1
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
2
|
Ormerod KG, LePine OK, Bhutta MS, Jung J, Tattersall GJ, Mercier AJ. Characterizing the physiological and behavioral roles of proctolin in Drosophila melanogaster. J Neurophysiol 2016; 115:568-80. [PMID: 26538605 PMCID: PMC4760479 DOI: 10.1152/jn.00606.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/24/2015] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide proctolin (RYLPT) plays important roles as both a neurohormone and a cotransmitter in arthropod neuromuscular systems. We used third-instar Drosophila larvae as a model system to differentiate synaptic effects of this peptide from its direct effects on muscle contractility and to determine whether proctolin can work in a cell-selective manner on muscle fibers. Proctolin did not appear to alter the amplitude of excitatory junctional potentials but did induce sustained muscle contractions in preparations where the CNS had been removed and no stimuli were applied to the remaining nerves. Proctolin-induced contractions were dose-dependent, were reduced by knocking down expression of the Drosophila proctolin receptor in muscle tissue, and were larger in some muscle cells than others (i.e., larger in fibers 4, 12, and 13 than in 6 and 7). Proctolin also increased the amplitude of nerve-evoked contractions in a dose-dependent manner, and the magnitude of this effect was also larger in some muscle cells than others (again, larger in fibers 4, 12, and 13 than in 6 and 7). Increasing the intraburst impulse frequency and number of impulses per burst increased the magnitude of proctolin's enhancement of nerve-evoked contractions and decreased the threshold and EC50 concentrations for proctolin to enhance nerve-evoked contractions. Reducing proctolin receptor expression decreased the velocity of larval crawling at higher temperatures, and thermal preference in these larvae. Our results suggest that proctolin acts directly on body-wall muscles to elicit slow, sustained contractions and to enhance nerve-evoked contractions, and that proctolin affects muscle fibers in a cell-selective manner.
Collapse
Affiliation(s)
- Kiel G Ormerod
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Olivia K LePine
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - JaeHwan Jung
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Glenn J Tattersall
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - A Joffre Mercier
- Division of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
3
|
Brusich DJ, Spring AM, Frank CA. A single-cross, RNA interference-based genetic tool for examining the long-term maintenance of homeostatic plasticity. Front Cell Neurosci 2015; 9:107. [PMID: 25859184 PMCID: PMC4374470 DOI: 10.3389/fncel.2015.00107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 11/15/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) helps neurons and synapses maintain physiologically appropriate levels of output. The fruit fly Drosophila melanogaster larval neuromuscular junction (NMJ) is a valuable model for studying HSP. Here we introduce a genetic tool that allows fruit fly researchers to examine the lifelong maintenance of HSP with a single cross. The tool is a fruit fly stock that combines the GAL4/UAS expression system with RNA interference (RNAi)-based knock down of a glutamate receptor subunit gene. With this stock, we uncover important new information about the maintenance of HSP. We address an open question about the role that presynaptic CaV2-type Ca2+ channels play in NMJ homeostasis. Published experiments have demonstrated that hypomorphic missense mutations in the CaV2 α1a subunit gene cacophony (cac) can impair homeostatic plasticity at the NMJ. Here we report that reducing cac expression levels by RNAi is not sufficient to impair homeostatic plasticity. The presence of wild-type channels appears to support HSP—even when total CaV2 function is severely reduced. We also conduct an RNAi- and electrophysiology-based screen to identify new factors required for sustained homeostatic signaling throughout development. We uncover novel roles in HSP for Drosophila homologs of Cysteine string protein (CSP) and Phospholipase Cβ (Plc21C). We characterize those roles through follow-up genetic tests. We discuss how CSP, Plc21C, and associated factors could modulate presynaptic CaV2 function, presynaptic Ca2+ handling, or other signaling processes crucial for sustained homeostatic regulation of NMJ function throughout development. Our findings expand the scope of signaling pathways and processes that contribute to the durable strength of the NMJ.
Collapse
Affiliation(s)
- Douglas J Brusich
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Ashlyn M Spring
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Interdisciplinary Graduate Program in Genetics, University of Iowa Iowa City, IA, USA
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa Iowa City, IA, USA ; Interdisciplinary Programs in Genetics, Neuroscience, and MCB, University of Iowa Iowa City, IA, USA
| |
Collapse
|
4
|
Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol 2015; 40:153-9. [PMID: 25800794 PMCID: PMC4447612 DOI: 10.1016/j.semcdb.2015.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of co-chaperones that localises to neuronal synaptic vesicles. Its name derives from the possession of a string of 12–15 cysteine residues, palmitoylation of which is required for targeting to post-Golgi membranes. The DnaJ domain of CSP enables it to bind client proteins and recruit Hsc70 chaperones, thereby contributing to the maintenance of protein folding in the presynaptic compartment. Mutation of CSP in flies, worms and mice reduces lifespan and causes synaptic dysfunction and neurodegeneration. Furthermore, recent studies have revealed that the neurodegenerative disease, adult onset neuronal ceroid lipofuscinosis, is caused by mutations in the human CSPα-encoding DNAJC5 gene. Accumulating evidence suggests that the major mechanism by which CSP prevents neurodegeneration is by maintaining the conformation of SNAP-25, thereby facilitating its entry into the membrane-fusing SNARE complex. In this review, we focus on the role of CSP in preventing neurodegeneration and discuss how recent studies of this universal neuroprotective chaperone are being translated into potential novel therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK.
| |
Collapse
|
5
|
Ormerod KG, Krans JL, Mercier AJ. Cell-selective modulation of the Drosophila neuromuscular system by a neuropeptide. J Neurophysiol 2015; 113:1631-43. [DOI: 10.1152/jn.00625.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner using identified muscle cells in third-instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFamide receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was mainly due to presynaptic expression. Muscle ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibers. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.
Collapse
Affiliation(s)
| | - Jacob L. Krans
- Western New England University, Springfield, Massachusetts
| | | |
Collapse
|
6
|
Frolov RV, Singh S. Temperature and functional plasticity of L-type Ca2+ channels in Drosophila. Cell Calcium 2013; 54:287-94. [DOI: 10.1016/j.ceca.2013.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/24/2013] [Accepted: 07/27/2013] [Indexed: 11/25/2022]
|
7
|
Macleod GT. Calcium imaging at the Drosophila larval neuromuscular junction. Cold Spring Harb Protoc 2012; 2012:758-66. [PMID: 22753609 DOI: 10.1101/pdb.top070078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium imaging uses optical imaging techniques to measure the concentration of free calcium [Ca(2+)] in live cells. It is a highly informative technique in neurobiology because Ca(2+) is involved in many neuronal signaling pathways and serves as the trigger for neurotransmitter release. The technique relies on loading Ca(2+) indicators into cells, measuring the quantity and/or wavelength of the photons emitted by the Ca(2+) indicator, and interpreting these data in terms of [Ca(2+)]. There are several possible methods for loading synthetic Ca(2+) indicators into subcellular compartments, for example, topical application of membrane-permeant Ca(2+) indicators, forward-filling of dextran conjugates, and direct injection. These techniques are applicable to calcium imaging at the Drosophila larval neuromuscular junction (NMJ), and are also readily adaptable to Drosophila embryo and adult preparations.
Collapse
|
8
|
Brink D, Gilbert M, Auld V. Visualizing the live Drosophila glial-neuromuscular junction with fluorescent dyes. J Vis Exp 2009:1154. [PMID: 19440184 DOI: 10.3791/1154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Our project identified GFP labeled glial structures at the developing larval fly neuromuscular synapse. To look at development of live glial-nerve-muscle synapses, we developed a larval tissue preparation that had features of live intact larvae, but also had good optical properties. This new preparation also allowed for access of perfusates to the synapse. We used fly larvae, immersed them in artificial hemolymph, and relaxed their normal rhythmic body contractions by chilling them. Next we dissected off the posterior segments of each animal and with a blunt insect pin pushed the mouth parts backward through the body cavity. This everted the larval body wall, like turning a sock inside-out. We completed the dissection with ultra-fine dissection scissors and thus exposed the visceral side of the body wall muscles. The glial structures at the NMJ expressed membrane targeted GFP under the control of glial specific promoters. The post-synaptic membrane, the SSR (Subsynaptic Reticula) in muscle expressed synaptically targeted dsRed. We needed to acutely label the motor neuron terminals, the third part of the synapse. To do this we applied primary antibodies to HRP, conjugated to a far-red emitting flurophore. To test for dye diffusion properties into the perisynaptic space between the motor neuron terminals and the SSR, we applied a solution of large Dextran molecules conjugated to far-red emitting flurophore and collected images.
Collapse
Affiliation(s)
- Dee Brink
- Department of Zoology, University of British Columbia
| | | | | |
Collapse
|
9
|
Ruiz R, Casañas JJ, Südhof TC, Tabares L. Cysteine string protein-alpha is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse. Eur J Neurosci 2008; 27:3118-31. [PMID: 18598257 DOI: 10.1111/j.1460-9568.2008.06301.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine string protein (CSPalpha) is a synaptic vesicle protein present in most central and peripheral nervous system synapses. Previous studies demonstrated that the deletion of CSPalpha results in postnatal sensorial and motor impairment and premature lethality. To understand the participation of CSPalpha in neural function in vertebrates, we have studied the properties of synaptic transmission of motor terminals in wild-type and CSPalpha knockout mice. Our results demonstrate that, in the absence of CSPalpha, fast Ca2+-triggered release was not affected at postnatal day (P)14 but was dramatically reduced at P18 and P30 without a change in release kinetics. Although mutant terminals also exhibited a reduction in functional vesicle pool size by P30, further analysis showed that neurotransmission could be 'rescued' by high extracellular [Ca2+] or by the presence of a phorbol ester, suggesting that an impairment in the fusion machinery, or in vesicle recycling, was not the primary cause of the dysfunction of this synapse. The specific shift to the right of the Ca2+ dependence of synchronous release, and the lineal dependence of secretion on extracellular [Ca2+] in mutant terminals after P18, suggests that CSPalpha is indispensable for a normal Ca2+ sensitivity of exocytosis in vertebrate mature synapses.
Collapse
Affiliation(s)
- R Ruiz
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sanchez Pizjuan 4, 41009 Seville, Spain
| | | | | | | |
Collapse
|
10
|
Kubista H, Mafra RA, Chong Y, Nicholson GM, Beirão PSL, Cruz JS, Boehm S, Nentwig W, Kuhn-Nentwig L. CSTX-1, a toxin from the venom of the hunting spider Cupiennius salei, is a selective blocker of L-type calcium channels in mammalian neurons. Neuropharmacology 2007; 52:1650-62. [PMID: 17517422 DOI: 10.1016/j.neuropharm.2007.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/28/2007] [Accepted: 03/21/2007] [Indexed: 12/01/2022]
Abstract
The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.
Collapse
Affiliation(s)
- Helmut Kubista
- Center for Biomolecular Medicine and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bai L, Swayne LA, Braun JEA. The CSPα/G protein complex in PC12 cells. Biochem Biophys Res Commun 2007; 352:123-9. [PMID: 17113038 DOI: 10.1016/j.bbrc.2006.10.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/28/2022]
Abstract
Cysteine string proteinalpha (CSPalpha) is a regulated vesicle protein and molecular chaperone that has been found to be critical for continuous synaptic transmission and is implicated in the defense against neurodegeneration. Previous work has revealed links between CSPalpha and heterotrimeric GTP binding protein (G protein) signal transduction pathways. We have shown that CSPalpha is a guanine nucleotide exchange factor (GEF) for Galphas. In vitro Hsc70 (70 kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) switch CSPalpha from an inactive GEF to an active GEF. Here we have examined the cellular distribution of the CSPalpha system in the PC12 neuroendocrine cell line. CSPalpha, an established secretory vesicle protein, was found to concentrate in the processes of NGF-differentiated PC12 cells as expected. Gbeta subunits co-localized and Galphas subunits partially co-localized with CSPalpha. However, under the conditions examined, the GEF activity of CSPalpha is expected to be inactive, in that Hsc70 was not found in PC12 processes. These results indicate that CSPalpha activity is subject to regulation by factors that alter Hsc70 distribution and translocation within the cell.
Collapse
Affiliation(s)
- Liping Bai
- Hotchkiss Brain Institute, Department of Physiology and Biophysics, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
12
|
Swayne LA, Beck KE, Braun JEA. The cysteine string protein multimeric complex. Biochem Biophys Res Commun 2006; 348:83-91. [PMID: 16875662 DOI: 10.1016/j.bbrc.2006.07.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Accepted: 07/05/2006] [Indexed: 12/15/2022]
Abstract
Cysteine string protein (CSPalpha) is a member of the cellular folding machinery that is located on regulated secretory vesicles. We have previously shown that CSPalpha in association with Hsc70 (70kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein) is a guanine nucleotide exchange factor (GEF) for G(alphas). Association of this CSPalpha complex with N-type calcium channels, a channel key in coupling calcium influx with synaptic vesicle exocytosis, triggers tonic G protein inhibition of the channels. Syntaxin 1A, a plasma membrane SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) critical for neurotransmission, coimmunoprecipitates with the CSPalpha/G protein/N-type calcium channel complex, however the significance of syntaxin 1A as a component of this complex remains unknown. In this report, we establish that syntaxin 1A interacts with CSPalpha, Hsc70 as well as the synaptic protein interaction (synprint) region of N-type channels. We demonstrate that huntingtin(exon1), a putative biologically active fragment of huntingtin, displaces both syntaxin 1A and CSPalpha from N-type channels. Identification of the protein components of the CSPalpha/GEF system is essential in establishing its precise role in synaptic transmission.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
13
|
Macleod GT, Chen L, Karunanithi S, Peloquin JB, Atwood HL, McRory JE, Zamponi GW, Charlton MP. TheDrosophila cacts2mutation reduces presynaptic Ca2+entry and defines an important element in Cav2.1 channel inactivation. Eur J Neurosci 2006; 23:3230-44. [PMID: 16820014 DOI: 10.1111/j.1460-9568.2006.04873.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cac(ts2) mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cac(ts2) mutation occurs in the cytoplasmic carboxyl tail of the alpha1-subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+-imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cac(ts2) mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Ca(v)2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 degrees C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Ca(v)2.1 channel inactivation.
Collapse
Affiliation(s)
- G T Macleod
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bronk P, Nie Z, Klose MK, Dawson-Scully K, Zhang J, Robertson RM, Atwood HL, Zinsmaier KE. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals. J Neurosci 2006; 25:2204-14. [PMID: 15745946 PMCID: PMC6726096 DOI: 10.1523/jneurosci.3610-04.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synaptic vesicle-associated cysteine-string protein (CSP) is important for synaptic transmission. Previous studies revealed multiple defects at neuromuscular junctions (NMJs) of csp null-mutant Drosophila, but whether these defects are independent of each other or mechanistically linked through J domain mediated-interactions with heat-shock cognate protein 70 (Hsc70) has not been established. To resolve this issue, we genetically dissected the individual functions of CSP by an in vivo structure/function analysis. Expression of mutant CSP lacking the J domain at csp null-mutant NMJs fully restored normal thermo-tolerance of evoked transmitter release but did not completely restore evoked release at room temperature and failed to reverse the abnormal intraterminal Ca2+ levels. This suggests that J domain-mediated functions are essential for the regulation of intraterminal Ca2+ levels but only partially required for regulating evoked release and not required for protecting evoked release against thermal stress. Hence, CSP can also act as an Hsc70-independent chaperone protecting evoked release from thermal stress. Expression of mutant CSP lacking the L domain restored neurotransmission and partially reversed the abnormal intraterminal Ca2+ levels, suggesting that the L domain is important, although not essential, for the role of CSP in regulating intraterminal Ca2+ levels. We detected no effects of csp mutations on individual presynaptic Ca2+ signals triggered by action potentials, suggesting that presynaptic Ca2+ entry is not primarily impaired. Both the J and L domains were also required for the role of CSP in synaptic growth. Together, these results suggest that CSP has several independent synaptic functions, affecting synaptic growth, evoked release, thermal protection of evoked release, and intraterminal Ca2+ levels at rest and during stimulation.
Collapse
Affiliation(s)
- Peter Bronk
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Natochin M, Campbell TN, Barren B, Miller LC, Hameed S, Artemyev NO, Braun JEA. Characterization of the G alpha(s) regulator cysteine string protein. J Biol Chem 2005; 280:30236-41. [PMID: 15972823 DOI: 10.1074/jbc.m500722200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine string protein (CSP) is an abundant regulated secretory vesicle protein that is composed of a string of cysteine residues, a linker domain, and an N-terminal J domain characteristic of the DnaJ/Hsp40 co-chaperone family. We have shown previously that CSP associates with heterotrimeric GTP-binding proteins (G proteins) and promotes G protein inhibition of N-type Ca2+ channels. To elucidate the mechanisms by which CSP modulates G protein signaling, we examined the effects of CSP(1-198) (full-length), CSP(1-112), and CSP(1-82) on the kinetics of guanine nucleotide exchange and GTP hydrolysis. In this report, we demonstrate that CSP selectively interacts with G alpha(s) and increases steady-state GTP hydrolysis. CSP(1-198) modulation of G alpha(s) was dependent on Hsc70 (70-kDa heat shock cognate protein) and SGT (small glutamine-rich tetratricopeptide repeat domain protein), whereas modulation by CSP(1-112) was Hsc70-SGT-independent. CSP(1-112) preferentially associated with the inactive GDP-bound conformation of G alpha(s). Consistent with the stimulation of GTP hydrolysis, CSP(1-112) increased guanine nucleotide exchange of G alpha(s). The interaction of native G alpha(s) and CSP was confirmed by coimmunoprecipitation and showed that G alpha(s) associates with CSP. Furthermore, transient expression of CSP in HEK cells increased cellular cAMP levels in the presence of the beta2 adrenergic agonist isoproterenol. Together, these results demonstrate that CSP modulates G protein function by preferentially targeting the inactive GDP-bound form of G alpha(s) and promoting GDP/GTP exchange. Our results show that the guanine nucleotide exchange activity of full-length CSP is, in turn, regulated by Hsc70-SGT.
Collapse
Affiliation(s)
- Michael Natochin
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Numata T, Yoshino M. Characterization of single L-type Ca2+ channels in myocytes isolated from the cricket lateral oviduct. J Comp Physiol B 2005; 175:257-63. [PMID: 15900506 DOI: 10.1007/s00360-005-0480-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/22/2004] [Accepted: 11/22/2004] [Indexed: 11/30/2022]
Abstract
The single Ca2+ channel activity was obtained from cell-attached patch recordings with the use of pipettes filled with 100 mM Ba2+ as the charge carrier in myocytes isolated from the lateral oviduct of cricket Gryllus bimaculatus. The following results were obtained. (1) The channel had a unitary conductance of 18 pS. (2) The open time histogram of the channel could be fitted with a single exponential while the closed time histogram could be fitted with the sum of two exponentials, suggesting that there are at least one open state and two closed states for this channel. (3) The open probability of the channel increased with increasing membrane depolarization. (4) The mean current reconstructed by averaging individual current trace responses inactivated slowly and the current-voltage relationship for the peak mean current showed a bell-shaped relation. (5) The dihydropyridine (DHP) Ca2+ antagonist, nifedipine, reduced the mean current by increasing the proportion of "blank" sweeps. On the other hand, the DHP Ca2+ agonist, Bay K 8644, increased the mean current by increasing the mean open-times of the channel. These results confirm a presence of DHP-sensitive L-type Ca2+ channel in myocytes isolated from the lateral oviduct of cricket G. bimaculatus.
Collapse
Affiliation(s)
- T Numata
- Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, 184-8501, Japan.
| | | |
Collapse
|
17
|
Fernández-Chacón R, Wölfel M, Nishimune H, Tabares L, Schmitz F, Castellano-Muñoz M, Rosenmund C, Montesinos ML, Sanes JR, Schneggenburger R, Südhof TC. The Synaptic Vesicle Protein CSPα Prevents Presynaptic Degeneration. Neuron 2004; 42:237-51. [PMID: 15091340 DOI: 10.1016/s0896-6273(04)00190-4] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 02/17/2004] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Cysteine string protein alpha (CSPalpha)--an abundant synaptic vesicle protein that contains a DNA-J domain characteristic of Hsp40 chaperones--is thought to regulate Ca2+ channels and/or synaptic vesicle exocytosis. We now show that, in young mice, deletion of CSPalpha does not impair survival and causes no significant changes in presynaptic Ca2+ currents or synaptic vesicle exocytosis as measured in the Calyx of Held synapse. At 2-4 weeks of age, however, CSPalpha-deficient mice develop a progressive, fatal sensorimotor disorder. The neuromuscular junctions and Calyx synapses of CSPalpha-deficient mice exhibit increasing neurodegenerative changes, synaptic transmission becomes severely impaired, and the mutant mice die at approximately 2 months of age. Our data suggest that CSPalpha is not essential for the normal operation of Ca2+ channels or exocytosis but acts as a presynaptic chaperone that maintains continued synaptic function, raising the possibility that enhanced CSPalpha function could attenuate neurodegenerative diseases.
Collapse
Affiliation(s)
- Rafael Fernández-Chacón
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Miller LC, Swayne LA, Chen L, Feng ZP, Wacker JL, Muchowski PJ, Zamponi GW, Braun JEA. Cysteine String Protein (CSP) Inhibition of N-type Calcium Channels Is Blocked by Mutant Huntingtin. J Biol Chem 2003; 278:53072-81. [PMID: 14570907 DOI: 10.1074/jbc.m306230200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine string protein (CSP), a 34-kDa molecular chaperone, is expressed on synaptic vesicles in neurons and on secretory vesicles in endocrine, neuroendocrine, and exocrine cells. CSP can be found in a complex with two other chaperones, the heat shock cognate protein Hsc70, and small glutamine-rich tetratricopeptide repeat domain protein (SGT). CSP function is vital in synaptic transmission; however, the precise nature of its role remains controversial. We have previously reported interactions of CSP with both heterotrimeric GTP-binding proteins (G proteins) and N-type calcium channels. These associations give rise to a tonic G protein inhibition of the channels. Here we have examined the effects of huntingtin fragments (exon 1) with (huntingtin(exon1/exp)) and without (huntingtin(exon1/nonexp)) expanded polyglutamine (polyQ) tracts on the CSP chaperone system. In vitro huntingtin(exon1/exp) sequestered CSP and blocked the association of CSP with G proteins. In contrast, huntingtin(exon1/nonexp) did not interact with CSP and did not alter the CSP/G protein association. Similarly, co-expression of huntingtin(exon1/exp) with CSP and N-type calcium channels eliminated CSP's tonic G protein inhibition of the channels, while coexpression of huntingtin(exon1/nonexp) did not alter the robust inhibition promoted by CSP. These results indicate that CSP's modulation of G protein inhibition of calcium channel activity is blocked in the presence of a huntingtin fragment with expanded polyglutamine tracts.
Collapse
Affiliation(s)
- Linda C Miller
- Cellular and Molecular Neurobiology Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Evans GJO, Morgan A, Burgoyne RD. Tying everything together: the multiple roles of cysteine string protein (CSP) in regulated exocytosis. Traffic 2003; 4:653-9. [PMID: 12956868 DOI: 10.1034/j.1600-0854.2003.00127.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In addition to the core vesicle fusion machinery, the SNARE proteins, a large number of regulatory proteins have been implicated in the process of Ca2+-dependent exocytosis. How these exocytotic proteins are properly targeted and how their myriad interactions are temporally and spatially coordinated is poorly understood. Cysteine string protein (CSP), a secretory vesicle membrane protein and a member of the dnaJ family of co-chaperones, may assist in performing this function. Through its interaction with the ubiquitous chaperone, Hsc70, it is thought that cysteine string protein targets chaperone complexes to the exocytotic machinery to facilitate the correct folding of polypeptides or to regulate the assembly of protein complexes. Since its discovery, there have been conflicting reports from different systems concerned with whether cysteine string protein exerts its effects on exocytosis either up- or down-stream of Ca2+-influx. In this review, we summarize recent experiments that associate cysteine string protein with the regulation of vesicle filling, vesicle docking, Ca2+-channels and the SNARE proteins themselves, hence supporting a role for cysteine string protein as a multifunctional secretory co-chaperone. In addition, we provide an update on the mammalian isoforms of cysteine string protein following the recent discovery of two novel cysteine string proteins.
Collapse
Affiliation(s)
- Gareth J O Evans
- The Physiological Laboratory, Department of Physiology, University of Liverpool, Crown St, Liverpool, L69 3BX, UK
| | | | | |
Collapse
|
20
|
Abstract
Camgaroos are yellow fluorescent protein derivatives that hold promise as transgenically encoded calcium sensors in behaving animals. We expressed two versions of camgaroo in Drosophila mushroom bodies using the galactosidase-4 (GAL4) system. Potassium depolarization of brains expressing the reporters produces a robust increase in fluorescence that is blocked by removing extracellular calcium or by antagonists of voltage-dependent calcium channels. The fluorescence increase is not attributable to cytoplasmic alkalization; depolarization induces a slight acidification of the cytoplasm of mushroom body neurons. Acetylcholine applied near the dendrites of the mushroom body neurons induces a rapid and ipsilateral-specific fluorescence increase in the mushroom body axons that is blocked by antagonists of calcium channels or nicotinic acetylcholine receptors. Fluorescence was observed to increase in all three classes of mushroom body neurons, indicating that all types respond to cholinergic innervation.
Collapse
|
21
|
Affiliation(s)
- Paul H Taghert
- Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
22
|
Lohr C, Tucker E, Oland LA, Tolbert LP. Development of depolarization-induced calcium transients in insect glial cells is dependent on the presence of afferent axons. JOURNAL OF NEUROBIOLOGY 2002; 52:85-98. [PMID: 12124748 DOI: 10.1002/neu.10075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by depolarization have been measured in glial cells acutely isolated from antennal lobes of the moth Manduca sexta at different postembryonic developmental stages. Depolarization of the glial cell membrane was elicited by increasing the external K(+) concentration from 4 to 25 mM. At midstage 5 and earlier stages, less than 20% of the cells responded to 25 mM K(+) (1 min) with a transient increase in [Ca(2+)](i) of approximately 40 nM. One day later, at late stage 5, 68% of the cells responded to 25 mM K(+), the amplitude of the [Ca(2+)](i) transients averaging 592 nM. At later stages, all cells responded to 25 mM K(+) with [Ca(2+)](i) transients with amplitudes not significantly different from those at late stage 5. In stage 6 glial cells isolated from deafferented antennal lobes, i.e., from antennal lobes chronically deprived of olfactory receptor axons, only 30% of the cells responded with [Ca(2+)](i) transients. The amplitudes of these [Ca(2+)](i) transients averaged 93 nM and were significantly smaller than those in normal stage 6 glial cells. [Ca(2+)](i) transients were greatly reduced in Ca(2+)-free, EGTA-buffered saline, and in the presence of the Ca(2+) channel blockers cadmium and verapamil. The results suggest that depolarization of the cell membrane induces Ca(2+) influx through voltage-activated Ca(2+) channels into antennal lobe glial cells. The development of the depolarization-induced Ca(2+) transients is rapid between midstage 5 and stage 6, and depends on the presence of afferent axons from the olfactory receptor cells in the antenna.
Collapse
Affiliation(s)
- Christian Lohr
- ARL Division of Neurobiology, University of Arizona, P.O. Box 210077, Tucson, Arizona 85721-0077, USA.
| | | | | | | |
Collapse
|
23
|
Chen S, Zheng X, Schulze KL, Morris T, Bellen H, Stanley EF. Enhancement of presynaptic calcium current by cysteine string protein. J Physiol 2002; 538:383-9. [PMID: 11790807 PMCID: PMC2290073 DOI: 10.1113/jphysiol.2001.013397] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The isolated chick ciliary neuron calyx synapse preparation was used to test cysteine string protein (CSP) action on presynaptic N-type Ca(2+) channels. Endogenous CSP was localized primarily to secretory vesicle clusters in the presynaptic nerve terminal. Introduction of recombinant CSP into the voltage clamped terminal resulted in a prominent increase in Ca(2+) current amplitude. However, this increase could not be attributed to a change in Ca(2+) channel kinetics, voltage dependence, prepulse inactivation, or G protein inhibition but was attributed to the recruitment of dormant channels. Secretory vesicle associated endogenous CSP may play an important role in enhancing Ca(2+) channel activity at the transmitter release site.
Collapse
Affiliation(s)
- Shan Chen
- Synaptic Mechanisms Section, NINDS, NIH, Bethesda, MD 20892-4156, USA
| | | | | | | | | | | |
Collapse
|
24
|
Li H, Cooper RL. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development. Neuroscience 2002; 106:193-200. [PMID: 11564429 DOI: 10.1016/s0306-4522(01)00263-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hormonal regulation in development and maintenance of synaptic transmission involves examination of both the presynaptic and postsynaptic components and a system in which the hormones can be controlled. We used the ecdysoneless heat-sensitive mutation (l(3)ecd(1)/l(3)ecd(1)) of Drosophila to provide the ability to regulate endogenous ecdysone production at various larval stages. In conjunction, we used the neuromuscular junctions of Drosophila since they offer the advantage of assessable preparations for both morphological and physiological measures. The growth in the Ib and Is motor nerve terminals and the corresponding muscle 6 in segment 4 of the larval Drosophila throughout the third instar stage in the presence of normal and a much reduced endogenous ecdysone level was investigated. Muscle 6 and the motor nerve terminals parallel in growth throughout the third instar. The nerve terminals increase in length and varicosity number, thus providing an increase in the number of synaptic release sites. The ecdysoneless larvae also show an increase in muscle size, however the Is and Ib motor nerve terminals do not mature to the extent of the wild-type ecdysone producing flies. The motor nerve terminal length is shorter with fewer numbers of varicosities per terminal. In spite of a shorter nerve terminal and fewer varicosities, with an increasing muscle fiber, the compound excitatory junctional potentials of Ib and Is in the ecdysoneless flies are larger, which is suggestive of synaptic structural modification. This study demonstrates ecdysone's role in modifying nerve terminal development and neuromuscular junction function.
Collapse
Affiliation(s)
- H Li
- 101 T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington, KY 40506-0225, USA
| | | |
Collapse
|
25
|
Zinsmaier KE, Bronk P. Molecular chaperones and the regulation of neurotransmitter exocytosis11Abbreviations: SNARE, soluble NSF attachment protein (SNAP) receptor; NSF, N-ethylmaleimide-sensitive factor; Hsc70, 70-kDa heat-shock cognate protein; CSP, cysteine-string protein; VAMP vesicle-associated membrane protein; SNAP-25, synaptosome-associated protein 25 kDa; NEM, N-ethylmaleimide; AAA ATPases, ATPases Associated to a variety of Activities; and Hsp70, Hsp90, and Hsp60, 70-kDa, 90-kDa, and 60-kDa heat-shock protein, respectively. Biochem Pharmacol 2001; 62:1-11. [PMID: 11377391 DOI: 10.1016/s0006-2952(01)00648-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Regulated neurotransmitter release depends on a precise sequence of events that lead to repeated cycles of exocytosis and endocytosis. These events are mediated by a series of molecular interactions among vesicular, plasma membrane, and cytosolic proteins. An emerging theme has been that molecular chaperones may guide the sequential restructuring of stable or transient protein complexes to promote a temporal and spatial regulation of the endo- and exocytotic machinery and to ensure a vectorial passage through the vesicle cycle. Chaperones, specialized for a few substrates, are ideally suited to participate in regulatory processes that require some molecular dexterity to rearrange conformational or oligomeric protein structures. This article emphasizes the significance of three molecular chaperone systems in regulated neurotransmitter release: the regulation of soluble NSF attachment protein receptor (SNARE) complexes by N-ethylmaleimide-sensitive factor (NSF) and the soluble NSF attachment protein (SNAP), the uncoating of clathrin-coated vesicles by the 70 kDa heat-shock cognate protein (Hsc70), and the regulation of SNARE complex-associated protein interactions by cysteine-string protein and Hsc70.
Collapse
Affiliation(s)
- K E Zinsmaier
- Department of Neuroscience, 234d Stemmler Hall, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6974, USA.
| | | |
Collapse
|
26
|
Chamberlain LH, Graham ME, Kane S, Jackson JL, Maier VH, Burgoyne RD, Gould GW. The synaptic vesicle protein, cysteine-string protein, is associated with the plasma membrane in 3T3-L1 adipocytes and interacts with syntaxin 4. J Cell Sci 2001; 114:445-55. [PMID: 11148145 DOI: 10.1242/jcs.114.2.445] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adipocytes and muscle cells play a major role in blood glucose homeostasis. This is dependent upon the expression of Glut4, an insulin-responsive facilitative glucose transporter. Glut4 is localised to specialised intracellular vesicles that fuse with the plasma membrane in response to insulin stimulation. The insulin-induced translocation of Glut4 to the cell surface is essential for the maintenance of optimal blood glucose levels, and defects in this system are associated with insulin resistance and type II diabetes. Therefore, a major focus of recent research has been to identify and characterise proteins that regulate Glut4 translocation. Cysteine-string protein (Csp) is a secretory vesicle protein that functions in presynaptic neurotransmission and also in regulated exocytosis from non-neuronal cells. We show that Csp1 is expressed in 3T3-L1 adipocytes and that cellular levels of this protein are increased following cell differentiation. Combined fractionation and immunofluorescence analyses reveal that Csp1 is not a component of intracellular Glut4-storage vesicles (GSVs), but is associated with the adipocyte plasma membrane. This association is stable, and not affected by either insulin stimulation or chemical depalmitoylation of Csp1. We also demonstrate that Csp1 interacts with the t-SNARE syntaxin 4. As syntaxin 4 is an important mediator of insulin-stimulated GSV fusion with the plasma membrane, this suggests that Csp1 may play a regulatory role in this process. Syntaxin 4 interacts specifically with Csp1, but not with Csp2. In contrast, syntaxin 1A binds to both Csp isoforms, and actually exhibits a higher affinity for the Csp2 protein. The results described raise a number of interesting questions concerning the intracellular targeting of Csp in different cell types, and suggest that the composition and synthesis of GSVs may be different from synaptic and other secretory vesicles. In addition, the interaction of Csp1 with syntaxin 4 suggests that this Csp isoform may play a role in insulin-stimulated fusion of GSVs with the plasma membrane.
Collapse
Affiliation(s)
- L H Chamberlain
- Division of Biochemistry and Molecular Biology, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
27
|
Magga JM, Jarvis SE, Arnot MI, Zamponi GW, Braun JE. Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron 2000; 28:195-204. [PMID: 11086994 DOI: 10.1016/s0896-6273(00)00096-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cysteine string proteins (CSPs) are secretory vesicle proteins bearing a "J domain" and a palmitoylated cysteine-rich "string" region that are critical for neurotransmitter release. The precise role of CSP in neurotransmission is controversial. Here, we demonstrate a novel interaction between CSP, receptor-coupled trimeric GTP binding proteins (G proteins), and N-type Ca2+ channels. G. subunits interact with the J domain of CSP in an ATP-dependent manner; in contrast, Gbetagamma subunits interact with the C terminus of CSP in both the presence and absence of ATP. The interaction of CSP with both G proteins and N-type Ca2+ channels results in a tonic G protein inhibition of the channels. In view of the crucial importance of N-type Ca2+ channels in presynaptic vesicle release, our data attribute a key role to CSP in the fine tuning of neurotransmission.
Collapse
Affiliation(s)
- J M Magga
- Department of Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
28
|
Abstract
Previous studies suggest that the vesicular cysteine-string protein (CSP) may modulate presynaptic Ca(2+) channel activity in fast neurotransmitter release. To test this hypothesis, we analyzed the dynamics of presynaptic Ca(2+) ion influx with the Ca(2+) indicator fluo-4 AM at csp mutant neuromuscular junctions of Drosophila. From 24 to 30 degrees C, stimulus-evoked, relative presynaptic Ca(2+) signals were increasingly larger in csp mutant boutons than in controls. Above 30 degrees C, Ca(2+) signals declined and were similar to controls at 34 degrees C. A prolonged decay of Ca(2+) signals in mutant boutons at high temperatures indicated abnormally slow Ca(2+) clearance. Cytosolic Ca(2+) at rest was determined with the ratiometric Ca(2+) indicator fura-2 AM and was similar in mutant and control boutons at 24 degrees C but higher in mutant boutons at 34 degrees C. Despite larger Ca(2+) signals in mutant boutons, evoked neurotransmitter release was always reduced in csp mutants and exhibited pronounced facilitation. Thus, a lack of Ca(2+) entry cannot explain the reduction of neurotransmitter release in csp mutants. At all temperatures tested, raising extracellular Ca(2+) increased transmitter release elicited by single stimuli in csp mutants. Collectively, these data suggest multiple functions for CSP at synaptic terminals. Increased Ca(2+) signals coupled with reduced release suggest a direct function of CSP in exocytosis downstream from Ca(2+) entry. Because the reduction of evoked release in csp mutants is counteracted by increased Ca(2+) levels, we suggest that CSP primarily increases the Ca(2+) sensitivity of the exocytotic machinery.
Collapse
|
29
|
Abstract
Cysteine-string protein (Csp) is a major synaptic vesicle and secretory granule protein first discovered in Drosophila and Torpedo. Csps were subsequently identified from Xenopus, Caenorhabditis elegans, and mammalian species. It is clear from the study of a null mutant in Drosophila that Csp is required for viability of the organism and that it has a key role in neurotransmitter release. In addition, other studies have directly implicated Csp in regulated exocytosis in mammalian neuroendocrine and endocrine cell types, and its distribution suggests a general role in regulated exocytosis. An early hypothesis was that Csp functioned in the control of voltage-gated Ca2+ channels. Csp, however, must have an additional function as a direct regulator of the exocytotic machinery as changes in Csp expression modify the extent of exocytosis triggered directly by Ca2+ in permeabilised cells. Csps possess a cysteine-string domain that is highly palmitoylated and confers membrane targeting. In addition, Csps have a conserved "J" domain that mediates binding to an activation of the Hsp70/ Hsc70 chaperone ATPases. This and other evidence implicate Csps as molecular chaperones in the synapse that are likely to control the correct conformational folding of one or more components of the vesicular exocytotic machinery. Targets for Csp include the vesicle protein VAMP/synaptobrevin and the plasma membrane protein syntaxin 1, the significance of which is discussed in possible models to account for current knowledge of Csp function.
Collapse
Affiliation(s)
- L H Chamberlain
- Division of Biochemistry and Molecular Biology, University of Glasgow, Scotland
| | | |
Collapse
|
30
|
Jeziorski MC, Greenberg RM, Anderson PA. The molecular biology of invertebrate voltage-gated Ca(2+) channels. J Exp Biol 2000; 203:841-56. [PMID: 10667967 DOI: 10.1242/jeb.203.5.841] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of voltage-gated Ca(2+) channels in cellular function is illustrated by the many distinct types of Ca(2+) currents found in vertebrate tissues, a variety that is generated in part by numerous genes encoding Ca(2+) channel subunits. The degree to which this genetic diversity is shared by invertebrates has only recently become apparent. Cloning of Ca(2+) channel subunits from various invertebrate species, combined with the wealth of information from the Caenorhabditis elegans genome, has clarified the organization and evolution of metazoan Ca(2+) channel genes. Functional studies have employed novel structural information gained from invertebrate Ca(2+) channels to complement ongoing research on mammalian Ca(2+) currents, while demonstrating that the strict correspondence between pharmacological and molecular classes of vertebrate Ca(2+) channels does not fully extend to invertebrate tissues. Molecular structures can now be combined with physiological data to develop a more cogent system of categorizing invertebrate channel subtypes. In this review, we examine recent progress in the characterization of invertebrate Ca(2+) channel genes and its relevance to the diversity of invertebrate Ca(2+) currents.
Collapse
Affiliation(s)
- M C Jeziorski
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Querétaro, México.
| | | | | |
Collapse
|
31
|
Abstract
Cysteine-string proteins (CSPs) are associated with secretory vesicles and critical for regulated neurotransmitter release and peptide exocytosis. At nerve terminals, CSPs have been implicated in the mediation of neurotransmitter exocytosis by modulating presynaptic calcium channels; however, studies of CSPs in peptidergic secretion suggest a direct role in exocytosis independent of calcium transmembrane fluxes. Here we show that the individual expression of various CSP isoforms in Drosophila similarly rescues the loss of evoked neurotransmitter release at csp null mutant motor nerve terminals, suggesting widely overlapping functions for each isoform. Thus, the structural difference of CSP variants may not explain the opposing putative functions of CSP in neurotransmitter and peptide exocytosis. Consistently, the individual overexpression of each CSP isoform in wild-type Drosophila shows similar effects such as impaired viability and interference with wing and eye development. The dominant effects caused by the overexpression of CSP are suppressed by the simultaneous overexpression of syntaxin-1A but not by the coexpression of SNAP-25. Although overexpression of CSP itself has no apparent effect on the synaptic physiology of larval motor nerve terminals, it fully suppresses the decrease of evoked release induced by the overexpression of syntaxin-1A. A direct protein-protein interaction of CSP with syntaxin is further supported by coimmunoprecipitations of syntaxin with CSP and by protein binding assays using recombinant fusion proteins. Together, the genetic and biochemical interactions of CSP and syntaxin-1A suggest that CSP may chaperone or modulate protein-protein interactions of syntaxin-1A with either calcium channels or other components of the regulatory machinery mediating depolarization-dependent neurotransmitter exocytosis.
Collapse
|