1
|
Le Douaron G, Ferrié L, Sepulveda-Diaz JE, Amar M, Harfouche A, Séon-Méniel B, Raisman-Vozari R, Michel PP, Figadère B. New 6-Aminoquinoxaline Derivatives with Neuroprotective Effect on Dopaminergic Neurons in Cellular and Animal Parkinson Disease Models. J Med Chem 2016; 59:6169-86. [PMID: 27341519 DOI: 10.1021/acs.jmedchem.6b00297] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of aging characterized by motor symptoms that result from the loss of midbrain dopamine neurons and the disruption of dopamine-mediated neurotransmission. There is currently no curative treatment for this disorder. To discover druggable neuroprotective compounds for dopamine neurons, we have designed and synthesized a second-generation of quinoxaline-derived molecules based on structure-activity relationship studies, which led previously to the discovery of our first neuroprotective brain penetrant hit compound MPAQ (5c). Neuroprotection assessment in PD cellular models of our newly synthesized quinoxaline-derived compounds has led to the selection of a better hit compound, PAQ (4c). Extensive in vitro characterization of 4c showed that its neuroprotective action is partially attributable to the activation of reticulum endoplasmic ryanodine receptor channels. Most interestingly, 4c was able to attenuate neurodegeneration in a mouse model of PD, making this compound an interesting drug candidate for the treatment of this disorder.
Collapse
Affiliation(s)
- Gael Le Douaron
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Laurent Ferrié
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Julia E Sepulveda-Diaz
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Majid Amar
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France.,Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Abha Harfouche
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Blandine Séon-Méniel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| | - Rita Raisman-Vozari
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Patrick P Michel
- Institut du Cerveau et de la Moelle Epinière, Sorbonne Universités, Université Pierre et Marie Curie Paris 06, INSERM U1127, CNRS UMR7225 , 75013 Paris, France
| | - Bruno Figadère
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry, France
| |
Collapse
|
2
|
Le Douaron G, Schmidt F, Amar M, Kadar H, Debortoli L, Latini A, Séon-Méniel B, Ferrié L, Michel PP, Touboul D, Brunelle A, Raisman-Vozari R, Figadère B. Neuroprotective effects of a brain permeant 6-aminoquinoxaline derivative in cell culture conditions that model the loss of dopaminergic neurons in Parkinson disease. Eur J Med Chem 2015; 89:467-79. [DOI: 10.1016/j.ejmech.2014.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/26/2022]
|
3
|
Vukicevic V, Schmid J, Hermann A, Lange S, Qin N, Gebauer L, Chunk KF, Ravens U, Eisenhofer G, Storch A, Ader M, Bornstein SR, Ehrhart-Bornstein M. Differentiation of chromaffin progenitor cells to dopaminergic neurons. Cell Transplant 2012; 21:2471-86. [PMID: 22507143 DOI: 10.3727/096368912x638874] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The differentiation of dopamine-producing neurons from chromaffin progenitors might represent a new valuable source for replacement therapies in Parkinson's disease. However, characterization of their differentiation potential is an important prerequisite for efficient engraftment. Based on our previous studies on isolation and characterization of chromaffin progenitors from adult adrenals, this study investigates their potential to produce dopaminergic neurons and means to enhance their dopaminergic differentiation. Chromaffin progenitors grown in sphere culture showed an increased expression of nestin and Mash1, indicating an increase of the progenitor subset. Proneurogenic culture conditions induced the differentiation into neurons positive for neural markers β-III-tubulin, MAP2, and TH accompanied by a decrease of Mash1 and nestin. Furthermore, Notch2 expression decreased concomitantly with a downregulation of downstream effectors Hes1 and Hes5 responsible for self-renewal and proliferation maintenance of progenitor cells. Chromaffin progenitor-derived neurons secreted dopamine upon stimulation by potassium. Strikingly, treatment of differentiating cells with retinoic and ascorbic acid resulted in a twofold increase of dopamine secretion while norepinephrine and epinephrine were decreased. Initiation of dopamine synthesis and neural maturation is controlled by Pitx3 and Nurr1. Both Pitx3 and Nurr1 were identified in differentiating chromaffin progenitors. Along with the gained dopaminergic function, electrophysiology revealed features of mature neurons, such as sodium channels and the capability to fire multiple action potentials. In summary, this study elucidates the capacity of chromaffin progenitor cells to generate functional dopaminergic neurons, indicating their potential use in cell replacement therapies.
Collapse
Affiliation(s)
- Vladimir Vukicevic
- Molecular Endocrinology, Medical Clinic III, University Clinic Dresden, Dresden University of Technology, Fetscherstrasse 74, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Modulation of Dopaminergic Neuronal Differentiation from Sympathoadrenal Progenitors. J Mol Neurosci 2012; 48:420-6. [DOI: 10.1007/s12031-012-9746-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 12/25/2022]
|
5
|
Collo G, Bono F, Cavalleri L, Plebani L, Merlo Pich E, Millan MJ, Spano PF, Missale C. Pre-synaptic dopamine D3 receptor mediates cocaine-induced structural plasticity in mesencephalic dopaminergic neurons via ERK and Akt pathways. J Neurochem 2012; 120:765-78. [DOI: 10.1111/j.1471-4159.2011.07618.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Nakagawa T, Suzuki Y, Nagayasu K, Kitaichi M, Shirakawa H, Kaneko S. Repeated exposure to methamphetamine, cocaine or morphine induces augmentation of dopamine release in rat mesocorticolimbic slice co-cultures. PLoS One 2011; 6:e24865. [PMID: 21980362 PMCID: PMC3184101 DOI: 10.1371/journal.pone.0024865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022] Open
Abstract
Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1–1000 µM), cocaine (0.1–300 µM) or morphine (0.1–100 µM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1–1000 µM) had little effect. Following repeated exposure to methamphetamine (10 µM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1–300 µM) or morphine (10 and 100 µM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 µM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Radcliffe PM, Sterling CR, Tank AW. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone. J Neurochem 2009; 109:1272-84. [PMID: 19476543 DOI: 10.1111/j.1471-4159.2009.06056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 h, but less than 3 h, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene.
Collapse
Affiliation(s)
- Pheona M Radcliffe
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
8
|
de Jong IE, de Kloet ER. Critical time-window for the actions of adrenal glucocorticoids in behavioural sensitisation to cocaine. Eur J Pharmacol 2009; 604:66-73. [DOI: 10.1016/j.ejphar.2008.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 11/30/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
9
|
Collo G, Zanetti S, Missale C, Spano P. Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation. Eur J Neurosci 2009; 28:1231-40. [PMID: 18973551 DOI: 10.1111/j.1460-9568.2008.06423.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clinical improvements in Parkinson's disease produced by dopamine D3 receptor-preferring agonists have been related to their neuroprotective actions and, more recently, to their neuroregenerative properties. However, it is unclear whether dopamine agonists produce their neurotrophic effects by acting directly on receptors expressed by the mesencephalic dopaminergic neurons or indirectly on receptors expressed by astrocytes, via release of neurotrophic factors. In this study, we investigated the effects of the dopamine D3 receptor-preferring agonists quinpirole and 7-hydroxy-N,N-di-propyl-2-aminotetralin (7-OH-DPAT), as well as of the indirect agonist amphetamine, on dopaminergic neurons identified by tyrosine hydroxylase immunoreactivity (TH-IR). Experiments were performed on neuronal-enriched primary cultures containing less than 0.5% of astrocytes prepared from the mouse embryo mesencephalon. After 3 days of incubation, both quinpirole (1-10 microm) and 7-OH-DPAT (5-500 nm) dose-dependently increased the maximal dendrite length (P < 0.001), number of primary dendrites (P < 0.01) and [3H]dopamine uptake (P < 0.01) of TH-IR-positive mesencephalic neurons. Similar effects were observed with 10 microm amphetamine. All neurotrophic effects were blocked by the unselective D2/D3 receptor antagonist sulpiride (5 microm) and by the selective D3 receptor antagonist SB-277011-A at a low dose (50 nm). Quinpirole and 7-OH-DPAT also increased the phosphorylation of extracellular signal-regulated kinase (ERK) within minutes, an effect blocked by pretreatment with SB-277011-A. Inhibition of the D2/D3 receptor signalling pathway to ERK was obtained with PD98059, GF109203 or LY294002, resulting in blockade of neurotrophic effects. These data suggest that dopamine agonists increase dendritic arborizations of mesencephalic dopaminergic neurons via a direct effect on D2/D3 receptors, preferentially involving D3 receptor-dependent neurotransmission.
Collapse
Affiliation(s)
- Ginetta Collo
- Department of Biomedical Sciences and Biotechnologies, Division of Pharmacology and National Institute of Neuroscience-Italy, Brescia University Medical School, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | |
Collapse
|
10
|
Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP. Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 2008; 74:980-9. [PMID: 18621927 DOI: 10.1124/mol.108.048207] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Epidemiological evidence suggests that caffeine or its metabolites reduce the risk of developing Parkinson's disease, possibly by protecting dopaminergic neurons, but the underlying mechanism is not clearly understood. Here, we show that the primary metabolite of caffeine, paraxanthine (PX; 1, 7-dimethylxanthine), was strongly protective against neurodegeneration and loss of synaptic function in a culture system of selective dopaminergic cell death. In contrast, caffeine itself afforded only marginal protection. The survival effect of PX was highly specific to dopaminergic neurons and independent of glial cell line-derived neurotrophic factor (GDNF). Nevertheless, PX had the potential to rescue dopaminergic neurons that had matured initially with and were then deprived of GDNF. The protective effect of PX was not mediated by blockade of adenosine receptors or by elevation of intracellular cAMP levels, two pharmacological effects typical of methylxanthine derivatives. Instead, it was attributable to a moderate increase in free cytosolic calcium via the activation of reticulum endoplasmic ryanodine receptor (RyR) channels. Consistent with these observations, PX and also ryanodine, the preferential agonist of RyRs, were protective in an unrelated paradigm of mitochondrial toxin-induced dopaminergic cell death. In conclusion, our data suggest that PX has a neuroprotective potential for diseased dopaminergic neurons.
Collapse
Affiliation(s)
- Serge Guerreiro
- Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale/Université Pierre et Marie Curie-Paris-6, Bât. Pharmacie, Hôpital de la Salpêtrière, 47, bd de l'hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Aksenov MY, Aksenova MV, Silvers JM, Mactutus CF, Booze RM. Different effects of selective dopamine uptake inhibitors, GBR 12909 and WIN 35428, on HIV-1 Tat toxicity in rat fetal midbrain neurons. Neurotoxicology 2008; 29:971-7. [PMID: 18606182 DOI: 10.1016/j.neuro.2008.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/19/2008] [Accepted: 06/04/2008] [Indexed: 01/22/2023]
Abstract
Drug abuse is a risk factor for neurological complications in HIV infection. Cocaine has been shown to exacerbate HIV-associated brain pathology and enhance neurotoxicity of HIV-1 Tat and gp120 proteins. In this study, we found that the selective inhibitor of dopamine transporter (DAT) function, 1-[2-[bis(4-fluorophenyl) methoxy]ethyl]-4-(3-phenylpropyl) piperazine (GBR 12909, vanoxerine), but not the selective inhibitors of serotonin and norepinephrine (SERT and NET) transporters, sertraline and nizoxetine, emulated cocaine-mediated enhancement of Tat neurotoxicity in rat fetal midbrain primary cell cultures. Similar to cocaine, the significant increase of Tat toxicity in midbrain cell cultures was observed at micromolar dose (5microM) of GBR 12909. However, different doses of another selective dopamine uptake inhibitor, WIN 35428 did not affect Tat neurotoxicity. The study supports the hypothesis that changes in control of dopamine (DA) homeostasis are important for the cocaine-mediated enhancement of HIV-1 Tat neurotoxicity. Our results also demonstrate that inhibitors of DA uptake, which can bind to different domains of DAT, differ in their ability to mimic synergistic toxicity of cocaine and HIV-1 Tat in the midbrain cell culture.
Collapse
Affiliation(s)
- Michael Y Aksenov
- Program in Behavioral Neuroscience, University of South Carolina, USA.
| | | | | | | | | |
Collapse
|
12
|
Song C, Li X, Kang Z, Kadotomi Y. Omega-3 fatty acid ethyl-eicosapentaenoate attenuates IL-1beta-induced changes in dopamine and metabolites in the shell of the nucleus accumbens: involved with PLA2 activity and corticosterone secretion. Neuropsychopharmacology 2007; 32:736-44. [PMID: 16794572 DOI: 10.1038/sj.npp.1301117] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we have reported that interleukin-1 beta (IL-1) induces changes in dopaminergic (DA) and serotonergic systems in the core of the [corrected] nucleus accumbens (NAc). We have also demonstrated that n-3 fatty acid ethyl-eicosapentaenoate (EPA) can significantly reduce stress and anxiety-like behaviors, corticosterone concentrations [corrected] and peripheral inflammatory response induced by IL-1 administration. Compared to the core, the shell is involved more in emotion, stress and psychiatric diseases. However, the relationship between inflammation and the functions of DA system in the shell has not been studied. Since phospholipase (PL) A2 is a key enzyme in the [corrected] arachidonic acid-eicosanoids-prostaglandin [corrected] (PG)E2 pathway, and the change in NAc DA [corrected] system has been associated with glucocorticoid stimulation; [corrected] therefore, the hypotheses of this study are (1) that IL-1 induced changes in DA neurotransmission in the shell may be through PLA2-PGE2-corticosterone pathway; (2) EPA may attenuate IL-1 effects via inhibiting PLA2 activities, which blocks PGE2 stimulation of corticosterone. Using an in vivo microdialysis method, the present study showed that IL-1 administration significantly increased extracellular levels of DA, and its metabolites 3,4-dihydroxyphenylacetic acid, [corrected] and homovanillic acid [corrected] in the shell of the NAc. IL-1 also increased blood concentration of corticosterone and PGE2, and increased the activities of cytosolic and secretory [corrected] PLA2. IL-1-induced changes were significantly attenuated by EPA treatment. Furthermore, glucocorticoid [corrected] receptor antagonist mifepristone (RU486) pretreatment significantly blocked IL-1-induced changes in DA and metabolites. Quinacrine, [corrected] a PLA2 antagonist significantly blocked IL-1-induced [corrected] increase in PGE2 and corticosterone concentrations. These results demonstrated the hypotheses that IL-1 effects may be via PLA2-PGE2-corticosterone pathway and EPA attenuated IL-1 effects may be through the suppression of PLA2 expression, which then reduced PGE2 synthesis and corticosterone secretion.
Collapse
Affiliation(s)
- Cai Song
- Department of Biomedical Sciences, AVC, University of Prince Edward Island, Charlottetown, PE, Canada.
| | | | | | | |
Collapse
|
13
|
Fortin GD, Desrosiers CC, Yamaguchi N, Trudeau LE. Basal somatodendritic dopamine release requires snare proteins. J Neurochem 2006; 96:1740-9. [PMID: 16539689 DOI: 10.1111/j.1471-4159.2006.03699.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dopaminergic neurons have the capacity to release dopamine not only from their axon terminals, but also from their somatodendritic compartment. The actual mechanism of somatodendritic dopamine release has remained controversial. Here we established for the first time a rat primary neuron culture model to investigate this phenomenon and use it to study the mechanism under conditions of non-stimulated spontaneous firing (1-2 Hz). We found that we can selectively measure somatodendritic dopamine release by lowering extracellular calcium to 0.5 mm, thus confirming the previously established differential calcium sensitivity of somatodendritic and terminal release. Dopamine release measured under these conditions was dependent on firing activity and independent of reverse transport through the plasma membrane. We found that treatment with botulinum neurotoxins A and B strongly reduced somatodendritic dopamine release, thus demonstrating the requirement for SNARE proteins SNAP-25 and synaptobrevin. Our work is the first to provide such direct and unambiguous evidence for the involvement of an exocytotic mechanism in basal spontaneous somatodendritic dopamine release.
Collapse
Affiliation(s)
- Gabriel D Fortin
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec
| | | | | | | |
Collapse
|
14
|
Glucocorticoid hormones, individual differences, and behavioral and dopaminergic responses to psychostimulant drugs. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Murphy NP, Tan AM, Lam HA, Maidment NT. Nociceptin/orphanin FQ modulation of rat midbrain dopamine neurons in primary culture. Neuroscience 2004; 127:929-40. [PMID: 15312905 DOI: 10.1016/j.neuroscience.2004.05.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Previous microdialysis studies have identified a suppressive effect of the novel opioid peptide nociceptin (also known as orphanin FQ) on dopamine release from mesolimbic neurons. In order to further evaluate the locus of this action, we investigated nociceptin's action in an in vitro model system, namely midbrain dopamine neurons in primary culture. Immunohistochemical analysis revealed abundant tyrosine hydroxylase- and GABA-immunoreactive neurons, with a strong correlation between tyrosine hydroxylase content and basal endogenous dopamine release. Nociceptin (0.01-100 nM) suppressed basal dopamine release by up to 84% (EC50=0.65 nM). This action was reversible by drug removal and attenuated by co-application of the non-peptidergic ORL1 antagonist, Compound B. Nociceptin had no significant effect on dopamine release evoked by direct depolarization of the terminals with elevated extracellular K+, suggesting that nociceptin suppresses dopamine release by modulating the firing rate of the dopamine neurons. Nociceptin also suppressed GABA release from the cultures (45% maximal inhibition; EC50=1.63 nM). Application of the GABA-A antagonist, bicuculline, elevated extracellular dopamine concentrations but the dopamine release inhibiting property of nociceptin persisted in the presence of bicuculline. The NMDA receptor antagonist, D(-)-2-amino-5-phosphononpentanoic acid (AP-5) had no effect on basal dopamine release and failed to modify nociceptin's inhibitory effects. Thus, nociceptin potently modulates dopamine release from midbrain neurons most likely as a result of a direct suppression of dopamine neuronal activity.
Collapse
Affiliation(s)
- N P Murphy
- Department of Psychiatry, UCLA Neuropsychiatric Institute, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Noninvasive administration of cortisol through the diet resulted in relatively rapid (<1.5 h) and highly reproducible increases in plasma cortisol in rainbow trout, comparable to changes seen in fish subjected to substantial stress. Juvenile rainbow trout were reared in isolation for 1 week, before their daily food ration was replaced by a meal of cortisol-treated food corresponding to 6 mg cortisol kg(-1). All fish were observed for 30 min, beginning at 1 or 48 h following the introduction of cortisol-treated food. Additional cortisol (75% of the original dose on Day 2, and 50% on Day 3) was administered to the long-term cortisol-treated group. The resulting blood plasma concentrations of cortisol were similar in short- and long-term treated fish, and corresponded to those previously seen in stressed rainbow trout. Controls were fed similar food without cortisol. Half of the fish from each treatment group (controls and short- and long-term cortisol) were subjected to an intruder test (a smaller conspecific introduced into the aquarium), while half of the fish were observed in isolation. In fish challenged by a conspecific intruder, short-term cortisol treatment stimulated locomotor activity, while long-term treatment inhibited locomotion. Aggressive behavior was also inhibited by long-term cortisol treatment, but not by short-term exposure to cortisol. Cortisol treatment had no effect on locomotor activity in undisturbed fish, indicating that the behavioral effects of cortisol were mediated through interaction with other signal systems activated during the simulated territorial intrusion test. This study demonstrates for the first time that cortisol has time- and context-dependent effects on behavior in teleost fish.
Collapse
Affiliation(s)
- Øyvind Øverli
- Evolutionary Biology Centre, Department of Animal Development and Genetics, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden.
| | | | | |
Collapse
|
17
|
Abstract
The effects of D(3) receptor activation are unresolved at this time, but may have practical implications in the treatment of Parkinson's disease (PD). As a result of assessing the neuroprotective effects of the direct-acting D(3) preferring dopamine (DA) agonist pramipexole (PPX), we have observed that drugs which psossess D(3) affinity increase the production of a DA neurotrophic factor in tissue culture. This molecule is increased by treatment with PPX, is constitutively produced by DA neurons in culture, and possesses a molecular weight of approximately 35kDa. It is hypothesized that this molecule may be the so-called DA autotrophic factor referred to by many authors over the past two decades. Interestingly, the protein is oxidant-labile and, therefore, D(3) agonists which increase its production and also possess antioxidant capacity would provide unique neuroprotective benefits to patients with PD. However, many questions remain. Although the data supporting this notion are strong, it is clear that other unknown characteristics of DA agonists, including increased production of anti-apoptotic proteins, are also involved. This manuscript will review this concept in the context of tissue culture strategies of neuroprotection. Although no conclusion can be made at this time, it is clear that direct comparisons of the neuroprotective effects of direct-acting DA agonists in mesencephalic culture can provide considerable insight into the mechanistic actions of anti-dopaminergic drugs.
Collapse
Affiliation(s)
- P M. Carvey
- Departments of Pharmacology and Neurological Sciences, Rush Presbyterian St. Luke's Medical Center, 2242 West Harrison Street, 60612, Chicago, IL, USA
| | | | | |
Collapse
|
18
|
Cyr M, Morissette M, Barden N, Beaulieu S, Rochford J, Di Paolo T. Dopaminergic activity in transgenic mice underexpressing glucocorticoid receptors: effect of antidepressants. Neuroscience 2001; 102:151-8. [PMID: 11226678 DOI: 10.1016/s0306-4522(00)00444-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Transgenic mice bearing a transgene coding for a glucocorticoid receptor antisense mRNA, which partially blocks glucocorticoid receptor expression, were used to investigate the long-term effect of hypothalamic-pituitary-adrenal axis dysfunction on brain dopamine transmission. Compared to control mice, the transgenic animals showed increased amphetamine-induced locomotor activity and increased concentrations of striatal dopamine and its metabolites dihydroxyphenylacetic acid and homovanillic acid. Binding of [3H]SCH 23390 and [3H]spiperone to, respectively, D1 and D2 dopamine receptors was increased in transgenic mice. In contrast, autoradiography of striatal [3H]GBR 12935 binding to the dopamine transporter was decreased and the mRNA levels of this transporter, measured by in situ hybridization, remained unchanged in the substantia nigra pars compacta. The effect of chronic treatment for two weeks with amitriptyline or fluoxetine was compared in control and transgenic mice. No significant changes were observed in control mice following antidepressant treatment, whereas in transgenic mice both antidepressants reduced striatal [3H]SCH 23390 and [3H]raclopride specific binding to D1 and D2 receptors. Amitriptyline, but not fluoxetine, increased striatal [3H]GBR 12935 binding to the dopamine transporter, whereas its mRNA level in the substantia nigra pars compacta was decreased in fluoxetine, compared to vehicle- or amitriptyline-treated transgenic mice. From these results we suggest that hyperactive dopaminergic activity of the nigrostriatal pathway controls motor activity in the transgenic mice. Furthermore, antidepressant treatment corrected the increased striatal D1 and D2 receptors and decreased dopamine transporter levels in the transgenic mice.
Collapse
MESH Headings
- Amitriptyline/pharmacology
- Animals
- Antidepressive Agents/pharmacology
- Binding Sites/drug effects
- Binding Sites/physiology
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Depression/metabolism
- Depression/physiopathology
- Disease Models, Animal
- Dopamine/metabolism
- Dopamine Plasma Membrane Transport Proteins
- Female
- Fluoxetine/pharmacology
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Membrane Glycoproteins
- Membrane Transport Proteins
- Mice
- Mice, Transgenic
- Motor Activity/drug effects
- Motor Activity/physiology
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurons/drug effects
- Neurons/metabolism
- Receptors, Dopamine D1/drug effects
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/metabolism
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
- Substantia Nigra/physiopathology
Collapse
Affiliation(s)
- M Cyr
- Molecular Endocrinology Research Center, CHUQ and Faculty of Pharmacy, Laval University, PQ, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Øverli Ø, Pottinger TG, Carrick TR, Øverli E, Winberg S. Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. BRAIN, BEHAVIOR AND EVOLUTION 2001; 57:214-24. [PMID: 11641559 DOI: 10.1159/000047238] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper investigates whether two lines of rainbow trout displaying genetically determined variation in stress responsiveness and behavior also show differences in brain monoaminergic activity. In several brain regions, strains of rainbow trout selected for consistently high or low post-stress cortisol levels displayed differences in tissue concentrations of monoamines and/or monoamine metabolites, or in metabolite/monoamine ratios. High-responsive trout reacted to stress by an increase in the concentrations of both serotonin (brain stem), dopamine (brain stem), and norepinephrine (optic tectum, telencephalon), whereas low-responsive fish did not. Brain stem and optic tectum concentrations of monoamine metabolites were also elevated after stress in high responders, but not in low-responsive fish. The simultaneous increase in the concentration of monoamines and their metabolites suggests that both synthesis and metabolism of these transmitters were elevated after stress in high-responsive trout. A divergent pattern was seen in the hypothalamus, where low-responsive fish displayed elevated levels of 5-hydroxyindoleacetic acid (a serotonin metabolite) and 3-methoxy-4-hydroxyphenylglycol (a norepinephrine metabolite). In the telencephalon, both populations had elevated concentrations of these metabolites after stress. These results clearly suggest that selection for stress responsiveness in rainbow trout is also associated with changes in the function of brain monoaminergic systems. The possible functional significance of these observations is discussed with respect to the physiological and behavioral profile of these strains of fish. Literature is reviewed showing that several factors affecting brain monoaminergic activity might be altered by selection for stress responsiveness, or alternatively be under direct influence of circulating glucocorticoids.
Collapse
Affiliation(s)
- Ø Øverli
- Evolutionary Biology Centre, Department of Animal Development and Genetics, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
20
|
Döbrössy MD, Le Moal M, Montaron MF, Abrous N. Influence of environment on the efficacy of intrastriatal dopaminergic grafts. Exp Neurol 2000; 165:172-83. [PMID: 10964496 DOI: 10.1006/exnr.2000.7462] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional recovery is influenced by experience. The aim of the present work was to examine the effects of "enriched" environment (EE) versus an "impoverished" environment on the anatomical and functional integration of intrastriatal dopaminergic grafts. These influences were studied using a paradigm where grafting was performed before the dopamine-depleting lesion. Dopaminergic grafts were implanted into the left neostriatum of adult male rats. In the enriched group, grafted rats were housed collectively and were trained on different behavioral tests following grafting. In contrast, impoverished grafted rats were housed individually and not further manipulated. Ten weeks after grafting, the mesotelencephalic dopaminergic pathway was destroyed unilaterally to the grafted side and different behaviors were followed for 7 months. Grafting prior to lesioning had no prophylactic effects on the performance as the graft did not prevent the onset of the lesion-induced impairments. However, under EE conditions, a graft effect was manifested in the reduction of drug-induced rotation and on the indices of bias as tested by a spatial alternation test. No positive graft effects were observed in the skilled paw reaching test. Grafted rats raised under impoverished conditions performed in a fashion indistinguishable from the control lesioned animals on most measures of behavior. A beneficial effect of EE conditions was observed on survival of TH-positive neurons within the grafts. The results suggest that survival of grafted neurons, and the reduction of the magnitude of particular behavioral impairments, can be optimized by increasing the complexity of the subject's environment.
Collapse
Affiliation(s)
- M D Döbrössy
- Domaine de Carreire, INSERM U259, Rue Camille Saint Saëns, Bordeaux Cedex, 33077, France
| | | | | | | |
Collapse
|