of chronic pain. However, changes in brain plasticity are also associated with the maintenance of pain symptoms, but these cellular mechanisms remain less clear. The mechanistic/mammalian target of rapamycin (mTOR) is a master regulator of protein synthesis, and controls several neuronal functions, including neural plasticity. While aberrant changes in mTOR signaling are associated with sensitization of the pain pathway (sensory neurons and spinal cord), there are various nervous system diseases that have pain as a comorbidity and altered mTOR activity in the brain. Here, we provide a brief review of mTOR changes in the brain that are associated with some neurological disorders and focus on how these changes may be relevant to the pain of the underlying condition and chronic pain itself.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Vassilia Michailidis
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Loren J. Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Deptartment of Cell and Systems Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Corresponding author at: Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
4
|
Rosenow JM. Anatomy of the Nervous System. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Abstract
Over the past two decades, the question of how our brain makes us sensitive to the state of conspecifics and how that affects our behaviour has undergone a profound change. Twenty years ago what would now be called social neuroscience was focused on the visual processing of facial expressions and body movements in temporal lobe structures of primates (Puce and Perrett 2003). With the discovery of mirror neurons, this changed rapidly towards the modern field of social neuroscience, in which high-level vision is but one of many focuses of interest. In this essay, we will argue that for the further progress of the field, the integration of animal neuroscience and human neuroscience is paramount. We will do so, by focusing on the field of embodied social cognition. We will first show how the combination of animal and human neuroscience was critical in how the discovery of mirror neurons placed the motor system on the map of social cognition. We will then argue why an integrated cross-species approach will be pivotal to our understanding of the neural basis of emotional empathy and its link to prosocial behaviour.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Skogar O, Lokk J. Pain management in patients with Parkinson's disease: challenges and solutions. J Multidiscip Healthc 2016; 9:469-479. [PMID: 27757037 PMCID: PMC5053370 DOI: 10.2147/jmdh.s105857] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review focuses on the diagnosis and management of Parkinson-related pain which is one of the more frequently reported nonmotor symptoms in Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. Pain is ranked high by patients as a troublesome symptom in all stages of the disease. In early-stage PD, pain is rated as the most bothersome symptom. Knowledge of the correct diagnosis of pain origin and possible methods of treatments for pain relief in PD is of great importance. The symptoms have a great negative impact on health-related quality of life. Separating PD-related pain from pain of other origins is an important challenge and can be characterized as “many syndromes under the same umbrella”. Among the different forms of PD-related pain, musculoskeletal pain is the most common form, accounting for 40%–90% of reported pain in PD patients. Augmentation by pathophysiological pathways other than those secondary to rigidity, tremor, or any of the other motor manifestations of the disease seems most probable. In PD, the basal ganglia process somatosensory information differently, and increased subjective pain sensitivity with lower electrical and heat-pain thresholds has been reported in PD patients. The mechanism is assumed to be diminished activity of the descending inhibitory control system of the basal ganglia. PD pain, like many of the nonmotor symptoms, remains underdiagnosed and, thus, poorly managed. A systematic collection of patient descriptions of type, quality, and duration of pain is, therefore, of utmost importance. Recent studies have validated new and more specific and dedicated pain scales for PD-related symptoms. Symptomatic treatments based on clinical pain classification include not only pharmacological but also nonpharmacological methods and, to some degree, invasive approaches. In the clinic, pharmacological and nonpharmacological interventions can be effective to varying degrees – as single therapies or in combination – and should be employed, because no therapeutic strategies have been validated to date for managing PD pain. Multimodal approaches should always be considered, dopamine replacement therapies should be adjusted, and analgesics and/or antidepressants should be considered, including the use of different forms of complementary therapies.
Collapse
Affiliation(s)
- Orjan Skogar
- Academy for Health and Care (FUTURUM), Region Jönköping County, Jönköping; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Johan Lokk
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
Time-dependent increases of local metabolic or blood flow rates have been described in spinal cord and brain during acute and chronic pain states in experimental animals, in parallel with changes of different behavioral endpoints of pain and hyperalgesia. In healthy human volunteers, pain intensity-related hemo-dynamic changes have been identified in a widespread, bilateral brain system including parietal, insular, cingulate, and frontal cortical areas, as well as thalamus, amygdala, and midbrain. Specific patterns of activity may characterize hyperalgesic states and some chronic pain conditions. Forebrain nociceptive systems are under inhibitory control by endogenous opioids and can be affected by acute administration of [.proportional]-opioid receptor agonists. Anticipation of pain may in itself induce changes in brain nociceptive networks. Moreover, pain-related cortical activity can be modulated by hypnotic suggestions, focusing or diverting attention, and placebo. These findings begin to disclose the spatio-temporal dynamics of brain networks underlying pain perception and modulation.
Collapse
Affiliation(s)
- Carlo A Porro
- Dip. Scienze e Tecnologie Biomediche, University di Udine, Italy.
| |
Collapse
|
8
|
Cury R, Galhardoni R, Fonoff E, Perez Lloret S, dos Santos Ghilardi M, Barbosa E, Teixeira M, Ciampi de Andrade D. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms. Eur J Pain 2015; 20:151-65. [DOI: 10.1002/ejp.745] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2015] [Indexed: 01/07/2023]
Affiliation(s)
- R.G. Cury
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - R. Galhardoni
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - E.T. Fonoff
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - S. Perez Lloret
- Laboratory of Clinical Pharmacology and Epidemiology; Catholic University; Buenos Aires Argentina
| | | | - E.R. Barbosa
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - M.J. Teixeira
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Movement Disorders Group; Department of Neurology; University of São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
- Neurosurgery Division; Department of Neurology; University of São Paulo; São Paulo Brazil
| | - D. Ciampi de Andrade
- Pain Center; Department of Neurology; University of São Paulo; São Paulo Brazil
- Pain Center; Instituto do Câncer do Estado de São Paulo; São Paulo Brazil
- Transcranial Magnetic Stimulation Laboratory; Psychiatry Institute; University of São Paulo; São Paulo Brazil
| |
Collapse
|
9
|
Rossaneis A, Genaro K, Dias Q, Guethe L, Fais R, Del Bel E, Prado W. Descending mechanisms activated by the anterior pretectal nucleus initiate but do not maintain neuropathic pain in rats. Eur J Pain 2014; 19:1148-57. [DOI: 10.1002/ejp.638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A.C. Rossaneis
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - K. Genaro
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - Q.M. Dias
- Oswaldo Cruz Foundation; Fiocruz Rondônia; Brazil
| | - L.M. Guethe
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - R.S. Fais
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - E.A. Del Bel
- Department of Morphology, Estomatology and Physiology; Faculty of Odontology of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - W.A. Prado
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
10
|
Wang G, Erpelding N, Davis KD. Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain 2014; 155:755-763. [DOI: 10.1016/j.pain.2014.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/23/2013] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
|
11
|
Silva ML, Silva JR, Prado WA. Analgesia induced by 2- or 100-Hz electroacupuncture in the rat tail-flick test depends on the anterior pretectal nucleus. Life Sci 2013; 93:742-54. [DOI: 10.1016/j.lfs.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/14/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022]
|
12
|
|
13
|
Rossaneis AC, Reis GM, Prado WA. Stimulation of the occipital or retrosplenial cortex reduces incision pain in rats. Pharmacol Biochem Behav 2011; 100:220-7. [DOI: 10.1016/j.pbb.2011.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
14
|
Zhao F, Welsh D, Williams M, Coimbra A, Urban MO, Hargreaves R, Evelhoch J, Williams DS. fMRI of pain processing in the brain: a within-animal comparative study of BOLD vs. CBV and noxious electrical vs. noxious mechanical stimulation in rat. Neuroimage 2011; 59:1168-79. [PMID: 21856430 DOI: 10.1016/j.neuroimage.2011.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
Abstract
This study aims to identify fMRI signatures of nociceptive processing in whole brain of anesthetized rats during noxious electrical stimulation (NES) and noxious mechanical stimulation (NMS) of paw. Activation patterns for NES were mapped with blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) fMRI, respectively, to investigate the spatially-dependent hemodynamic responses during nociception processing. A systematic evaluation of fMRI responses to varying frequencies of electrical stimulus was carried out to optimize the NES protocol. Both BOLD and CBV fMRI showed widespread activations, but with different spatial characteristics. While BOLD and CBV showed well-localized activations in ipsilateral dorsal column nucleus, contralateral primary somatosensory cortex (S1), and bilateral caudate putamen (CPu), CBV fMRI showed additional bilateral activations in the regions of pons, midbrain and thalamus compared to BOLD fMRI. CBV fMRI that offers higher sensitivity compared to BOLD was then used to compare the nociception processing during NES and NMS in the same animal. The activations in most regions were similar. In the medulla, however, NES induced a robust activation in the ipsilateral dorsal column nucleus while NMS showed no activation. This study demonstrates that (1) the hemodynamic response to nociception is spatial-dependent; (2) the widespread activations during nociception in CBV fMRI are similar to what have been observed in (14)C-2-deoxyglucose (2DG) autoradiography and PET; (3) the bilateral activations in the brain originate from the divergence of neural responses at supraspinal level; and (4) the similarity of activation patterns suggests that nociceptive processing in rats is similar during NES and NMS.
Collapse
Affiliation(s)
- Fuqiang Zhao
- Imaging Department, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Reis GM, Rossaneis AC, Silveira JWS, Dias QM, Prado WA. Stimulation-Produced Analgesia From the Occipital or Retrosplenial Cortex of Rats Involves Serotonergic and Opioid Mechanisms in the Anterior Pretectal Nucleus. THE JOURNAL OF PAIN 2011; 12:523-30. [DOI: 10.1016/j.jpain.2010.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
16
|
Summers PE, Iannetti GD, Porro CA. Functional exploration of the human spinal cord during voluntary movement and somatosensory stimulation. Magn Reson Imaging 2010; 28:1216-24. [PMID: 20573462 DOI: 10.1016/j.mri.2010.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/21/2010] [Accepted: 05/08/2010] [Indexed: 11/30/2022]
Abstract
Demonstrations of the possibility of obtaining functional information from the spinal cord in humans using functional magnetic resonance imaging (fMRI) have been growing in number and sophistication, but the technique and the results that it provides are still perceived by the scientific community with a greater degree of scepticism than fMRI investigations of brain function. Here we review the literature on spinal fMRI in humans during voluntary movements and somatosensory stimulation. Particular attention is given to study design, acquisition and statistical analysis of the images, and to the agreement between the obtained results and existing knowledge regarding spinal cord anatomy and physiology. A striking weakness of many spinal fMRI studies is the use of small numbers of subjects and of time-points in the acquired functional image series. In addition, spinal fMRI is characterised by large physiological noise, while the recorded functional responses are poorly characterised. For all these reasons, spinal fMRI experiments risk having low statistical power, and few spinal fMRI studies have yielded physiologically relevant information. Thus, while available evidence indicates that spinal fMRI is feasible, we are only approaching the stage at which the technique can be considered to have been rigorously established as a viable means of noninvasively investigating spinal cord functioning in humans.
Collapse
Affiliation(s)
- Paul E Summers
- Dipartimento di Scienze Biomediche, Univ. Modena e Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|
17
|
Suri M, Jain S, Mathur R. Pattern of biphasic response to various noxious stimuli in rats ingesting sucrose ad libitum. Physiol Behav 2010; 101:224-31. [PMID: 20580642 DOI: 10.1016/j.physbeh.2010.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 04/07/2010] [Accepted: 05/04/2010] [Indexed: 11/18/2022]
Abstract
Sucrose ingestion is reported to produce an initial (20-30min) analgesia and late (<5h) hyperalgesia. However, the influence of the characteristics of noxious stimuli and sweet substances on the pattern of transition from analgesia to hyperalgesia is not known. Therefore, we investigated the effect of sucrose (20%, sucrose fed group), saccharin (0.1%, saccharin fed group) and water ingestion (control group) on pain responses to various noxious stimuli for 5h. Latency of motor response of tail (TFL), paws to noxious thermal stimuli, threshold for elicitation of motor responses to electrical stimulation of tail nociceptive afferents in 5 sessions (0, 0.25, 1, 3 and 5h) and pain-related behavior to tonic noxious stimulus in 3 sessions at 1, 3 and 5h were recorded. In sucrose fed rats as compared to controls, the TFL sequentially increased (9.29+/-0.47s from 8.41+/-0.25; p<0.01), recovered to base-line and decreased (6.61+/-0.61sec; p<0.0001) in sessions II, III and V indicating analgesia, eualgesia and hyperalgesia, respectively. In saccharin fed rats the initial analgesia extended until session III followed by eualgesia and hyperalgesia in sessions IV and V. Pain related behaviour to tonic noxious stimulus also indicated an initial analgesia (0-5min), intermediate eualgesia and late hyperalgesia (3-5h) in sucrose fed rats, whereas only analgesia in saccharin fed rats. The results of our study suggest that sucrose ingestion for 5h leads to a bi-phasic response to both phasic and tonic noxious stimuli, albeit there are variations in their durations. Therefore, the temporal relationship of the nociceptive responses to palatable food is a function of the stimulus quality of both.
Collapse
Affiliation(s)
- M Suri
- Neurophysiology Laboratory, Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-29, India
| | | | | |
Collapse
|
18
|
Borsook D, Upadhyay J, Chudler EH, Becerra L. A key role of the basal ganglia in pain and analgesia--insights gained through human functional imaging. Mol Pain 2010; 6:27. [PMID: 20465845 PMCID: PMC2883978 DOI: 10.1186/1744-8069-6-27] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/13/2010] [Indexed: 01/18/2023] Open
Abstract
The basal ganglia (BG) are composed of several nuclei involved in neural processing related to the execution of motor, cognitive and emotional activities. Preclinical and clinical data have implicated a role for these structures in pain processing. Recently neuroimaging has added important information on BG activation in conditions of acute pain, chronic pain and as a result of drug effects. Our current understanding of alterations in cortical and sub-cortical regions in pain suggests that the BG are uniquely involved in thalamo-cortico-BG loops to integrate many aspects of pain. These include the integration of motor, emotional, autonomic and cognitive responses to pain.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
19
|
Reis GM, Dias QM, Silveira JWS, Del Vecchio F, Garcia-Cairasco N, Prado WA. Antinociceptive effect of stimulating the occipital or retrosplenial cortex in rats. THE JOURNAL OF PAIN 2010; 11:1015-26. [PMID: 20418174 DOI: 10.1016/j.jpain.2010.01.269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 11/15/2022]
Abstract
UNLABELLED A role for the occipital or retrosplenial cortex in nociceptive processing has not been demonstrated yet, but connections from these cortices to brain structures involved in descending pain-inhibitory mechanisms were already demonstrated. This study demonstrated that the electrical stimulation of the occipital or retrosplenial cortex produces antinociception in the rat tail-flick and formalin tests. Bilateral lesions of the dorsolateral funiculus abolished the effect of cortical stimulation in the tail-flick test. Injection of glutamate into the same targets was also antinociceptive in the tail-flick test. No rats stimulated in the occipital or retrosplenial cortex showed any change in motor performance on the Rota-rod test, or had epileptiform changes in the EEG recording during or up to 3 hours after stimulation. The antinociception induced by occipital cortex stimulation persisted after neural block of the retrosplenial cortex. The effect of retrosplenial cortex stimulation also persisted after neural block of the occipital cortex. We conclude that stimulation of the occipital or retrosplenial cortex in rats leads to antinociception activating distinct descending pain-inhibitory mechanisms, and this is unlikely to result from a reduced motor performance or a postictal phenomenon. PERSPECTIVE This study presents evidence that stimulation of the retrosplenial or occipital cortex produces antinociception in rat models of acute pain. These findings enhance our understanding of the role of the cerebral cortex in control of pain.
Collapse
Affiliation(s)
- Glaucia Melo Reis
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Murray PD, Masri R, Keller A. Abnormal anterior pretectal nucleus activity contributes to central pain syndrome. J Neurophysiol 2010; 103:3044-53. [PMID: 20357063 DOI: 10.1152/jn.01070.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Central pain syndrome (CPS) is a debilitating condition that affects a large number of patients with a primary lesion or dysfunction in the CNS, most commonly due to spinal cord injury, stroke, and multiple sclerosis lesions. The pathophysiological processes underlying the development and maintenance of CPS are poorly understood. We have recently shown, in an animal model of CPS, that neurons in the posterior thalamic nucleus (PO) have increased spontaneous and evoked activity. We also demonstrated that these changes are due to suppressed inhibitory inputs from the zona incerta (ZI). The anterior pretectal nucleus (APT) is a diencephalic nucleus that projects on both the PO and ZI, suggesting that it might be involved in the pathophysiology of CPS. Here we test the hypothesis that CPS is associated with abnormal APT activity by recording single units from APT in anesthetized rats with CPS resulting from spinal cord lesions. The firing rate of APT neurons was increased in spinal-lesioned animals, compared with sham-operated controls. This increase was due to a selective increase in firing of tonic neurons that project to and inhibit ZI and an increase in bursts in fast bursting and slow rhythmic neurons. We also show that, in normal animals, suppressing APT results in increased PO spontaneous activity and evoked responses in a subpopulation of PO neurons. Taken together, these findings suggest that APT regulates ZI inputs to PO and that enhanced APT activity during CPS contributes to the abnormally high activity of PO neurons in CPS.
Collapse
Affiliation(s)
- Peter D Murray
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
21
|
|
22
|
Silva ML, Silva JRT, Prado WA. The integrity of the anterior pretectal nucleus and dorsolateral funiculus is necessary for electroacupuncture-induced analgesia in the rat tail-flick test. Eur J Pain 2009; 14:249-54. [PMID: 19560380 DOI: 10.1016/j.ejpain.2009.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 04/29/2009] [Accepted: 05/14/2009] [Indexed: 11/26/2022]
Abstract
Previous studies have indicated that the anterior pretectal nucleus (APtN) is implicated in pathways that descend through the dorsolateral funiculus (DLF) to modulate nociceptive inputs in the spinal dorsal horn. The activation of descending inhibitory mechanisms also seems to be involved in electroacupuncture (EA)-induced analgesia. This study utilized the tail-flick test to examine the changes produced by DLF lesion or injection of 2% lidocaine into the APtN in the analgesia induced by 2 or 100 Hz EA applied to the Zusanli (ST36) and Sanyinjiao (SP6) acupoints in lightly anesthetized rats. Tail-flick latency was significantly increased by EA, the effect of 2 Hz EA lasting longer than that produced by 100 Hz EA. The effect of either 2 or 100 Hz EA did not occur in DLF lesion rats. The effect of 2 Hz EA did not occur in rats with neural block of the whole or dorsal APtN. In contrast, the effect of 100 Hz EA was reduced in rats with neural block of the whole APtN, but remained unchanged in rats with neural block of the dorsal APtN. We thus conclude that the integrity of the APtN and DLF is necessary for EA-induced analgesia in the rat tail-flick test. In addition, the integrity of the dorsal APtN is necessary for the analgesic effect of 2 but not 100 Hz EA.
Collapse
Affiliation(s)
- Marcelo L Silva
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto-USP, Av. Bandeirantes 3900, CEP 14049-900, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
23
|
Rosenow JM. Physiology and Pathophysiology of Chronic Pain. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Anatomy of the Nervous System. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Insular cortex representation of dynamic mechanical allodynia in trigeminal neuropathic rats. Neurobiol Dis 2009; 33:89-95. [DOI: 10.1016/j.nbd.2008.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/25/2008] [Accepted: 09/14/2008] [Indexed: 11/24/2022] Open
|
26
|
Hjornevik T, Jacobsen LM, Qu H, Bjaalie JG, Gjerstad J, Willoch F. Metabolic plasticity in the supraspinal pain modulating circuitry after noxious stimulus-induced spinal cord LTP. Pain 2008; 140:456-464. [PMID: 19004552 DOI: 10.1016/j.pain.2008.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 09/09/2008] [Accepted: 09/24/2008] [Indexed: 02/01/2023]
Abstract
It has been suggested that spinal cord long-term potentiation (LTP) may contribute to hypersensitivity and hyperalgesia. We have investigated if noxious stimulus-induced spinal cord LTP might have a long lasting effect on supraspinal neuronal activity. First, we verified that spinal LTP was induced by electrical high frequency stimuli (HFS) conditioning applied to the sciatic nerve. The C-fibre response in the dorsal horn reached a twofold increase 150 min after HFS (t-test, p<0.01, n=6). Then, to study the metabolic supraspinal activity following the same stimulation protocol, we used small animal positron emission tomography (PET) and the glucose analog [(18)F]-fluorodeoxyglucose (FDG). With this combined approach we measured changes in regional supraspinal activity at two time points in HFS conditioned and in sham animals; acute (immediately after HFS/sham, n=4) and late phase (150 min after HFS/sham, n=10). Comparisons between HFS and sham groups revealed that induction of spinal LTP was followed by an acute metabolic response in the primary somatosensory cortex (S1), but also various slower metabolic adaptations in brain regions involved in modulation of nociceptive signaling and descending inhibition, i.e., amygdala, periaqueductal gray (PAG), rostral ventromedial medulla (RVM), and the dorsolateral pontomesencephalic tegmentum (DLPT) (t-test, p<0.05). The study demonstrates that PET may be used as an in vivo method to study regional brain metabolic activity between different conditions. It is concluded that noxious sciatic stimuli which induce spinal cord LTP also affect supraspinal metabolic activity. We suggest that these changes might illustrate a supraspinal maladaptive dysfunction involved in pain hypersensitivity and hyperalgesia.
Collapse
Affiliation(s)
- Trine Hjornevik
- Centre for Molecular Biology and Neuroscience & Institute of Basic Medical Sciences, University of Oslo, Norway National Institute of Occupational Health, Norway Department of Molecular Biosciences, University of Oslo, Norway Department of Radiology, Aker University Hospital, Norway
| | | | | | | | | | | |
Collapse
|
27
|
Martin TJ, Ewan E. Chronic pain alters drug self-administration: implications for addiction and pain mechanisms. Exp Clin Psychopharmacol 2008; 16:357-66. [PMID: 18837632 PMCID: PMC3788584 DOI: 10.1037/a0013597] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review article focuses on the impact that the presence of pain has on drug self-administration in rodents, and the potential for using self-administration to study both addiction and pain, as well as their interaction. The literature on the effects of noxious input to the brain on both spinal and supraspinal neuronal activity is reviewed as well as the evidence that human and rodent neurobiology is affected similarly by noxious stimulation. The convergence of peripheral input to somatosensory systems with limbic forebrain structures is briefly discussed in the context of how the activity of one system may influence activity within the other system. Finally, the literature on how pain influences drug-seeking behaviors in rodents is reviewed, with a final discussion of how these techniques might be able to contribute to the development of novel analgesic treatments that minimize addiction and tolerance.
Collapse
Affiliation(s)
- Thomas J Martin
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
28
|
Villarreal CF, Prado WA. Modulation of persistent nociceptive inputs in the anterior pretectal nucleus of the rat. Pain 2007; 132:42-52. [PMID: 17350762 DOI: 10.1016/j.pain.2007.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 01/11/2007] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
Abstract
The anterior pretectal nucleus (APtN) participates in nociceptive and antinociceptive mechanisms. Drugs were injected into the ventral APtN to evaluate how intrinsic mechanisms interact in the nucleus during persistent allodynia produced by a surgical incision in a rat hind paw. Naloxone (1 and 10 ng/0.08 microl), methysergide (0.037 and 3.7 ng/0.08 microl) or atropine (0.1 and 10 ng/0.08 microl) increased the allodynia. The effect of methysergide was intensified by naloxone or atropine, the effect of atropine was intensified by naloxone or methysergide, but the effect of naloxone was not changed by methysergide or atropine. DAMGO (1.5 microg/0.08 microl), oxotremorine (5 microg/0.08 microl) or serotonin (5 microg/0.08 microl) reduced the allodynia. The effect of DAMGO was less intense in methysergide-treated rats but was not changed in atropine-treated rats, the effect of serotonin was not changed by naloxone or atropine, and the effect of oxotremorine was not changed by naloxone or methysergide. Baclofen (150 ng/0.08 microl) increased, whereas phaclofen (300 ng/0.1 microl) reduced the allodynia. Bicuculline (50 ng/0.08 microl) increased the incision pain, while muscimol (50 ng/0.08 microl) did not change it. Phaclofen was inhibited by methysergide but was unchanged by atropine. The effect of DAMGO was reduced by phaclofen (100 ng/0.1 microl). We interpret these results as indicative that noxious inputs utilize cholinergic and serotonergic pathways in the vAPtN for the activation of descending pain control mechanisms, the serotonergic pathway being under the control of GABAergic neurons which, in turn, are modulated negatively by opioid nerve terminals.
Collapse
Affiliation(s)
- Cristiane Flora Villarreal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto-USP, Av. Bandeirantes 3900, CEP 14049-900 Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
29
|
Bender T, Nagy G, Barna I, Tefner I, Kádas E, Géher P. The effect of physical therapy on beta-endorphin levels. Eur J Appl Physiol 2007; 100:371-82. [PMID: 17483960 DOI: 10.1007/s00421-007-0469-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
Beta-endorphin (betaE) is an important reliever of pain. Various stressors and certain modalities of physiotherapy are potent inducers of the release of endogenous betaE to the blood stream. Most forms of exercise also increase blood betaE level, especially when exercise intensity involves reaching the anaerobic threshold and is associated with the elevation of serum lactate level. Age, gender, and mental activity during exercise also may influence betaE levels. Publications on the potential stimulating effect of manual therapy and massage on betaE release are controversial. Sauna, mud bath, and thermal water increase betaE levels through conveying heat to the tissues. The majority of the techniques for electrical stimulation have a similar effect, which is exerted both centrally and--to a lesser extent--peripherally. However, the parameters of electrotherapy have not yet been standardised. The efficacy of analgesia and the improvement of general well-being do not necessarily correlate with betaE level. Although in addition to blood, increased brain and cerebrospinal fluid betaE levels are also associated with pain, the majority of studies have concerned blood betaE levels. In general, various modalities of physical therapy might influence endorphin levels in the serum or in the cerebrospinal fluid--this is usually manifested by elevation with potential mitigation of pain. However, a causal relationship between the elevation of blood, cerebrospinal fluid or brain betaE levels and the onset of the analgesic action cannot be demonstrated with certainty.
Collapse
Affiliation(s)
- Tamás Bender
- Polyclinic of Hospitaller Brothers of St. John of God, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
30
|
Lowe AS, Beech JS, Williams SCR. Small animal, whole brain fMRI: innocuous and nociceptive forepaw stimulation. Neuroimage 2006; 35:719-28. [PMID: 17300960 DOI: 10.1016/j.neuroimage.2006.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/23/2022] Open
Abstract
Supra-spinal pain processing involves a number of extensive networks. An examination of these networks using small animal functional magnetic resonance imaging (fMRI) is difficult. While prior studies have successfully delineated regions consistent with known pain processing pathways, they have been restricted to acquisitions of limited spatial extent with coarse in-plane resolution to achieve a high temporal resolution. An isotropic, whole brain fMRI protocol has been developed for the examination of the supra-spinal consequences of innocuous and nociceptive electrical stimulation of the rat forepaw. Innocuous electrical stimulation of the rat forepaw delineated BOLD contrast responses consistent with known somatosensory processing pathways (contralateral primary somatosensory cortex (S1), a region consistent with secondary somatosensory cortex, the ventral posterolateral thalamic nucleus and ipsilateral cuneate nucleus), providing face validity for the technique. The putative noxious stimulus delineated additional regions consistent with the classical lateral and medial pain systems as well as secondarily associated areas: the aversion and descending inhibition systems. These included the ipsilateral inferior colliculus, anterior pretectal nucleus, mediodorsal thalamic nucleus, with regions in the pre-frontal, cingulated, ventral orbital and infra-limbic cortices, nucleus accumbens all exhibiting negative BOLD changes. Such regions are in agreement with, and extend, those previously reported. Acquisition, post-processing and analysis methodologies undertaken in this study constitute a marked extension of previous fMRI in the rat, enabling whole brain coverage at a spatial resolution sufficient to delineate regional changes in BOLD contrast consistent with somatosensory and nociceptive networks.
Collapse
Affiliation(s)
- Andrew S Lowe
- Experimental Neuroimaging Group, University Laboratory of Physiology, Anatomy and Genetics, Sherrington Building, Parks Road, Oxford, OX1 3PT, UK.
| | | | | |
Collapse
|
31
|
Huang J, Chang JY, Woodward DJ, Baccalá LA, Han JS, Wang JY, Luo F. Dynamic neuronal responses in cortical and thalamic areas during different phases of formalin test in rats. Exp Neurol 2006; 200:124-34. [PMID: 16603156 DOI: 10.1016/j.expneurol.2006.01.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 11/29/2022]
Abstract
Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the forebrain neural basis underlying each phase of behavior in formalin test has not yet been clarified. The present study was designed to investigate the cortical and thalamic neuronal responses and interactions among forebrain areas during different phases after subcutaneous injection of formalin. Formalin-induced neuronal activities were simultaneously recorded from primary somatosensory cortex (SI), anterior cingulate cortex (ACC) and medial dorsal (MD) and ventral posterior (VP) thalamus during different phases (i.e., first phase, interphase, second phase and third recovery phase starting from 70 min after injection) of formalin test, using a multi-channel, single-unit recording technique. Our results showed that, (i) unlike the responses in primary afferent fibers and spinal dorsal horn, many forebrain neurons displayed monophasic excitatory responses in the first hour after formalin injection, except a small portion of neurons which exhibited biphasic responses; (ii) the response patterns of many cortical and thalamic neurons changed from excitatory to inhibitory at the end of the second phase; (iii) the direction of information flow also changed dramatically, i.e., from cortex to thalamus and from the medial to the lateral pathway in the first hour, but reversed in phase 3. These results indicate that the changes of activity pattern in forebrain networks may underlie the emerging and subsiding of central sensitization-induced pain behavior in the second phase of formalin test.
Collapse
Affiliation(s)
- Jin Huang
- Neuroscience Research Institute, Peking University Health Science Center, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Porro CA, Lui F. Functional activity mapping of brainstem nociceptive networks in animals. ACTA ACUST UNITED AC 2006; 58:38-51. [PMID: 16623321 DOI: 10.1016/s1567-424x(09)70058-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Carlo Adolfo Porro
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
33
|
Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. Imaging of hyperalgesia in rats by functional MRI. Eur J Pain 2006; 11:109-19. [PMID: 16517192 DOI: 10.1016/j.ejpain.2006.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 01/12/2006] [Accepted: 01/27/2006] [Indexed: 11/17/2022]
Abstract
Cerebral activation in response to sequences of temperature boosts at the hindpaw was observed in functional magnetic resonance imaging (fMRI) experiments in isoflurane anesthetized rats. Cingulate, retrosplenial, sensory-motor and insular cortex, medial and lateral posterior thalamic nuclei, pretectal area, hypothalamus and periaqueductal gray were the most consistently, often bilaterally activated regions. With the same experimental paradigm, activity changes in the brain following subcutaneous zymosan injection into one hindpaw were detected. These changes developed over time (up to 4h) in parallel with the temporal development of hyperalgesia shown by a modified Hargreaves test, thus reflecting processes of peripheral and central sensitization. When the heat stimuli were applied to the inflamed paw, the hyperalgesia manifested itself as a volume increase of the activated areas and/or an enhanced functional blood oxygenation level dependent (BOLD) signal in all the above-mentioned brain regions. Enhanced BOLD signals were also observed in response to stimulation of the contralateral non-injected paw. They were significant in higher associative regions and more pronounced in output-related than in input-related brain structures. This indicates additional sensitization processes in the brain, which we named cerebral sensitization. Long lasting zymosan-induced hyperalgesia could be monitored with high resolution fMRI in rats under isoflurane anaesthesia. This technique may provide an effective method for testing new analgesics and studying structure specific pain processing.
Collapse
Affiliation(s)
- Andreas Hess
- Department of Experimental and Clinical Pharmacology and Toxicology, Institute for Pharmacology and Toxicology, Fahrstrasse 17, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
34
|
Abstract
In this paper, the relationships between neural mechanisms of persistent pain and the neural representations of these conditions in the human and animal brain will be reviewed. Animal models of chronic pain, such as the sciatic nerve constrictive injuries, are accompanied by somatotopically organized increases in several pain-related areas of the brain. Recent human brain imaging studies utilizing functional magnetic resonance imaging and positron emission tomography have elucidated the cerebral representations of visceral and somatic hypersensitivity. Both forms of hypersensitivity are represented in similar brain regions that are activated during acute pain, yet have a more extensive or intense cerebral representation. This suggests that these somatic and visceral hyperalgesic states may be represented by increased activity in the same cerebral pathways and centers that are involved in nociceptive stimuli in normal individuals. Hyperalgesic states during clinically relevant pain are especially reflected in brain areas such as the anterior cingulate and prefrontal cortical regions.
Collapse
Affiliation(s)
- G Nicholas Verne
- Malcom Randall VA Medical Center, 1601 SW Archer Road, Gainesville, FL 32608, USA.
| | | | | |
Collapse
|
35
|
Shah YB, Haynes L, Prior MJW, Marsden CA, Morris PG, Chapman V. Functional magnetic resonance imaging studies of opioid receptor-mediated modulation of noxious-evoked BOLD contrast in rats. Psychopharmacology (Berl) 2005; 180:761-73. [PMID: 15778889 DOI: 10.1007/s00213-005-2214-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 02/11/2005] [Indexed: 01/29/2023]
Abstract
RATIONALE Functional magnetic resonance imaging (fMRI) in rats can non-invasively identify brain regions activated by physiological stimuli and the effects of pharmacological intervention on these responses. OBJECTIVES This study was conducted to investigate the effects of systemic administration of the mu-opioid receptor agonist morphine on whole brain functional signal intensity in anaesthetised rats; to investigate whether pre-treatment with the opioid receptor antagonist naloxone blocks the effects of morphine; to determine whether pre-treatment with morphine attenuates noxious-evoked changes in whole brain functional signal intensity. METHODS Continuous whole brain fMRI scanning was used to study brain signal intensity prior to, and following, systemic administration of morphine (5 mg/kg, n=7), systemic administration of naloxone (1 mg/kg) and morphine (n=8). Effects of pre-treatment with saline (n=5) or morphine (5 mg/kg, n=5) on formalin (5%, intraplantar)-evoked changes in signal intensity were determined. Data were processed using SMP99 with fixed-effects analysis (p<0.05). RESULTS Morphine produced significant positive bilateral increases in signal intensity in the cingulate cortex, amygdala, thalamus, hypothalamus and PAG (p<0.05), and these effects were blocked by naloxone. Intraplantar injection of formalin produced a significant positive increase in signal intensity in the cingulate cortex, somatosensory cortex, amygdala, thalamus, hypothalamus and PAG (p<0.05). Morphine attenuated formalin-evoked increases in signal intensity in the PAG, amygdala, hypothalamus and cingulate cortex. CONCLUSION Our data demonstrate that morphine modulates noxious-evoked changes in signal intensity in discrete brain regions. fMRI studies in rats are able to identify specific brain regions involved in the pharmacological modification of physiologically evoked changes in regional brain activation.
Collapse
Affiliation(s)
- Y B Shah
- E. Floor Medical School, School of Biomedical Sciences, Sir Peter Mansfield Centre of Magnetic Resonance, University of Nottingham, Nottingham, NG72UH, UK
| | | | | | | | | | | |
Collapse
|
36
|
Costa-García M, Nuñez A. Nociceptive stimuli induce changes in somatosensory responses of rat dorsal column nuclei neurons. Brain Res 2004; 1025:169-76. [PMID: 15464757 DOI: 10.1016/j.brainres.2004.07.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
Accumulating evidence suggest that the dorsal column nuclei (DCN) neurons play a role in nociception. To evaluate DCN neuronal responses to nociceptive stimuli, unit recordings were performed in urethane-anesthesized rats. Neurons selected for this analysis displayed a low spontaneous firing rate and some of them were antidromically activated by electrical stimulation of the ventral posterolateral thalamic nucleus. Formalin injections into receptive fields (RFs) of DCN cells, or applications of short-lasting and long-lasting thermal nociceptive stimuli were used. DCN neurons displayed smaller responses when long-lasting nociceptive thermal stimuli were applied to their RFs in comparison with values obtained from the innocuous cutaneous stimulation (5.2+/-1.0 and 4.0+/-0.6 spikes/stimuli, respectively; p=0.02). Formalin also decreased the responses to innocuous cutaneous stimuli when these stimuli were applied to the formalin injection site (2.6+/-0.3 spikes/stimuli in control conditions and 1.8+/-0.3 spikes/stimuli 20 min after formalin; p=0.002). In contrast, responses to sensory stimuli applied at the periphery of the RF after formalin injection increased (2.2+/-0.2 to 2.8+/-0.3 spikes/stimuli; p=0.005). In some cases, DCN neurons expanded their RF. Fiber input to the DCN did not modify their somatosensory responses when nociceptive stimuli were applied. Results demonstrate that thermal and formalin nociceptive stimuli modify the somatosensory responses of DCN neurons. Thus, decreasing somatosensory responses at the pain induction site or the generation of allodynia may be due to the activity of DCN neurons.
Collapse
Affiliation(s)
- Miguel Costa-García
- Departamento de Morfologia, Facultad de Medicina, Universidad Autonoma de Madrid, Arzobispo Morcillo 4, Madrid 28029, Spain
| | | |
Collapse
|
37
|
Villarreal CF, Kina VAV, Prado WA. Antinociception induced by stimulating the anterior pretectal nucleus in two models of pain in rats. Clin Exp Pharmacol Physiol 2004; 31:608-13. [PMID: 15479168 DOI: 10.1111/j.1440-1681.2004.04057.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. This study examined whether different parts of the rat anterior pretectal nucleus (APtN) may be involved in the spinal control of brief (tail flick test) or persistent (surgical incision of the plantar aspect of a hind paw) noxious inputs via activation of descending pathways. 2. We have confirmed that stimulation of the dorsal APtN produces a strong antinociceptive effect in the tail flick test, as opposed to a very weak effect obtained from the ventral APtN. Stimulation at the ventral APtN was the most effective part of the nucleus against a persistent incisional pain. 3. The incisional pain was significantly increased following injection of 1 or 2% lignocaine (0.25 microL) into the nucleus, but the effect was more intense after neural block of the ventral rather than the dorsal APtN. Injection of 2% lignocaine (0.10 microL) into the ventral, but not dorsal, APtN significantly increased the perception of the incisional pain. 4. We conclude that the effect of stimulating the APtN depends on the site of stimulation and model of pain used. Sustained noxious stimuli activate pathways from the ventral APtN to reduce further noxious spinal inputs. The noxious stimulation produced during the tail flick test may be not enough to activate the same circuitry, but electrical stimulation at the dorsal APtN is very effective in inhibiting brief thermal noxious inputs at the spinal level.
Collapse
Affiliation(s)
- Cristiane F Villarreal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
38
|
Porro CA, Cavazzuti M, Giuliani D, Vellani V, Lui F, Baraldi P. Effects of ketamine anesthesia on central nociceptive processing in the rat: a 2-deoxyglucose study. Neuroscience 2004; 125:485-94. [PMID: 15062990 DOI: 10.1016/j.neuroscience.2004.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2004] [Indexed: 02/03/2023]
Abstract
Ketamine is a dissociative anesthetic with complex actions on the CNS. We investigated here the effects of ketamine anesthesia on somatosensory processing in the rat spinal cord, thalamus, and cerebral cortex, using the quantitative 2-deoxyglucose mapping technique. Unanesthetized or ketamine-anesthetized male Sprague-Dawley rats received a s.c. injection of a dilute formaldehyde solution (5%, 0.08 ml) into a forepaw, inducing prolonged noxious afferent input, or an equal volume of isotonic saline as a control stimulus. The 2-deoxyglucose experiments started 30 min after the injection. In the cervical enlargement of the spinal cord, ketamine had no significant effect on glucose metabolic rates in saline-injected animals, whereas it prevented the metabolic increases elicited by prolonged noxious stimulation in unanesthetized animals. At the thalamic level, ketamine increased glucose uptake in both saline- and formalin-injected rats in the lateral posterior, lateral dorsal, medial dorsal, gelatinosus, antero-ventral and antero-medial thalamic nuclei, whereas it decreased metabolic activity in the ventro-basal complex. At the cortical level, the drug increased metabolic activity in both control and formalin groups in the lacunosus-molecularis layer of the dorsal hippocampus, posterior parietal, retrosplenial, cingulate and frontal cortex; significant metabolic decreases were found in the CA1 region of the dorsal hippocampus and in the parietal 1 and 2 cortical areas. In the investigated brain regions, ketamine did not abolish noxious-evoked increases in glucose uptake, which were in fact enhanced in the forelimb cortex and in the lacunosus-molecularis layer of the hippocampus. The dissociation between the spinal and supraspinal effects of ketamine suggests a specific antinociceptive action on spinal circuits, in parallel with complex changes of the activity of brain circuits involved in somatosensory processing. More generally, this study shows that functional imaging techniques are able to quantitatively assess the effects of anesthetic drugs on nociceptive processing at different levels of the neuraxis.
Collapse
Affiliation(s)
- C A Porro
- Dipartimento Scienze e Tecnologie Biomediche, Università di Udine, P. le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Villarreal CF, Kina VAV, Prado WA. Participation of brainstem nuclei in the pronociceptive effect of lesion or neural block of the anterior pretectal nucleus in a rat model of incisional pain. Neuropharmacology 2004; 47:117-27. [PMID: 15165839 DOI: 10.1016/j.neuropharm.2004.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 12/18/2003] [Accepted: 03/01/2004] [Indexed: 12/28/2022]
Abstract
The anterior pretectal nucleus (APtN) participates in nociceptive process and controls spinal nociceptive inputs, and its integrity reduces the severity of the responses to persistent injury. In this study we examined whether the pedunculopontine tegmental nucleus (PPTg) or the gigantocellularis nucleus pars alpha (GiA), stations that relay APtN inputs to the spinal cord, can control the persistent pain induced by a hind paw incision in rats with disrupted APtN. The withdrawal threshold to mechanical stimulation of the incised paw measured with von Frey filaments was significantly reduced in rats with contralateral APtN lesion or neural block of this nucleus with 2% lidocaine. Intrathecal xylamine, an inhibitor of noradrenaline uptake, inhibited the neural block of the APtN-induced increase in the incisional pain. Injection of glutamate into the contralateral PPTg or ipsilateral GiA reduced the incisional pain. Neural block of the PPTg or GiA reduced the threshold, mainly in APtN-disrupted rats. We conclude that persistent noxious stimulation activates descending pathways involving the contralateral APtN and PPTg, and ipsilateral GiA. Disruption of the APtN allows the activation of alternative circuitry involving at least the PPTg and GiA as intermediary stations that might maintain the control of nociceptive inputs in the spinal cord, probably involving noradrenergic mechanisms.
Collapse
Affiliation(s)
- Cristiane F Villarreal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, USP, Rebeirao Preto, 14049-900 SP, Brazil
| | | | | |
Collapse
|
40
|
Liu JG, Rovnaghi CR, Garg S, Anand KJS. Opioid receptor desensitization contributes to thermal hyperalgesia in infant rats. Eur J Pharmacol 2004; 491:127-36. [PMID: 15140629 DOI: 10.1016/j.ejphar.2004.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 03/23/2004] [Indexed: 11/18/2022]
Abstract
Central nociceptive processing includes spinal and supraspinal neurons, but the supraspinal mechanisms mediating changes in pain threshold remain unclear. We investigated the role of forebrain neurons in capsaicin-induced hyperalgesia. Long-Evans rat pups at 21 days were randomized to undisturbed control group, or to receive tactile stimulation, saline injection (0.9% w/v) or capsaicin injection (0.01% w/v) applied to each paw at hourly intervals. Thermal paw withdrawal latency was measured 1 h later, forebrains were removed and purified forebrain neuronal membranes were assayed for adenylyl cyclase activity and opioid receptor function. Capsaicin-injected rats had decreased thermal latency (P < 0.0001) compared to the other groups. Neuronal membranes showed increased basal (P = 0.0003) and forskolin-stimulated (P=0.0002) adenylyl cyclase activity in the capsaicin group compared to other groups. The selective mu-opioid receptor agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) was less effective in inhibiting adenylyl cyclase activity in the capsaicin group (P < 0.001) compared to other groups. These effects were naloxone-reversible and pertussis toxin-sensitive (P < 0.01) in the control, tactile stimulation and saline injection groups but not in the capsaicin group. Binding capacity and affinity for micro-opioid receptors were similar in all four groups, suggesting that receptor downregulation was not involved. Exposure to DAMGO increased [35S]GTPgammaS binding to neuronal membranes from the control, tactile and saline groups (P<0.001) in a naloxone-reversible and pertussis toxin-sensitive manner (P < 0.01) but not in the capsaicin group, suggesting mu-opioid receptor desensitization. Dose responses to systemic morphine were also reduced in the capsaicin group compared to the tactile group (P < 0.05). Capsaicin-induced hyperalgesia in 21-day-old rats was associated with an uncoupling of micro-opioid receptors in the forebrain. Opioid receptor desensitization in the forebrain may reduce opioidergic inputs to the descending inhibitory controls, associated with behavioral hyperalgesia and reduced responsiveness to morphine analgesia in capsaicin-injected young rats.
Collapse
Affiliation(s)
- Jing-Gen Liu
- Pain Neurobiology Laboratory, Arkansas Children's Hospital Research Institute, 1120 Marshall Street, Little Rock, AR 72202, USA
| | | | | | | |
Collapse
|
41
|
Del Signore A, Mandillo S, Rizzo A, Di Mauro E, Mele A, Negri R, Oliverio A, Paggi P. Hippocampal gene expression is modulated by hypergravity. Eur J Neurosci 2004; 19:667-77. [PMID: 14984417 DOI: 10.1111/j.0953-816x.2004.03171.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used the cDNA microarray technique to monitor simultaneously possible changes induced by hypergravity in the expression level of thousands of hippocampal genes. We tested the mRNA level of about 5000 genes in the hippocampus of mice subjected to 1.09 g (1g) or to 1.85 g (2g) for five repeated 1-h daily rotations in a centrifuge (g = 9.81 m/s2). Data were compared with those obtained for mice kept stationary (C). The ratios 1g/C and 2g/C identified genes affected by rotation and rotation + hypergravity, respectively, whereas 2g/1g ratio identified those affected by hypergravity. We found that about 200 genes were affected by rotation and/or rotation + hypergravity. Almost all the genes affected by rotation + hypergravity were up-regulated, only five being down-regulated. The modulated genes code for proteins involved in a wide range of cellular functions (DNA/RNA metabolism, protein processing, intermediate metabolism, cytoskeleton and motility, cell cycle and apoptosis, signal transduction, neuronal structure/function), suggesting that rotation + hypergravity may affect several aspects of the hippocampal function in order to compensate for environmental changes. Six genes directly or indirectly involved in synaptic transmission and plasticity (proSAAS, neuroblastoma ras oncogene, ESTs moderately similar to thymosin beta-10, syndet, inhibin beta E and Ngfi-A binding protein 2) were found to be significantly modulated by hypergravity and unaffected or only slightly affected by rotation. The modulation by hypergravity of these genes suggests that this stimulus might induce plastic remodelling of the hippocampal circuits, possibly both at structural and functional level.
Collapse
Affiliation(s)
- A Del Signore
- Dipartimento di Biologia Cellulare e dello Sviluppo, Fondazione 'Istituto Pasteur-Fondazione Cenci Bolognetti', Università'La Sapienza', P.le Aldo Moro, 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Although much has been accomplished in the past several decades, treatment of chronic pain remains imperfect. This article presents the anatomy and physiology of the pain system along with the neurobiologic changes that occur in the establishment and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Joshua M Rosenow
- Section of Functional and Stereotactic Neurosurgery, S31, Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
43
|
Porro CA, Cavazzuti M, Lui F, Giuliani D, Pellegrini M, Baraldi P. Independent time courses of supraspinal nociceptive activity and spinally mediated behavior during tonic pain. Pain 2003; 104:291-301. [PMID: 12855340 DOI: 10.1016/s0304-3959(03)00015-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The behavioral response to acute tissue injury is usually characterized by different phases, but the brain mechanisms underlying changes in pain-related behavior over time are still poorly understood. We aimed to analyze time-dependent changes in metabolic activity levels of 49 forebrain structures in the formalin pain model, using the autoradiographic 2-deoxyglucose method in unanesthetized, freely moving rats. We examined rats during the first phase of pain-related reactions ('early' groups), or during the third recovery phase, 60 min later, when the supraspinally mediated behavioral responses were reduced ('late' group). In the early groups, metabolic rates were bilaterally increased over control values in the periaqueductal gray, zona incerta and in several thalamic nuclei (anteroventral, centrolateral, lateral dorsal, parafascicular, posteromedial, submedius, ventromedial, and ventrobasal complex), as well as in the habenulae and in the parietal, cingulate, antero-dorsal insular, and anterior piriform cortex. A contralateral, somatotopically specific activation was found in the putative hindlimb representation area of the somatosensory cortex. In the late group, noxious-induced activation declined in most structures. However, metabolic rates were higher than controls in the periaqueductal gray and zona incerta and in two other structures not previously active: the prerubral area/field of Forel and the arcuate hypothalamic nucleus. These findings provide a time-dependent functional map of nociceptive and anti-nociceptive forebrain circuits during tonic pain. The parallel decrease in licking behavior and forebrain activity, at times when spinally mediated limb flexion responses were still present, suggests that endogenous antinociceptive systems may differently modulate spinal and supraspinal nociceptive networks following acute tissue injury.
Collapse
Affiliation(s)
- Carlo A Porro
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, P.le Kolbe 4, I-33100 Udine, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Villarreal CF, Del Bel EA, Prado WA. Involvement of the anterior pretectal nucleus in the control of persistent pain: a behavioral and c-Fos expression study in the rat. Pain 2003; 103:163-74. [PMID: 12749971 DOI: 10.1016/s0304-3959(02)00449-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The anterior pretectal nucleus (APtN) participates in nociceptive processing and in the activation of central descending mechanisms of pain control. In this study we used behavioral tests (incisional pain and carrageenan-induced inflammatory pain) and c-Fos expression changes to examine the involvement of the APtN in the control of persistent pain in rats. A 1cm longitudinal incision through the skin and fascia of the plantar region (large incision), or a 0.5cm longitudinal incision through the skin only (small incision) was used, and the postoperative incisional allodynia was evaluated with von Frey filaments. The hyperalgesia produced by the intraplantar administration of carrageenan (25 or 50 microg/100 microl) into a hind paw was evaluated by a modified paw pressure test. The electrolytic lesion of the contralateral, but not ipsilateral, APtN significantly intensified the allodynia produced by a large incision of the hind paw. The incisional allodynia and the carrageenan-induced hyperalgesia were intensified by the microinjection of 2% lidocaine into the contralateral, but not ipsilateral APtN, the effect being significantly stronger when a large incision or a higher carrageenan concentration was utilized. A significant increase in the number of c-Fos positive cells was found in the ipsilateral, and mainly in the contralateral APtN of rats submitted to a large incision. The number of positive cells in the superficial or deep laminae of the contralateral spinal cord of control and incised rats was not significantly different. Positive cells in the superficial or deep laminae of the ipsilateral spinal cord were significantly more numerous than in control, the effect being significantly more intense in rats with large incision. The microinjection of 0.5% bupivacaine into the APtN contralateral to the incised hind paw reduced the number of positive cells bilaterally in the APtN, but the effect was significant in the contralateral nucleus only. The number of positive cells in the superficial and deep laminae of the contralateral spinal cord of incised and non-incised animals was not significantly changed by the neural block of the contralateral APtN. In the ipsilateral spinal cord, the incision-induced increase in the number of positive cells was significantly reduced in the superficial lamina and significantly increased in the deep lamina of animals previously treated with bupivacaine in the contralateral APtN. In conclusion, the integrity of the APtN is necessary to reduce the severity of the responses to persistent injury. The results also are in agreement with the current notion that persistent noxious inputs to the APtN tonically activate a descending mechanism that excites superficial cells and inhibits deep cells in the spinal dorsal horn.
Collapse
Affiliation(s)
- Cristiane F Villarreal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, Brazil
| | | | | |
Collapse
|
45
|
Verne GN, Price DD. Irritable bowel syndrome as a common precipitant of central sensitization. Curr Rheumatol Rep 2002; 4:322-8. [PMID: 12126584 DOI: 10.1007/s11926-002-0041-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Animal models of neuropathic pain have significantly advanced our knowledge of abnormalities in central pain processing mechanisms in chronic pain disorders. New neuroimaging techniques using functional magnetic resonance imaging and positron emission tomography scanning are beginning to provide insight into cortical participation in the processing of pain. Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders seen by physicians. Visceral hypersensitivity or decreased pain thresholds to distension of the gut is considered to be a biologic marker for IBS and is present in most patients with this gastrointestinal disorder. Patients with IBS also have many extraintestinal symptoms consistent with a central hyperalgesic state. Recent studies suggest that patients with IBS may also have cutaneous hyperalgesia similar to that seen in other chronic pain disorders such as fibromyalgia. This suggests that abnormalities of central nociceptive processing are present in IBS.
Collapse
Affiliation(s)
- G Nicholas Verne
- University of Florida, Malcolm Randall VAMC, Department of Medicine, Gastroenterology Section (IIIC), 1601 SW Archer Road, Gainesville, FL 32608-1197, USA.
| | | |
Collapse
|
46
|
Fessler DMT. Pseudoparadoxical impulsivity in restrictive anorexia nervosa: a consequence of the logic of scarcity. Int J Eat Disord 2002; 31:376-88. [PMID: 11948643 DOI: 10.1002/eat.10035] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To explain an apparently paradoxical pattern wherein sufferers of restrictive anorexia nervosa exhibit both rigorous self-restraint and episodic impulsivity. METHOD The experimental, historical, and clinical literatures were examined for evidence of psychological and behavioral changes accompanying severe dietary constriction; such changes were noted and compared with those reported to occur in anorexics. RESULTS Increased impulsivity in association with dietary constriction is described in diverse literatures. A number of lines of evidence suggest that the serotonergic system mediates this change. DISCUSSION Many forms of impulsivity can be understood as having once constituted fitness-enhancing responses to resource scarcity. It is suggested that an evolved psychological mechanism calibrates the individual's sensitivity to risk in light of future prospects. Self-injurious behaviors are explicable as misfirings of such a mechanism. Similarly, excessive exercising by anorexics may reflect the misdirection of reward systems that normally encourage adaptive increases in ranging behavior under conditions of scarcity.
Collapse
Affiliation(s)
- Daniel M T Fessler
- Department of Anthropology, UCLA, Los Angeles, California 90095-1553, USA
| |
Collapse
|
47
|
Abstract
Anticipation of pain is a complex state that may influence the perception of subsequent noxious stimuli. We used functional magnetic resonance imaging (fMRI) to study changes of activity of cortical nociceptive networks in healthy volunteers while they expected the somatosensory stimulation of one foot, which might be painful (subcutaneous injection of ascorbic acid) or not. Subjects had no previous experience of the noxious stimulus. Mean fMRI signal intensity increased over baseline values during anticipation and during actual stimulation in the putative foot representation area of the contralateral primary somatosensory cortex (SI). Mean fMRI signals decreased during anticipation in other portions of the contralateral and ipsilateral SI, as well as in the anteroventral cingulate cortex. The activity of cortical clusters whose signal time courses showed positive or negative correlations with the individual psychophysical pain intensity curve was also significantly affected during the waiting period. Positively correlated clusters were found in the contralateral SI and bilaterally in the anterior cingulate, anterior insula, and medial prefrontal cortex. Negatively correlated clusters were found in the anteroventral cingulate bilaterally. In all of these areas, changes during anticipation were of the same sign as those observed during pain but less intense ( approximately 30-40% as large as peak changes during actual noxious stimulation). These results provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input and suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors.
Collapse
|
48
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
49
|
Desbois C, Villanueva L. The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions. Neuroscience 2001; 102:885-98. [PMID: 11182250 DOI: 10.1016/s0306-4522(00)00537-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used several anatomical tracing techniques to study the organization of the lateral ventromedial thalamic nucleus in the rat, a region that is selectively activated by cutaneous nociceptive inputs from any part of the body. The lateral ventromedial thalamic projections are organized as a widespread dense band covering mainly layer I of the dorsolateral anterior-most aspect of the cortex. This band diminishes progressively as one moves caudally, disappearing completely at 1mm caudal to bregma level. These widespread projections contrast with the circumscribed projections to the deep layers of the primary somatosensory and insular cortices from the adjacent ventral posteromedial and ventroposterior parvicellular thalamic regions, respectively. Injections into the lateral part of the ventromedial thalamic nucleus of an anterograde/retrograde tracer showed that the cortical layer I areas showing the densest projections from this thalamic region also contain the greatest number of retrogradely labeled cells in cortical layers V and VI. The same injections retrogradely labeled numerous cells which were confined to the dorsal subnucleus reticularis dorsalis in an area that contains a concentration of neurons with widespread nociceptive convergence. Finally, the lateral part of the ventromedial thalamic nucleus was also differentially labeled following a topical application of tetramethylrhodamine-labeled dextran on the dorsolateral anterior cortex. These findings suggest that lateral ventromedial thalamic neurons could be part of a spino-reticulo-thalamo-cortical network that allows signals of pain from any part of the body surface to spread across widespread cortical areas.
Collapse
Affiliation(s)
- C Desbois
- INSERM, U-161, 2, Rue d'Alésia, 75014, Paris, France
| | | |
Collapse
|
50
|
Donahue RR, LaGraize SC, Fuchs PN. Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behavior in rats. Brain Res 2001; 897:131-8. [PMID: 11282366 DOI: 10.1016/s0006-8993(01)02103-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study investigated the effect of lesions of the anterior cingulate cortex (ACC) on mechanical allodynia/hyperalgesia after L5 ligation or on inflammatory nociceptive responses following formalin injection in the rat. For both the neuropathic and inflammatory pain models, three groups of animals were used. The control groups consisted of a group of sham lesioned animals and a group of animals that had unilateral damage to the ACC or unilateral/bilateral damage to surrounding cortical tissue. The third group consisted of animals that had at least 75% bilateral damage of the ACC. Subjects received L5 ligation or a 0.05-ml injection of 1% formalin into the plantar surface of the hindpaw. In contrast to the control groups, bilateral ACC lesions significantly decreased inflammatory nociceptive responses during the prolonged, tonic portion of the formalin test (20-35 min). The difference between the groups was most prevalent in the amount of time spent licking the paw. However, ACC lesions did not significantly attenuate the enhanced mechanical paw withdrawal threshold in the neuropathic nociceptive model. These results suggest a differential role of the ACC in the modulation of different types of pain conditions.
Collapse
Affiliation(s)
- R R Donahue
- Department of Psychology, University of Texas at Arlington, Box 19528, Arlington, TX 76019, USA
| | | | | |
Collapse
|