1
|
Nielsen BE, Ford CP. Reduced striatal M4-cholinergic signaling following dopamine loss contributes to parkinsonian and l-DOPA-induced dyskinetic behaviors. SCIENCE ADVANCES 2024; 10:eadp6301. [PMID: 39565858 PMCID: PMC11578179 DOI: 10.1126/sciadv.adp6301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
A dynamic equilibrium between dopamine and acetylcholine (ACh) is essential for striatal circuitry and motor function, as imbalances are associated with Parkinson's disease (PD) and levodopa-induced dyskinesia (LID). Conventional theories posit that cholinergic signaling is pathologically elevated in PD as a result of increased ACh release, which contributes to motor deficits. However, using approaches to measure receptor-mediated signaling, we found that, rather than the predicted enhancement, the strength of cholinergic transmission at muscarinic M4 receptor synapses on direct pathway medium spiny neurons was decreased in dopamine-depleted mice. This adaptation was due to a reduced postsynaptic M4 receptor function, resulting from down-regulated receptors and downstream signaling. Restoring M4 transmission unexpectedly led to a partial alleviation of motor deficits and LID dyskinetic behavior, revealing an unexpected prokinetic effect in addition to the canonical antikinetic role of M4 receptors. These findings indicate that decreased M4 function differentially contributes to parkinsonian and LID pathophysiology, representing a promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz E. Nielsen
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Salloum N, Chouchana M, Icick R, Bloch V, Daumas S, Mestikawy SE, Vorspan F, Clergue-Duval V. Exploring the efficacy of cholinergic agents for the treatment of psychostimulant use disorder: a systematic review. Psychopharmacology (Berl) 2024; 241:2205-2222. [PMID: 39432105 DOI: 10.1007/s00213-024-06696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024]
Abstract
RATIONALE No drugs are currently validated to treat psychostimulant use disorder (PUD). Pathophysiological studies consistently highlight the contribution of cholinergic mechanisms in psychostimulant use, including the vulnerability to PUD, paving the way for potential therapeutic strategies. OBJECTIVES The aim of this systematic review is to describe and discuss the efficacy of cholinergic agents in drug trials for patients with PUD. METHODS A systematic review was conducted on April 4, 2024 in MedLine, Embase and Cochrane Library databases on controlled clinical drug trial of cholinergic agents in humans with PUD, psychostimulant abuse or dependence and psychostimulant use in recent year. RESULTS Twenty-eight articles were included, twenty-one on cocaine and seven on amphetamines. Cholinergic agents used in these studies were biperiden (a muscarinic antagonist), mecamylamine (a nicotinic antagonist), nicotinic agonists, acetylcholinesterase inhibitors (AChEI), or citicoline. Two types of trials were identified. There were seventeen randomized controlled clinical trials evaluating cholinergic agents on psychostimulant use reduction in outpatients seeking treatment. Additionally, we retrieved eleven short-term «proof-of-concept» laboratory trials mainly with supervised psychostimulant administration and/or triggered craving challenges. Outpatient trials were heterogeneous and for most, inconclusive. Only two studies on galantamine (AChEI) and citicoline, reported a significant reduction of cocaine consumption. «Proof-of-concept» laboratory trials showed no evidence of efficacy on the selected outcomes, notably on craving. CONCLUSIONS This review does not support the current prescription of cholinergic agents to treat PUD. Replication clinical trials notably on galantamine or other AChEI, and proof-of-concept trials on comedown symptoms will be necessary to identify a potential therapeutic indication for cholinergic agents in PUD.
Collapse
Affiliation(s)
- Nicolas Salloum
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
| | - Margot Chouchana
- Service de Pharmacie Hospitalière, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint- Denis, Paris, 75010, France
- UFR de Pharmacie, Université Paris Cité, 85 boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Romain Icick
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Vanessa Bloch
- Service de Pharmacie Hospitalière, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint- Denis, Paris, 75010, France
- UFR de Pharmacie, Université Paris Cité, 85 boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Stéphanie Daumas
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (NPS- IBPS), INSERM, CNRS, Sorbonne Université, 9 quai Saint Bernard, Paris, 75005, France
| | - Salah El Mestikawy
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (NPS- IBPS), INSERM, CNRS, Sorbonne Université, 9 quai Saint Bernard, Paris, 75005, France
- Départment of Psychiatry, Douglas Research Center, McGill University, 6875 Boulevard Lasalle, Montréal, QC, H4H 1R3, Canada
| | - Florence Vorspan
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France
| | - Virgile Clergue-Duval
- Département de Psychiatrie et de Médecine Addictologique, Site Lariboisière Fernand-Widal, GHU APHP.Nord - Université Paris Cité, 200 Rue du Faubourg Saint-Denis, Paris, 75010, France.
- UFR de Médecine, Université Paris Cité, 85 Boulevard Saint-Germain, Paris, 75006, France.
- UMRS-1144 Optimisation Thérapeutique en Neuropsychopharmacologie, INSERM, Université Paris Cité, 4 Avenue de l'observatoire, Paris, 75006, France.
- FHU Network of Research in Substance Use Disorders (NOR-SUD), 4 Avenue de l'observatoire, Paris, 75006, France.
| |
Collapse
|
3
|
Conti MM, Chambers N, Bishop C. A new outlook on cholinergic interneurons in Parkinson's disease and L-DOPA-induced dyskinesia. Neurosci Biobehav Rev 2018; 92:67-82. [PMID: 29782883 DOI: 10.1016/j.neubiorev.2018.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Traditionally, dopamine (DA) and acetylcholine (ACh) striatal systems were considered antagonistic and imbalances or aberrant signaling between these neurotransmitter systems could be detrimental to basal ganglia activity and pursuant motor function, such as in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Herein, we discuss the involvement of cholinergic interneurons (ChIs) in striatally-mediated movement in a healthy, parkinsonian, and dyskinetic state. ChIs integrate numerous neurotransmitter signals using intrinsic glutamate, serotonin, and DA receptors and convey the appropriate transmission onto nearby muscarinic and nicotinic ACh receptors to produce movement. In PD, severe DA depletion causes abnormal rises in ChI activity which promote striatal signaling to attenuate normal movement. When treating PD with L-DOPA, hyperkinetic side effects, or LID, develop due to increased striatal DA; however, the role of ChIs and ACh transmission, until recently has been unclear. Fortunately, new technology and pharmacological agents have facilitated understanding of ChI function and ACh signaling in the context of LID, thus offering new opportunities to modify existing and discover future therapeutic strategies in movement disorders.
Collapse
Affiliation(s)
- Melissa M Conti
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Nicole Chambers
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
4
|
Wang Q, Zhang W. Maladaptive Synaptic Plasticity in L-DOPA-Induced Dyskinesia. Front Neural Circuits 2016; 10:105. [PMID: 28066191 PMCID: PMC5168436 DOI: 10.3389/fncir.2016.00105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
The emergence of L-DOPA-induced dyskinesia (LID) in patients with Parkinson disease (PD) could be due to maladaptive plasticity of corticostriatal synapses in response to L-DOPA treatment. A series of recent studies has revealed that LID is associated with marked morphological plasticity of striatal dendritic spines, particularly cell type-specific structural plasticity of medium spiny neurons (MSNs) in the striatum. In addition, evidence demonstrating the occurrence of plastic adaptations, including aberrant morphological and functional features, in multiple components of cortico-basal ganglionic circuitry, such as primary motor cortex (M1) and basal ganglia (BG) output nuclei. These adaptations have been implicated in the pathophysiology of LID. Here, we briefly review recent studies that have addressed maladaptive plastic changes within the cortico-BG loop in dyskinetic animal models of PD and patients with PD.
Collapse
Affiliation(s)
- Qiang Wang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Wangming Zhang
- The National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|
5
|
Gangarossa G, Guzman M, Prado VF, Prado MA, Daumas S, El Mestikawy S, Valjent E. Role of the atypical vesicular glutamate transporter VGLUT3 in l-DOPA-induced dyskinesia. Neurobiol Dis 2016; 87:69-79. [DOI: 10.1016/j.nbd.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022] Open
|
6
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 358] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
7
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Lesions of the laterodorsal tegmental nucleus alter the cholinergic innervation and neuropeptide Y expression in the medial prefrontal cortex and nucleus accumbens. Neuroscience 2014; 284:707-718. [PMID: 25451286 DOI: 10.1016/j.neuroscience.2014.10.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 01/25/2023]
Abstract
The effects of the ibotenic acid infused into the area of the laterodorsal tegmental nucleus (LDT) of rats on the expression of cortical and accumbal neuropeptides were assessed. The effects of this manipulation were determined in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) by estimating the numerical density of varicosities immunoreactive for vesicular acetylcholine transporter and the total number of NAc neurons immunoreactive for choline acetyltransferase (ChAT) and neuropeptide Y (NPY) as well as the total number of mPFC neurons immunoreactive for NPY and vasoactive intestinal polypeptide (VIP). In LDT-lesioned rats, the density of the cholinergic varicosities was reduced in the ventral divisions of the mPFC and in all divisions of the NAc. In addition, in these rats, the total number of NPY-immunoreactive neurons was reduced in all subregions of the mPFC and in the NAc. Conversely, the total number of VIP-immunoreactive neurons in the mPFC and of ChAT-immunoreactive neurons in the NAc did not differ between LDT- and sham-lesioned rats. These data provide the first direct evidence for a relationship between selective damage of LDT cholinergic neurons and decreased expression of NPY in the mPFC and NAc. They also reveal that different types of cortical and accumbal interneurons respond differently to the cholinergic denervation induced by LDT lesions.
Collapse
|
9
|
Zhang X, Feng ZJ, Chergui K. GluN2D-containing NMDA receptors inhibit neurotransmission in the mouse striatum through a cholinergic mechanism: implication for Parkinson's disease. J Neurochem 2014; 129:581-90. [DOI: 10.1111/jnc.12658] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaoqun Zhang
- Department of Physiology and Pharmacology; Section of Molecular Neurophysiology; The Karolinska Institute; Stockholm Sweden
| | - Ze-Jun Feng
- Department of Physiology and Pharmacology; Section of Molecular Neurophysiology; The Karolinska Institute; Stockholm Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology; Section of Molecular Neurophysiology; The Karolinska Institute; Stockholm Sweden
| |
Collapse
|
10
|
Corticostriatal Plastic Changes in Experimental L-DOPA-Induced Dyskinesia. PARKINSONS DISEASE 2012; 2012:358176. [PMID: 22666628 PMCID: PMC3359773 DOI: 10.1155/2012/358176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/06/2012] [Indexed: 12/21/2022]
Abstract
In Parkinson's disease (PD), alteration of dopamine- (DA-) dependent striatal functions and pulsatile stimulation of DA receptors caused by the discontinuous administration of levodopa (L-DOPA) lead to a complex cascade of events affecting the postsynaptic striatal neurons that might account for the appearance of L-DOPA-induced dyskinesia (LID). Experimental models of LID have been widely used and extensively characterized in rodents and electrophysiological studies provided remarkable insights into the inner mechanisms underlying L-DOPA-induced corticostriatal plastic changes. Here we provide an overview of recent findings that represent a further step into the comprehension of mechanisms underlying maladaptive changes of basal ganglia functions in response to L-DOPA and associated to development of LID.
Collapse
|
11
|
Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 2010; 108:840-5. [PMID: 21187382 DOI: 10.1073/pnas.1006511108] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Treatment of Parkinson disease (PD) with L-3,4-dihydroxyphenylalanine (L-DOPA) dramatically relieves associated motor deficits, but L-DOPA-induced dyskinesias (LID) limit the therapeutic benefit over time. Previous investigations have noted changes in striatal medium spiny neurons, including abnormal activation of extracellular signal-regulated kinase1/2 (ERK). Using two PD models, the traditional 6-hydroxydopamine toxic lesion and a genetic model with nigrostriatal dopaminergic deficits, we found that acute dopamine challenge induces ERK activation in medium spiny neurons in denervated striatum. After repeated L-DOPA treatment, however, ERK activation diminishes in medium spiny neurons and increases in striatal cholinergic interneurons. ERK activation leads to enhanced basal firing rate and stronger excitatory responses to dopamine in striatal cholinergic neurons. Pharmacological blockers of ERK activation inhibit L-DOPA-induced changes in ERK phosphorylation, neuronal excitability, and the behavioral manifestation of LID. In addition, a muscarinic receptor antagonist reduces LID. These data indicate that increased dopamine sensitivity of striatal cholinergic neurons contributes to the expression of LID, which suggests novel therapeutic targets for LID.
Collapse
|
12
|
Singh B, Wilson JH, Vasavada HH, Guo Z, Allore HG, Zeiss CJ. Motor deficits and altered striatal gene expression in aphakia (ak) mice. Brain Res 2007; 1185:283-92. [PMID: 17949697 DOI: 10.1016/j.brainres.2007.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
Like humans with Parkinson's disease (PD), the ak mouse lacks the majority of the substantia nigra pars compacta (SNc) and experiences striatal denervation. The purpose of this study was to test whether motor abnormalities in the ak mouse progress over time, and whether motor function could be associated with temporal alterations in the striatal transcriptome. Ak and wt mice (28 to 180 days old) were tested using paradigms sensitive to nigrostriatal dysfunction. Results were analyzed using a linear mixed model. Ak mice significantly underperformed wt controls in rotarod, balance beam, string test, pole test and cotton shred tests at all ages examined. Motor performance in ak mice remained constant over the first 6 months of life, with the exception of the cotton shred test, in which ak mice exhibited marginal decline in performance. Dorsal striatal semi-quantitative RT-PCR for 19 dopaminergic, cholinergic, glutaminergic and catabolic genes was performed in 1- and 6-month-old groups of ak and wt mice. Preproenkephalin levels in ak mice were elevated in both age groups. Drd1, 3 and 4 levels declined over time, in contrast to increasing Drd2 expression. Additional findings included decreased Chrnalpha6 expression and elevated VGluT1 expression at both time points in ak mice and elevated AchE expression in young ak mice only. Results confirm that motor ability does not decline significantly for the first 6 months of life in ak mice. Their striatal gene expression patterns are consistent with dopaminergic denervation, and change over time, despite relatively unaltered motor performance.
Collapse
Affiliation(s)
- Bhupinder Singh
- Section of Comparative Medicine, Yale University, 375 Congress Ave., New Haven, CT 06519, USA
| | | | | | | | | | | |
Collapse
|
13
|
Samadi P, Rouillard C, Bédard PJ, Di Paolo T. Functional neurochemistry of the basal ganglia. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:19-66. [DOI: 10.1016/s0072-9752(07)83002-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Piggott MA, Owens J, O'Brien J, Colloby S, Fenwick J, Wyper D, Jaros E, Johnson M, Perry RH, Perry EK. Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease. J Chem Neuroanat 2003; 25:161-73. [PMID: 12706204 DOI: 10.1016/s0891-0618(03)00002-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Derivatives of the muscarinic antagonist 3-quinuclidinyl-4-iodobenzilate (QNB), particularly [123I]-(R,R)-I-QNB, are currently being assessed as in vivo ligands to monitor muscarinic receptors in Alzheimer's disease (AD) and dementia with Lewy bodies (DLB), relating changes to disease symptoms and to treatment response with cholinergic medication. To assist in the evaluation of in vivo binding, muscarinic receptor density in post-mortem human brain was measured by autoradiography with [125I]-(R,R)-I-QNB and [125I]-(R,S)-I-QNB and compared to M1 ([3H]pirenzepine) and M2 and M4 ([3H]AF-DX 384) receptor binding. Binding was calculated in tissue containing striatum, globus pallidus (GPe), claustrum, and cingulate and insula cortex, in cases of AD, DLB, Parkinson's disease (PD) and normal elderly controls. Pirenzepine, AF-DX 384 and (R,S)-I-QNB binding in the striatum correlated positively with increased Alzheimer-type pathology, and AF-DX 384 and (R,R)-I-QNB cortical binding correlated positively with increased Lewy body (LB) pathology; however, striatal pirenzepine binding correlated negatively with cortical LB pathology. M1 receptors were significantly reduced in striatum in DLB compared to AD, PD, and controls and there was a significant correlation between M1 and dopamine D2 receptor densities. [3H]AF-DX 384 binding was higher in the striatum and GPe in AD. Binding of [125I]-(R,R)-I-QNB, which may reflect increased muscarinic M4 receptors, was higher in cortex and claustrum in DLB and AD. [125I]-(R,S)-I-QNB binding was higher in the GPe in AD. Low M1 and D2 receptors in DLB imply altered regulation of the striatal projection neurons which express these receptors. Low density of striatal M1 receptors may relate to the extent of movement disorder in DLB, and to a reduced risk of parkinsonism with acetylcholinesterase inhibition.
Collapse
Affiliation(s)
- Margaret A Piggott
- MRC/University of Newcastle Centre in Clinical Brain Ageing, MRC Building, Newcastle General Hospital, Westgate Road, NE4 6BE, Newcastle-upon-Tyne, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou FM, Wilson C, Dani JA. Muscarinic and nicotinic cholinergic mechanisms in the mesostriatal dopamine systems. Neuroscientist 2003; 9:23-36. [PMID: 12580337 DOI: 10.1177/1073858402239588] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The striatum and its dense dopaminergic innervation originating in the midbrain, primarily from the substantia nigra pars compacta and the ventral tegmental area, compose the mesostriatal dopamine (DA) systems. The nigrostriatal system is involved mainly in motor coordination and in disorders such as Tourette's syndrome, Huntington's disease, and Parkinson's disease. The dopaminergic projections from the ventral tegmental area to the striatum participate more in the processes that shape behaviors leading to reward, and addictive drugs act upon this mesolimbic system. The midbrain DA areas receive cholinergic innervation from the pedunculopontine tegmentum and the laterodorsal pontine tegmentum, whereas the striatum receives dense cholinergic innervation from local interneurons. The various neurons of the mesostriatal systems express multiple types of muscarinic and nicotinic acetylcholine receptors as well as DA receptors. Especially in the striatum, the dense mingling of dopaminergic and cholinergic constituents enables potent interactions. Evidence indicates that cholinergic and dopaminergic systems work together to produce the coordinated functioning of the striatum. Loss of that cooperative activity contributes to the dysfunction underlying Parkinson's disease.
Collapse
Affiliation(s)
- Fu-Ming Zhou
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| | | | | |
Collapse
|
16
|
Yan Z, Flores-Hernandez J, Surmeier DJ. Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 2001; 103:1017-24. [PMID: 11301208 DOI: 10.1016/s0306-4522(01)00039-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The postsynaptic effects of acetylcholine in the striatum are largely mediated by muscarinic receptors. Two of the five cloned muscarinic receptors (M1 and M4) are expressed at high levels by the medium spiny neurons-the principal projection neurons of the striatum. Previous studies have suggested that M4 muscarinic receptors are found primarily in medium spiny neurons that express substance P and participate in the "direct" striatonigral pathway. This view is difficult to reconcile with electrophysiological studies suggesting that nearly all medium spiny neurons exhibit responses characteristic of M4 receptors. To explore this apparent discrepancy, the coordinated expression of M1-M5 receptor messenger RNAs in identified medium spiny neurons was assayed using single-cell reverse transcription-polymerase chain reaction techniques. Nearly all medium spiny neurons had detectable levels of M1 receptor messenger RNA. Although M4 receptor messenger RNA was detected more frequently in substance P-expressing neurons (70%), it was readily seen in a substantial population of enkephalin-expressing neurons (50%). To provide a quantitative estimate of transcript abundance, quantitative reverse transcription-polymerase chain reaction experiments were performed. These studies revealed that M4 messenger RNA was expressed by both substance P and enkephalin neurons, but was roughly five-fold higher in abundance in substance P-expressing neurons. This quantitative difference provides a means of reconciling previous estimates of M4 receptor distribution and function.
Collapse
Affiliation(s)
- Z Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | | | |
Collapse
|