1
|
Bernard PB, Castano AM, Buonarati OR, Camp CR, Hell JW, Benke TA. Early life seizures chronically disrupt L-type voltage gated calcium channel regulation of mGluR mediated long term depression via interactions with protein phosphatase 2A. Neurobiol Dis 2025; 209:106884. [PMID: 40147739 DOI: 10.1016/j.nbd.2025.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025] Open
Abstract
We probed the dependence of metabotropic glutamate receptor dependent long-term depression (mGluR-LTD) on L-type voltage gated calcium channels (LTCCs). In prior work, we found that in a rat model of early life seizures (ELS), exaggerated mGluR-LTD was partly mediated by LTCCs and protein phosphatase 2A (PP2A). Here, we further investigated the interactive role of LTCCs, PP2A, and protein kinase A (PKA) in this same model. PP2Ac is known to bind CaV1.2 and modulate its function; displacement of PP2A (C subunit, or PP2Ac) as well as PKA phosphorylation of CaV1.2 at serine 1928, result in enhanced CaV1.2 function. We found that ELS enhanced LTCC activity. We further found that pharmacological displacement of PP2Ac (but not PP2B/calcineurin) from CaV1.2 enhanced mGluR-LTD in controls. This was occluded by blockade of PP2A or ELS. The LTCC-dihydropyridine agonist BayK 8644 enhanced mGluR-LTD in controls, which was also occluded by ELS. Up-regulation of both intracellular Ca2+ and PKA activity were implicated in ELS enhancement of mGluR-LTD, as LTD was normalized in ELS by depletion of internal calcium stores or blockade of PKA. These results support a dynamic model of mGluR-LTD regulation by LTCCs through PP2Ac binding and phosphorylation by PKA. This regulation is chronically lost after ELS. Together with our prior work, these studies tie hyperactive LTCCs to the chronic ELS behavioral phenotype that includes abnormal working memory, fear conditioning and socialization.
Collapse
Affiliation(s)
- Paul B Bernard
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America
| | - Anna M Castano
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Olivia R Buonarati
- Pharmacology, University of Colorado, School of Medicine, United States of America; Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Chad R Camp
- Pharmacology, University of Colorado, School of Medicine, United States of America
| | - Johannes W Hell
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, United States of America
| | - Tim A Benke
- Departments of Pediatrics, University of Colorado, School of Medicine, United States of America; Pharmacology, University of Colorado, School of Medicine, United States of America; Neurology, University of Colorado, School of Medicine, United States of America; Otolaryngology, University of Colorado, School of Medicine, United States of America.
| |
Collapse
|
2
|
Grígelová A, Mikulecká A, Kubová H. Behavioral comorbidities of early-life seizures: Insights from developmental studies in rats. Epilepsy Behav 2025; 165:110307. [PMID: 40015055 DOI: 10.1016/j.yebeh.2025.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Childhood epilepsy is frequently associated with neurobehavioral comorbidities such as depression, anxiety, cognitive impairments, and social dysfunction, as revealed by both clinical and experimental studies. Despite extensive neurophysiological research, behavioral studies in developing animals remain limited and underreported. Here, we review the behavioral impact of early-life seizures (ELSs) in commonly used rat models in developmental studies. We outline suitable tests and provide guidance on how traditional tests should be adapted and interpreted in this context. Finally, we examine factors influencing behavioral analysis in developmental studies, exploring confounding variables and offering strategies to minimize their impact.
Collapse
Affiliation(s)
- Andrea Grígelová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic; Department of Physiology Faculty of Science Charles University Prague Czech Republic.
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
3
|
Balmer GL, Guha S, Poll S. Engrams across diseases: Different pathologies - unifying mechanisms? Neurobiol Learn Mem 2025; 219:108036. [PMID: 40023216 DOI: 10.1016/j.nlm.2025.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Memories are our reservoir of knowledge and thus, are crucial for guiding decisions and defining our self. The physical correlate of a memory in the brain is termed an engram and since decades helps researchers to elucidate the intricate nature of our imprinted experiences and knowledge. Given the importance that memories have for our lives, their impairment can present a tremendous burden. In this review we aim to discuss engram malfunctioning across diseases, covering dementia-associated pathologies, epilepsy, chronic pain and psychiatric disorders. Current neuroscientific tools allow to witness the emergence and fate of engram cells and enable their manipulation. We further suggest that specific mechanisms of mnemonic malfunction can be derived from engram cell readouts. While depicting the way diseases act on the mnemonic component - specifically, on the cellular engram - we emphasize a differentiation between forms of amnesia and hypermnesia. Finally, we highlight commonalities and distinctions of engram impairments on the cellular level across diseases independent of their pathogenic origins and discuss prospective therapeutic measures.
Collapse
Affiliation(s)
- Greta Leonore Balmer
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Shuvrangshu Guha
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany
| | - Stefanie Poll
- University of Bonn, Faculty of Medicine, Institute of Experimental Epileptology and Cognition Research (IEECR), Cellular Neuropathology and Cognition Group, Venusberg-Campus 1/C76, 53127 Bonn, Germany; University Hospital Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE) Bonn, Germany.
| |
Collapse
|
4
|
Abend NS, Wusthoff CJ, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:381-448.e17. [DOI: 10.1016/b978-0-443-10513-5.00015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Monsorno K, Ginggen K, Ivanov A, Buckinx A, Lalive AL, Tchenio A, Benson S, Vendrell M, D'Alessandro A, Beule D, Pellerin L, Mameli M, Paolicelli RC. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice. Nat Commun 2023; 14:5749. [PMID: 37717033 PMCID: PMC10505217 DOI: 10.1038/s41467-023-41502-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
Collapse
Affiliation(s)
- Katia Monsorno
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Kyllian Ginggen
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - An Buckinx
- University of Lausanne, Department of Biomedical Sciences, Lausanne, Switzerland
| | - Arnaud L Lalive
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Anna Tchenio
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Sam Benson
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Marc Vendrell
- University of Edinburgh, Centre for Inflammation Research, Edinburgh, United Kingdom
| | - Angelo D'Alessandro
- University of Colorado, Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Denver, CO, USA
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Luc Pellerin
- Inserm U1313, University of Poitiers and CHU of Poitiers, Poitiers Cedex, France
| | - Manuel Mameli
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | | |
Collapse
|
6
|
Alharbi HM, Pinchefsky EF, Tran MA, Salazar Cerda CI, Parokaran Varghese J, Kamino D, Widjaja E, Mamak E, Ly L, Nevalainen P, Hahn CD, Tam EWY. Seizure Burden and Neurologic Outcomes After Neonatal Encephalopathy. Neurology 2023; 100:e1976-e1984. [PMID: 36990719 PMCID: PMC10186227 DOI: 10.1212/wnl.0000000000207202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/03/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Seizures are common during neonatal encephalopathy (NE), but the contribution of seizure burden (SB) to outcomes remains controversial. This study aims to examine the relationship between electrographic SB and neurologic outcomes after NE. METHODS This prospective cohort study recruited newborns ≥36 weeks postmenstrual age around 6 hours of life between August 2014 and November 2019 from a neonatal intensive care unit (NICU). Participants underwent continuous electroencephalography for at least 48 hours, brain MRI within 3-5 days of life, and structured follow-up at 18 months. Electrographic seizures were identified by board-certified neurophysiologists and quantified as total SB and maximum hourly SB. A medication exposure score was calculated based on all antiseizure medications given during NICU admission. Brain MRI injury severity was classified based on basal ganglia and watershed scores. Developmental outcomes were measured using the Bayley Scales of Infant Development, Third Edition. Multivariable regression analyses were performed, adjusting for significant potential confounders. RESULTS Of 108 enrolled infants, 98 had continuous EEG (cEEG) and MRI data collected, of which 5 were lost to follow-up, and 6 died before age 18 months. All infants with moderate-severe encephalopathy completed therapeutic hypothermia. cEEG-confirmed neonatal seizures occurred in 21 (24%) newborns, with a total SB mean of 12.5 ± 36.4 minutes and a maximum hourly SB mean of 4 ± 10 min/h. After adjusting for MRI brain injury severity and medication exposure, total SB was significantly associated with lower cognitive (-0.21, 95% CI -0.33 to -0.08, p = 0.002) and language (-0.25, 95% CI -0.39 to -0.11, p = 0.001) scores at 18 months. Total SB of 60 minutes was associated with 15-point decline in language scores and 70 minutes for cognitive scores. However, SB was not significantly associated with epilepsy, neuromotor score, or cerebral palsy (p > 0.1). DISCUSSION Higher SB during NE was independently associated with worse cognitive and language scores at 18 months, even after adjusting for exposure to antiseizure medications and severity of brain injury. These observations support the hypothesis that neonatal seizures occurring during NE independently contribute to long-term outcomes.
Collapse
Affiliation(s)
- Huda M Alharbi
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Elana F Pinchefsky
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - My-An Tran
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Carlos Ivan Salazar Cerda
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Jessy Parokaran Varghese
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Daphne Kamino
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Elysa Widjaja
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Eva Mamak
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Linh Ly
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland.
| | - Päivi Nevalainen
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Cecil D Hahn
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland
| | - Emily W Y Tam
- From the Department of Pediatrics (H.M.A.), King Abdullah bin Abdulaziz University Hospital, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia; Department of Pediatrics (E.F.P.), Centre Hospitalier Universitaire Sainte-Justine and the University of Montreal, Quebec; Neurosciences and Mental Health Program (M.-A.T., J.P.V., E.W., C.D.H., E.W.Y.T.), Hospital for Sick Children Research Institute; Department of Paediatrics (C.I.S.C., D.K., E.W., L.L., C.D.H., E.W.Y.T.), Department of Radiology (E.W.), and Department of Psychology (E.M.), The Hospital for Sick Children and the University of Toronto, Ontario, Canada; and Epilepsia Helsinki (P.N.), Department of Clinical Neurophysiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Finland.
| |
Collapse
|
7
|
Folbergrová J, Ješina P, Otáhal J. Protective Effect of Sulforaphane on Oxidative Stress and Mitochondrial Dysfunction Associated with Status Epilepticus in Immature Rats. Mol Neurobiol 2023; 60:2024-2035. [PMID: 36598650 PMCID: PMC9984354 DOI: 10.1007/s12035-022-03201-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
The present study aimed to elucidate the effect of sulforaphane (a natural isothiocyanate) on oxidative stress and mitochondrial dysfunction during and at selected periods following status epilepticus (SE) induced in immature 12-day-old rats by Li-pilocarpine. Dihydroethidium was employed for the detection of superoxide anions, immunoblot analyses for 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) levels and respiratory chain complex I activity for evaluation of mitochondrial function. Sulforaphane was given i.p. in two doses (5 mg/kg each), at PD 10 and PD 11, respectively. The findings of the present study indicate that both the acute phase of SE and the early period of epileptogenesis (1 week and 3 weeks following SE induction) are associated with oxidative stress (documented by the enhanced superoxide anion production and the increased levels of 3-NT and 4-HNE) and the persisting deficiency of complex I activity. Pretreatment with sulforaphane either completely prevented or significantly reduced markers of both oxidative stress and mitochondrial dysfunction. Since sulforaphane had no direct anti-seizure effect, the findings suggest that the ability of sulforaphane to activate Nrf2 is most likely responsible for the observed protective effect. Nrf2-ARE signaling pathway can be considered a promising target for novel therapies of epilepsy, particularly when new compounds, possessing inhibitory activity against protein-protein interaction between Nrf2 and its repressor protein Keap1, with less "off-target" effects and, importantly, with an optimal permeability and bioavailability properties, become available commercially.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
8
|
Kubová H, Mikulecká A, Mareš P. The outcome of early life status epilepticus—lessons from laboratory animals. Epilepsia Open 2022; 8 Suppl 1:S90-S109. [PMID: 36352789 PMCID: PMC10173850 DOI: 10.1002/epi4.12664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Status epilepticus (SE) is the most common neurologic emergency in children. Both clinical and laboratory studies have demonstrated that SE in early life can cause brain damage and permanent behavioral abnormalities, trigger epileptogenesis, and interfere with normal brain development. In experimental rodent models, the consequences of seizures are dependent upon age, the model used, and seizure duration. In studies involving neonatal and infantile animals, the model used, experimental design, conditions during the experiment, and manipulation of animals can significantly affect the course of the experiments as well as the results obtained. Standardization of laboratory approaches, harmonization of scientific methodology, and improvement in data collection can improve the comparability of data among laboratories.
Collapse
Affiliation(s)
- Hana Kubová
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Anna Mikulecká
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| | - Pavel Mareš
- Developmental Epileptology Institute of Physiology of the Czech Academy of Science Prague Czech Republic
| |
Collapse
|
9
|
Postnikova TY, Trofimova AM, Zakharova MV, Nosova OI, Brazhe AR, Korzhevskii DE, Semyanov AV, Zaitsev AV. Delayed Impairment of Hippocampal Synaptic Plasticity after Pentylenetetrazole-Induced Seizures in Young Rats. Int J Mol Sci 2022; 23:ijms232113461. [PMID: 36362260 PMCID: PMC9657086 DOI: 10.3390/ijms232113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Alina M. Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Maria V. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Olga I. Nosova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia
| | - Alexey R. Brazhe
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
| | | | - Alexey V. Semyanov
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
- Correspondence:
| |
Collapse
|
10
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
11
|
Fábera P, Uttl L, Kubová H, Tsenov G, Mareš P. Adenosine Kinase Isoforms in the Developing Rat Hippocampus after LiCl/Pilocarpine Status Epilepticus. Int J Mol Sci 2022; 23:ijms23052510. [PMID: 35269653 PMCID: PMC8910300 DOI: 10.3390/ijms23052510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023] Open
Abstract
LiCl/pilocarpine status epilepticus (SE) induced in immature rats leads, after a latent period, to hippocampal hyperexcitability. The excitability may be influenced by adenosine, which exhibits anticonvulsant activity. The concentration of adenosine is regulated by adenosine kinase (ADK) present in two isoforms—ADK-L and ADK-S. The main goal of the study is to elucidate the changes in ADK isoform expression after LiCl/pilocarpine SE and whether potential changes, as well as inhibition of ADK by 5-iodotubercidin (5-ITU), may contribute to changes in hippocampal excitability during brain development. LiCl/pilocarpine SE was elicited in 12-day-old rats. Hippocampal excitability in immature rats was studied by the model of hippocampal afterdischarges (ADs), in which we demonstrated the potential inhibitory effect of 5-ITU. ADs demonstrated significantly decreased hippocampal excitability 3 days after SE induction, whereas significant hyperexcitability after 20 days compared to controls was shown. 5-ITU administration showed its inhibitory effect on the ADs in 32-day-old SE rats compared to SE rats without 5-ITU. Moreover, both ADK isoforms were examined in the immature rat hippocampus. The ADK-L isoform demonstrated significantly decreased expression in 12-day-old SE rats compared to the appropriate naïve rats, whereas increased ADK-S isoform expression was revealed. A decreasing ADK-L/-S ratio showed the declining dominance of ADK-L isoform during early brain development. LiCl/pilocarpine SE increased the excitability of the hippocampus 20 days after SE induction. The ADK inhibitor 5-ITU exhibited anticonvulsant activity at the same age. Age-related differences in hippocampal excitability after SE might correspond to the development of ADK isoform levels in the hippocampus.
Collapse
Affiliation(s)
- Petr Fábera
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic; (L.U.); (H.K.); (G.T.); (P.M.)
- Department of Neurology, Second Faculty of Medicine, Motol University Hospital, Charles University, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +42-073-272-8308; Fax: +42-022-443-6875
| | - Libor Uttl
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic; (L.U.); (H.K.); (G.T.); (P.M.)
- National Institute of Mental Health, 25067 Klecany, Czech Republic
| | - Hana Kubová
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic; (L.U.); (H.K.); (G.T.); (P.M.)
| | - Grygoriy Tsenov
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic; (L.U.); (H.K.); (G.T.); (P.M.)
- National Institute of Mental Health, 25067 Klecany, Czech Republic
| | - Pavel Mareš
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, 14200 Prague, Czech Republic; (L.U.); (H.K.); (G.T.); (P.M.)
| |
Collapse
|
12
|
Cruz Del Angel Y, Orfila JE, Herson PS, Brooks-Kayal A, González MI. Down-regulation of AMPA receptors and long-term potentiation during early epileptogenesis. Epilepsy Behav 2021; 124:108320. [PMID: 34592633 DOI: 10.1016/j.yebeh.2021.108320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Epilepsy is a brain disorder characterized by the occurrence of recurrent spontaneous seizures. Behavioral disorders and altered cognition are frequent comorbidities affecting the quality of life of people with epilepsy. These impairments are undoubtedly multifactorial and the specific mechanisms underlying these comorbidities are largely unknown. Long-lasting alterations in synaptic strength due to changes in expression, phosphorylation, or function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) have been associated with alterations in neuronal synaptic plasticity. In particular, alterations in hippocampal long-term potentiation (LTP), a well-accepted model of learning and memory, have been associated with altered cognition in epilepsy. Here, we analyzed the effects of pilocarpine-induced status epilepticus (SE) on AMPARs to determine if alterations in AMPAR signaling might be one of the mechanisms contributing to altered cognition during epilepsy. We found alterations in the phosphorylation and plasma membrane expression of AMPARs. In addition, we detected altered expression of GRIP, a key scaffolding protein involved in the proper distribution of AMPARs at the neuronal cell surface. Interestingly, a functional analysis revealed that these molecular changes are linked to impaired LTP. Together, these observations suggest that seizure-induced alterations in the molecular machinery regulating AMPARs likely impact the neuron's ability to support synaptic plasticity that is required for learning and memory.
Collapse
Affiliation(s)
- Yasmin Cruz Del Angel
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James E Orfila
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Amy Brooks-Kayal
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Marco I González
- Department of Pediatrics, Division of Neurology and Translational Epilepsy Research Program, University of Colorado School of Medicine, Aurora, CO 80045, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, Sulakova A, Kaping D, Bernhardt N, de Vries PJ, Otahal J, Waltereit R. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord 2021; 13:14. [PMID: 33863288 PMCID: PMC8052752 DOI: 10.1186/s11689-021-09357-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC), a multi-system genetic disorder often associated with autism spectrum disorder (ASD), is caused by mutations of TSC1 or TSC2, which lead to constitutive overactivation of mammalian target of rapamycin (mTOR). In several Tsc1+/- and Tsc2+/- animal models, cognitive and social behavior deficits were reversed by mTOR inhibitors. However, phase II studies have not shown amelioration of ASD and cognitive deficits in individuals with TSC during mTOR inhibitor therapy. We asked here if developmental epilepsy, common in the majority of individuals with TSC but absent in most animal models, could explain the discrepancy. Methods At postnatal day P12, developmental status epilepticus (DSE) was induced in male Tsc2+/- (Eker) and wild-type rats, establishing four experimental groups including controls. In adult animals (n = 36), the behavior was assessed in the paradigms of social interaction test, elevated plus-maze, light-dark test, Y-maze, and novel object recognition. The testing was carried out before medication (T1), during a 2-week treatment with the mTOR inhibitor everolimus (T2) and after an 8-week washing-out (T3). Electroencephalographic (EEG) activity was recorded in a separate set of animals (n = 18). Results Both Tsc2+/- mutation and DSE caused social behavior deficits and epileptiform EEG abnormalities (T1). Everolimus led to a persistent improvement of the social deficit induced by Tsc2+/-, while deficits related to DSE did not respond to everolimus (T2, T3). Conclusions These findings may contribute to an explanation why ASD symptoms in individuals with TSC, where comorbid early-onset epilepsy is common, were not reliably ameliorated by mTOR inhibitors in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09357-2.
Collapse
Affiliation(s)
- Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Klovrza
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cestmir Vejmola
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jakub Rak
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Anna Sulakova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Nadine Bernhardt
- Department of Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Petrus J de Vries
- Division of Child & Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology CAS, Prague, Czech Republic
| | - Robert Waltereit
- Department of Child and Adolescent Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany. .,Department of Child and Adolescent Psychiatry, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
14
|
Costa-Ferro ZSM, de Oliveira GN, da Silva DV, Marinowic DR, Machado DC, Longo BM, da Costa JC. Intravenous infusion of bone marrow mononuclear cells promotes functional recovery and improves impaired cognitive function via inhibition of Rho guanine nucleotide triphosphatases and inflammatory signals in a model of chronic epilepsy. Brain Struct Funct 2020; 225:2799-2813. [PMID: 33128125 DOI: 10.1007/s00429-020-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Temporal lobe epilepsy is the most common form of intractable epilepsy in adults. More than 30% of individuals with epilepsy have persistent seizures and have drug-resistant epilepsy. Based on our previous findings, treatment with bone marrow mononuclear cells (BMMC) could interfere with early and chronic phase epilepsy in rats and in clinical settings. In this pilocarpine-induced epilepsy model, animals were randomly assigned to two groups: control (Con) and epileptic pre-treatment (Ep-pre-t). The latter had status epilepticus (SE) induced through pilocarpine intraperitoneal injection. Later, seizure frequency was assessed using a video-monitoring system. Ep-pre-t was further divided into epileptic treated with saline (Ep-Veh) and epileptic treated with BMMC (Ep-BMMC) after an intravenous treatment with BMMC was done on day 22 after SE. Analysis of neurobehavioral parameters revealed that Ep-BMMC had significantly lower frequency of spontaneous recurrent seizures (SRS) in comparison to Ep-pre-t and Ep-Veh groups. Hippocampus-dependent spatial and non-spatial learning and memory were markedly impaired in epileptic rats, a deficit that was robustly recovered by treatment with BMMC. Moreover, long-term potentiation-induced synaptic remodeling present in epileptic rats was restored by BMMC. In addition, BMMC was able to reduce abnormal mossy fiber sprouting in the dentate gyrus. Molecular analysis in hippocampal tissue revealed that BMMC treatment down-regulates the release of inflammatory cytokine tumor necrosis factor-α (TNF-α) and Allograft inflammatory factor-1 (AIF-1) as well as the Rho subfamily of small GTPases [Ras homolog gene family member A (RhoA) and Ras-related C3 botulinum toxin substrate 1 (Rac)]. Collectively, delayed BMMC treatment showed positive effects when intravenously infused into chronic epileptic rats.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Gutierre Neves de Oliveira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniele Vieira da Silva
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
15
|
Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 2020; 17:926-946. [PMID: 30592252 PMCID: PMC7052829 DOI: 10.2174/1570159x17666181227165722] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepi-leptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regu-lation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly mod-ulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive sta-tus epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Petra Mazzocchetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Victoria Elisa Rinaldi
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila - San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS "Santa Lucia", Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
16
|
O'Leary H, Vanderlinden L, Southard L, Castano A, Saba LM, Benke TA. Transcriptome analysis of rat dorsal hippocampal CA1 after an early life seizure induced by kainic acid. Epilepsy Res 2020; 161:106283. [PMID: 32062370 DOI: 10.1016/j.eplepsyres.2020.106283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Seizures that occur during early development are associated with adverse neurodevelopmental outcomes. Causation and mechanisms are currently under investigation. Induction of an early life seizure by kainic acid (KA) in immature rats on post-natal day (P) 7 results in behavioral changes in the adult rat that reflect social and intellectual deficits without overt cellular damage. Our previous work also demonstrated increased expression of CA1 hippocampal long-term potentiation (LTP) and reduced desensitization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPA-R) one week following a kainic acid induced seizure (KA-ELS). Here we used RNA sequencing (RNAseq) of mRNA from dorsal hippocampal CA1 to probe changes in mRNA levels one week following KA-ELS as a means to investigate the mechanisms for these functional changes. Ingenuity pathway analysis (IPA) confirmed our previous results by predicting an up-regulation of the synaptic LTP pathway. Differential gene expression results revealed significant differences in 7 gene isoforms. Additional assessments included AMPA-R splice variants and adenosine deaminase acting on RNA 2 (ADAR2) editing sites as a means to determine the mechanism for reduced AMPA-R desensitization. Splice variant analysis demonstrated that KA-ELS result in a small, but significant decrease in the "flop" isoform of Gria3, and editing site analysis revealed significant changes in the editing of a kainate receptor subunit, Grik2, and a serotonin receptor, Htr2c. While these specific changes may not account for altered AMPA-R desensitization, the differences indicate that KA-ELS alters gene expression in the hippocampal CA1 one week after the insult.
Collapse
Affiliation(s)
- Heather O'Leary
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, United States.
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, 80045, United States.
| | - Lara Southard
- Department of Psychology, Colorado State University, Fort Collins, 80523, United States.
| | - Anna Castano
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, United States.
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, 80045, United States.
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, 80045, United States; Department of Neurology, University of Colorado, School of Medicine, 80045, United States; Department of Pharmacology, University of Colorado, School of Medicine, 80045, United States; Department of Otolaryngology, University of Colorado, School of Medicine, 80045, United States; Neuroscience Graduate Program, University of Colorado, School of Medicine, 80045, United States.
| |
Collapse
|
17
|
Kang SK, Ammanuel S, Adler DA, Kadam SD. Rescue of PB-resistant neonatal seizures with single-dose of small-molecule TrkB antagonist show long-term benefits. Epilepsy Res 2020; 159:106249. [PMID: 31864171 PMCID: PMC6953748 DOI: 10.1016/j.eplepsyres.2019.106249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
A recently characterized CD-1 mouse model of phenobarbital (PB)-resistant neonatal ischemic-seizures (i.e.; unilateral carotid ligation) was shown to be associated with age-dependent (P7 vs. P10) acute seizure severity and PB-efficacy (i.e.; PB-resistant vs. PB-responsive). ANA12, a novel small-molecule TrkB antagonist, rescued the PB-resistance at P7 in a dose-dependent manner and prevented the post-ischemic downregulation of KCC2, the chief Cl- extruder in neurons. The long-term consequences of this novel rescue-intervention with ANA12 + PB in P7 and P10 ligated pups was investigated and compared to the standard first-line protocol of PB-alone loading dose. The mice underwent neurobehavioral testing, 24 h video-EEG-EMG monitoring, and immunohistochemistry in ipsi- and contralateral cortices as adults following the neonatal interventions. ANA12 + PB rescued the emergence of hyperactivity in post-ischemic P7, but not in P10 pups as adults. ANA12 + PB administration at neither P7 nor P10 significantly altered 24 h macro-sleep architecture in adults when compared to PB-alone. Behavioral state-dependent gamma (35-50 Hz) power homeostasis showed the most significant between-group differences that were age-dependent. ANA12 + PB treatment, but not PB-alone, rescued the loss of gamma power homeostasis present in P7 ligate-control but absent in P10 ligate group, highlighting the age-dependence. In contrast, PB-alone treatment, but not ANA12+PB, significantly reduced the elevated delta-AUC observed in P10 ligate-controls, when PB is efficacious by itself. These results indicate that the rescue of acute PB-resistant neonatal seizures using a novel intervention positively modulates the long-term outcomes at P7 when the seizures are refractory.
Collapse
Affiliation(s)
- S K Kang
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | - S Ammanuel
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - D A Adler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - S D Kadam
- Department of Neuroscience, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Enhanced Glutamatergic Currents at Birth in Shank3 KO Mice. Neural Plast 2019; 2019:2382639. [PMID: 31354805 PMCID: PMC6636579 DOI: 10.1155/2019/2382639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders induced by genetic and environmental factors. In our recent studies, we showed that the GABA developmental shifts during delivery and the second postnatal week are abolished in two rodent models of ASD. Maternal treatment around birth with bumetanide restored the GABA developmental sequence and attenuated the autism pathogenesis in offspring. Clinical trials conducted in parallel confirmed the usefulness of bumetanide treatment to attenuate the symptoms in children with ASD. Collectively, these observations suggest that an alteration of the GABA developmental sequence is a hallmark of ASD. Here, we investigated whether similar alterations occur in the Shank3 mouse model of ASD. We report that in CA3 pyramidal neurons, the driving force and inhibitory action of GABA are not different in naïve and Shank3-mutant age-matched animals at birth and during the second postnatal week. In contrast, the frequency of spontaneous excitatory postsynaptic currents is already enhanced at birth and persists through postnatal day 15. Therefore, in CA3 pyramidal neurons of Shank3-mutant mice, glutamatergic but not GABAergic activity is affected at early developmental stages, hence reflecting the heterogeneity of mechanisms underlying the pathogenesis of ASD.
Collapse
|
19
|
Leung LS. Long-lasting changes in hippocampal GABA B-receptor mediated inhibition following early-life seizures in kindling-prone but not kindling-resistant rats. Brain Res Bull 2019; 150:231-239. [PMID: 31200097 DOI: 10.1016/j.brainresbull.2019.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 11/30/2022]
Abstract
The hypotheses that hippocampal GABAB receptor dysfunction is a long-lasting consequence of early-life seizures, and its dependence on genetic background, were tested. Two strains of rats bred to be prone (FAST) or resistant (SLOW) to amygdala kindling were used. On postnatal day (PND) 10, control rats were injected with saline, and seizure rats with kainic acid to induce status epilepticus (SE) for 2 h. A significantly lower dose of kainic acid was found to induce SE in FAST as compared to SLOW rats. Population excitatory postsynaptic potentials (pEPSPs) and population spikes (PSs) were recorded in CA1 of hippocampal slices of adult rats in vitro, following stimulation of stratum radiatum. Input-output relation of the single-pulse pEPSP and PS did not show a significant difference between seizure and control rats, sex, or strain (FAST and SLOW). Paired-pulse PSs were significantly enhanced at 10-50 ms interpulse intervals, in FAST seizure male rats compared to FAST male controls, but not in other groups. In adult FAST but not SLOW rats, significantly lower suppression of pEPSPs at 250-300 ms following heterosynaptic burst stimulation was found in seizure rats compared to control rats; the heterosynaptic suppression of the pEPSP was blocked by selective GABAB receptor antagonist CGP55845A. The results provide evidence that an early-life SE has a long-lasting effect in decreasing GABAB receptor-mediated presynaptic inhibition in the hippocampus, in FAST but not in SLOW rats.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, Medical Science Building, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
20
|
Postnikova TY, Trofimova AM, Ergina JL, Zubareva OE, Kalemenev SV, Zaitsev AV. Transient Switching of NMDA-Dependent Long-Term Synaptic Potentiation in CA3-CA1 Hippocampal Synapses to mGluR 1-Dependent Potentiation After Pentylenetetrazole-Induced Acute Seizures in Young Rats. Cell Mol Neurobiol 2019; 39:287-300. [PMID: 30607810 PMCID: PMC11469857 DOI: 10.1007/s10571-018-00647-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/29/2018] [Indexed: 01/18/2023]
Abstract
The mechanisms of impairment in long-term potentiation after status epilepticus (SE) remain unclear. We investigated the properties of LTP induced by theta-burst stimulation in hippocampal slices of rats 3 h and 1, 3, and 7 days after SE. Seizures were induced in 3-week old rats by a single injection of pentylenetetrazole (PTZ). Only animals with generalized seizures lasting more than 30 min were included in the experiments. The results revealed that LTP was strongly attenuated in the CA1 hippocampal area after PTZ-induced SE as compared with that in control animals. Saturation of synaptic responses following epileptic activity does not explain weakening of LTP because neither the quantal size of the excitatory responses nor the slopes of the input-output curves for field excitatory postsynaptic potentials changed in the post-SE rats. After PTZ-induced SE, NMDA-dependent LTP was suppressed, and LTP transiently switched to the mGluR1-dependent form. This finding does not appear to have been reported previously in the literature. An antagonist of NMDA receptors, D-2-amino-5-phosphonovalerate, did not block LTP induction in 3-h and 1-day post-SE slices. An antagonist of mGluR1, FTIDS, completely prevented LTP in 1-day post-SE slices; whereas it did not affect LTP induction in control and post-SE slices at the other studied times. mGluR1-dependent LTP was postsynaptically expressed and did not require NMDA receptor activation. Recovery of NMDA-dependent LTP occurred 7 day after SE. Transient switching between NMDA-dependent LTP and mGluR1-dependent LTP could play a role in the pathogenesis of acquired epilepsy.
Collapse
Affiliation(s)
- Tatyana Y Postnikova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia
| | - Alina M Trofimova
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Julia L Ergina
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Sergey V Kalemenev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), Saint Petersburg, Russia.
- Peter the Great St.Petersburg Polytechnic University (SPbPU), Saint Petersburg, Russia.
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Saint Petersburg, Russia.
| |
Collapse
|
21
|
Semple BD, Zamani A, Rayner G, Shultz SR, Jones NC. Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiol Dis 2018; 123:27-41. [PMID: 30059725 DOI: 10.1016/j.nbd.2018.07.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Akram Zamani
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia.
| | - Genevieve Rayner
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre (Austin Campus), Heidelberg, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia; Comprehensive Epilepsy Program, Alfred Health, Australia.
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Monash University, 99 Commercial Road, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Royal Parade, Parkville, VIC, Australia.
| |
Collapse
|
22
|
Glass HC, Grinspan ZM, Shellhaas RA. Outcomes after acute symptomatic seizures in neonates. Semin Fetal Neonatal Med 2018; 23:218-222. [PMID: 29454756 DOI: 10.1016/j.siny.2018.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute symptomatic seizures are a common sign of neurological dysfunction and brain injury in neonates and occur in approximately one to three per 1000 live births. Seizures in neonates are usually a sign of underlying brain injury and, as such, are commonly associated with adverse outcomes. Neurological morbidities in survivors often co-occur; epilepsy, cerebral palsy, and intellectual disability often occur together in the most severely affected children. Risk factors for adverse outcome include prematurity, low Apgar scores, low pH on the first day of life, seizure onset <24 or >72 h after birth, abnormal neonatal neurological examination, abnormal neonatal electroencephalographic background, status epilepticus, and presence and pattern of brain injury (particularly deep gray or brainstem injury). Despite this list of potential indicators, accurate prediction of outcome in a given child remains challenging. There is great need for long-term, multicenter studies to examine risk factors for, and pathogenesis of, adverse outcomes following acute symptomatic seizures in neonates.
Collapse
Affiliation(s)
- Hannah C Glass
- Department of Neurology, Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Zachary M Grinspan
- Department of Healthcare Policy, Department of Research and Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Renée A Shellhaas
- Department of Pediatrics, Department of Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Folbergrová J, Ješina P, Kubová H, Otáhal J. Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Mol Neurobiol 2018; 55:7512-7522. [PMID: 29427088 DOI: 10.1007/s12035-018-0924-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
The presence of oxidative stress in immature brain has been demonstrated during the acute phase of status epilepticus (SE). The knowledge regarding the long periods of survival after SE is not unequivocal, lacking direct evidence. To examine the presence and time profile of oxidative stress, its functional effect on mitochondria and the influence of an antioxidant treatment in immature rats during epileptogenesis, status epilepticus (SE) was induced in immature 12-day-old rats by Li-pilocarpine and at selected periods of the epileptogenesis; rat pups were subjected to examinations. Hydroethidine method was employed for detection of superoxide anion (O2.-), 3-nitrotyrosine (3-NT), and 4-hydroxynonenal (4-HNE) for oxidative damage of mitochondrial proteins and complex I activity for mitochondrial function. Natural polyphenolic antioxidant resveratrol was given in two schemes: "acute treatment," i.p. administration 30 min before, 30 and 60 min after induction of SE and "full treatment" when applications continued once daily for seven consecutive days (25 mg/kg each dose). The obtained results clearly document that the period of epileptogenesis studied (up to 4 weeks) in immature brain is associated with the significant enhanced production of O2.-, the increased levels of 3-NT and 4-HNE and the persisting deficiency of complex I activity. Application of resveratrol either completely prevented or significantly reduced markers both of oxidative stress and mitochondrial dysfunction. The findings suggest that targeting oxidative stress in combination with current antiepileptic therapies may provide a benefit in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jaroslava Folbergrová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| | - Pavel Ješina
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Hana Kubová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Jakub Otáhal
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
24
|
Immature Status Epilepticus: In Vitro Models Reveal Differences in Cholinergic Control and HFO Properties of Adult CA3 Interictal Discharges in Temporal vs Septal Hippocampus. Neuroscience 2018; 369:386-398. [DOI: 10.1016/j.neuroscience.2017.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
|
25
|
Abend NS, Jensen FE, Inder TE, Volpe JJ. Neonatal Seizures. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:275-321.e14. [DOI: 10.1016/b978-0-323-42876-7.00012-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
FGF-FGFR Mediates the Activity-Dependent Dendritogenesis of Layer IV Neurons during Barrel Formation. J Neurosci 2017; 37:12094-12105. [PMID: 29097598 DOI: 10.1523/jneurosci.1174-17.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/07/2017] [Accepted: 09/27/2017] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known for their potent effects on cell proliferation/differentiation and cortical patterning in the developing brain. However, little is known regarding the roles of FGFs/FGFRs in cortical circuit formation. Here we show that Fgfr1/2/3 and Fgf7/9/10/22 mRNAs are expressed in the developing primary somatosensory (S1) barrel cortex. Barrel cortex layer IV spiny stellate cells (bSCs) are the primary recipients of ascending sensory information via thalamocortical axons (TCAs). Detail quantification revealed distinctive phases for bSC dendritogenesis: orienting dendrites toward TCAs, adding de novo dendritic segments, and elongating dendritic length, while maintaining dendritic patterns. Deleting Fgfr1/2/3 in bSCs had minimal impact on dendritic polarity but transiently increased the number of dendritic segments. However, 6 d later, FGFR1/2/3 loss of function reduced dendritic branch numbers. These data suggest that FGFs/FGFRs have a role in stabilizing dendritic patterning. Depolarization of cultured mouse cortical neurons upregulated the levels of several Fgf/Fgfr mRNAs within 2 h. In vivo, within 6 h of systemic kainic acid administration at postnatal day 6, mRNA levels of Fgf9, Fgf10, Fgfr2c, and Fgfr3b in S1 cortices were enhanced, and this was accompanied by exuberant dendritogenesis of bSCs by 24 h. Deleting Fgfr1/2/3 abolished kainic acid-induced bSC dendritic overgrowth. Finally, FGF9/10 gain of function also resulted in extensive dendritogenesis. Together, our data suggest that FGFs/FGFRs can be regulated by glutamate transmission to modulate/stabilize bSC dendritic complexity. Both male and female mice were used for our study.SIGNIFICANCE STATEMENT Glutamatergic transmission plays critical roles in cortical circuit formation. Its dysregulation has been proposed as a core factor in the etiology of many neurological diseases. We found that excessive glutamate transmission upregulated mRNA expression of Fgfrs and their ligands Fgfs Deleting Fgfr1/2/3 not only impaired bSC dendritogenesis but also abolished glutamate transmission-induced dendritic overgrowth. Overexpressing FGF9 or FGF10 in cortical glutamatergic neurons results in excessive dendritic outgrowth within 24 h, resembling the changes induced by excessive glutamate transmission. Our findings provide strong evidence for the physiological role of fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in establishing and maintaining cortical circuits. Perturbing the expression levels of FGFs/FGFRs by excessive glutamatergic neurotransmission could lead to abnormal neuronal circuits, which may contribute to neurological and psychiatric disease.
Collapse
|
27
|
mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. Eur Arch Psychiatry Clin Neurosci 2017; 267:455-463. [PMID: 27263037 DOI: 10.1007/s00406-016-0703-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022]
Abstract
Epilepsy is a major risk factor for autism spectrum disorder (ASD) and complicates clinical manifestations and management of ASD significantly. Tuberous sclerosis complex (TSC), caused by TSC1 or TSC2 mutations, is one of the medical conditions most commonly associated with ASD and has become an important model to examine molecular pathways associated with ASD. Previous research showed reversal of autism-like social deficits in Tsc1 +/- and Tsc2 +/- mouse models by mammalian target of rapamycin (mTOR) inhibitors. However, at least 70 % of individuals with TSC also have epilepsy, known to complicate the severity and treatment responsiveness of the behavioural phenotype. No previous study has examined the impact of seizures on neurocognitive reversal by mTOR inhibitors. Adult Tsc2 +/- (Eker)-rats express social deficits similar to Tsc2 +/- mice, with additive social deficits from developmental status epilepticus (DSE). DSE was induced by intraperitoneal injection with kainic acid at post-natal days P7 and P14 (n = 12). The experimental group that modelled TSC pathology carried the Tsc2 +/- (Eker)-mutation and was challenged with DSE. The wild-type controls had not received DSE (n = 10). Four-month-old animals were analysed for social behaviour (T1), then treated three times during 1 week with 1 mg/kg everolimus and finally retested in the post-treatment behavioural analysis (T2). In the experimental group, both social interaction and social cognition were impaired at T1. After treatment at T2, behaviour in the experimental group was indistinguishable from controls. The mTOR inhibitor, everolimus, reversed social deficit behaviours in the Tsc2 haploinsufficiency plus DSE animal model to control levels.
Collapse
|
28
|
The Impact of Electrographic Seizures on Developing Hippocampal Dendrites Is Calcineurin Dependent. eNeuro 2017; 4:eN-NWR-0014-17. [PMID: 28462391 PMCID: PMC5409981 DOI: 10.1523/eneuro.0014-17.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022] Open
Abstract
Neurobehavioral abnormalities are commonly associated with intractable childhood epilepsy. Studies from numerous labs have demonstrated cognitive and socialization deficits in rats and mice that have experienced early-life seizures. However, the cellular and molecular mechanisms underlying these effects are unknown. Previously, experiments have shown that recurrent seizures in infancy suppress the growth of hippocampal dendrites at the same time they impair learning and memory. Experiments in slice cultures have also demonstrated dendrite growth suppression. Here, we crossed calcineurin B1 (CaNB1) floxed and Thy1GFP-M mice to produce mice that were homozygous for the both the floxed CaNB1 and the Thy1GFP-M transgene. Littermates that were homozygous for wild-type CaNB1 and Thy1GFP-M served as controls. Hippocampal slice cultures from these mice were transfected with an AAV/hSyn-mCherry-Cre virus to eliminate CaNB1 from neurons. Immunohistochemical results showed that CaNB1 was eliminated from at least 90% of the transfected CA1 pyramidal cells. Moreover, the CaN-dependent nuclear translocation of the CREB transcription coactivator, CREB-regulated transcriptional coactivator 1 (CRTC1), was blocked in transfected neurons. Cell attach patch recordings combined with live multiphoton imaging demonstrated that the loss of CaNB1 did not prevent neurons from fully participating in electrographic seizure activity. Finally, dendrite reconstruction showed that the elimination of CaNB1 prevented seizure-induced decreases in both dendrite length and branch number. Results suggest that CaN plays a key role in seizure-induced dendrite growth suppression and may contribute to the neurobehavioral comorbidities of childhood epilepsy.
Collapse
|
29
|
Reynolds CD, Smith G, Jefferson T, Lugo JN. The effect of early life status epilepticus on ultrasonic vocalizations in mice. Epilepsia 2016; 57:1377-85. [PMID: 27378279 DOI: 10.1111/epi.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Infant crying is a series of innate vocal patterns intended to elicit the attention of adult caregivers for fulfillment of specific needs such as pain, hunger, or hypostimulation. It is one of the earliest forms of observable communication. In neonatal rodents, this behavior has recently been investigated as a potential early behavioral marker of neural deficits in neurodevelopmental disorders. However, few studies have examined the effects of seizures on vocalization behavior during the neonatal period. The purpose of this study is to investigate the effect of a single kainate-induced early life seizure on vocalization behavior in mice. This study also investigates the subsequent effect of seizures on two pathways critical for early neural development and epileptogenesis: the phosphoinositide 3-kinase|serine/threonine kinase|mammalian target of rapamycin (PI3K-Akt-mTOR) and canonical (Wingless-Int Wnt) intracellular signaling pathways. METHODS On postnatal day 10, male and female 129SvEvTac mice received a single intraperitoneal injection of kainic acid (2.5 mg/kg) or vehicle injection. The kainate administration resulted in 1-2 h of status epilepticus. On postnatal days 11 and 12, the quantity and duration of isolation-induced ultrasonic vocalizations were recorded. Western blotting analyses were performed using male and female pups on postnatal day 12. RESULTS There was significant, male-specific suppression in the quantity and total duration of 50-kHz calls on postnatal day 12 following seizures. The hippocampi of male mice on this postnatal day also revealed male-specific changes in the PI3K-Akt-mTOR intracellular signaling pathway, as well as changes in phosphorylated fragile × mental retardation protein. SIGNIFICANCE These findings demonstrate that early life seizures can disrupt communication behavior in neonatal mice.
Collapse
Affiliation(s)
- Conner D Reynolds
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A
| | - Gregory Smith
- Institute of Biomedical Sciences, Baylor University, Waco, Texas, U.S.A
| | - Taylor Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, U.S.A.,Institute of Biomedical Sciences, Baylor University, Waco, Texas, U.S.A
| |
Collapse
|
30
|
Folbergrová J, Ješina P, Kubová H, Druga R, Otáhal J. Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Front Cell Neurosci 2016; 10:136. [PMID: 27303267 PMCID: PMC4881382 DOI: 10.3389/fncel.2016.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a neurologic disorder, particularly frequent in infants and children where it can lead to serious consequences later in life. Oxidative stress and mitochondrial dysfunction are implicated in the pathogenesis of many neurological disorders including epilepsy in adults. However, their role in immature epileptic brain is unclear since there have been two contrary opinions: oxidative stress is age-dependent and does not occur in immature brain during status epilepticus (SE) and, on the other hand, evidence of oxidative stress in immature brain during a specific model of SE. To solve this dilemma, we have decided to investigate oxidative stress following SE induced in immature 12-day-old rats by three substances with a different mechanism of action, namely 4-aminopyridine, LiCl-pilocarpine or kainic acid. Fluoro-Jade-B staining revealed mild brain damage especially in hippocampus and thalamus in each of the tested models. Decrease of glucose and glycogen with parallel rises of lactate clearly indicate high rate of glycolysis, which was apparently not sufficient in 4-AP and Li-Pilo status, as evident from the decreases of PCr levels. Hydroethidium method revealed significantly higher levels of superoxide anion (by ∼60%) in the hippocampus, cerebral cortex and thalamus of immature rats during status. SE lead to mitochondrial dysfunction with a specific pronounced decrease of complex I activity that persisted for a long period of survival. Complexes II and IV activities remained in the control range. Antioxidant treatment with SOD mimetic MnTMPYP or peroxynitrite scavenger FeTPPS significantly attenuated oxidative stress and inhibition of complex I activity. These findings bring evidence that oxidative stress and mitochondrial dysfunction are age and model independent, and may thus be considered a general phenomenon. They can have a clinical relevance for a novel approach to the treatment of epilepsy, allowing to target the mechanisms which play a crucial or additive role in the pathogenesis of epilepsies in infants and children.
Collapse
|
31
|
Torolira D, Suchomelova L, Wasterlain CG, Niquet J. Widespread neuronal injury in a model of cholinergic status epilepticus in postnatal day 7 rat pups. Epilepsy Res 2015; 120:47-54. [PMID: 26709882 DOI: 10.1016/j.eplepsyres.2015.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/27/2015] [Accepted: 11/09/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Status Epilepticus (SE) is common in neonates and infants, and is associated with neuronal injury and adverse developmental outcomes. However, the role of SE in this injury is uncertain. Until now, we have lacked an animal model in which seizures result in neuronal injury in rodent models at ages below postnatal day 12 (P12) unless seizures are combined with inflammatory stressors. METHODS We induced SE with high-dose lithium and pilocarpine in P7 rats, which are developmentally close to human neonates. Several EEG measures and O2 saturation were recorded during the 6h following initiation of SE. We assessed neuronal injury at 6 and 24h post-SE onset using Fluoro-Jade B staining (FJB) and caspase-3a immunoreactivity (IR). RESULTS EEGs showed continuous polyspikes activity for 54.3 ± 6.7 min, while O2 saturation showed no significant hypoxemia. By 24h after SE onset, significant neuronal injury was observed in CA1/subiculum, CA3, dentate gyrus, thalamus, neocortex, amygdala, piriform cortex, lateral entorhinal cortex, hypothalamus, caudate putamen, globus pallidus, ventral pallidum, and nucleus accumbens. At 24h post-SE, caspase-3a IR was significantly increased in CA1/subiculum, thalamus, and neocortex compared to sham, and caspase-3a IR neurons had fragmented nuclei, suggesting that SE triggered an irreversible form of cell injury. SIGNIFICANCE In conclusion, we have developed a model of cholinergic SE in P7 rat pups, which combines high survival (69.9% survival at 24h) and widespread brain injury. These studies suggest that the immature brain is vulnerable to severe forms of SE.
Collapse
Affiliation(s)
- Daniel Torolira
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Lucie Suchomelova
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Claude G Wasterlain
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jerome Niquet
- Epilepsy Research Laboratory (151), Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Lenck-Santini PP, Scott RC. Mechanisms Responsible for Cognitive Impairment in Epilepsy. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a022772. [PMID: 26337111 DOI: 10.1101/cshperspect.a022772] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epilepsy is often associated with cognitive and behavioral impairments that can have profound impact on the quality of life of patients. Although the mechanisms of cognitive impairment are not completely understood, we make an attempt to describe, from a systems perspective, how information processing is affected in epilepsy disorders. The aim of this review is to (1) define the nature of cognitive deficits associated with epilepsy, (2) review fundamental systems-level mechanisms underlying information processing, and (3) describe how information processing is dysfunctional in epilepsy and investigate the relative contributions of etiology, seizures, and interictal discharges (IDs). We conclude that these mechanisms are likely to be important and deserve more detailed scrutiny in the future.
Collapse
Affiliation(s)
| | - Rodney C Scott
- Institute of Child Health, University College of London, London WC1N 3JH, United Kingdom
| |
Collapse
|
33
|
Liu Y, Wang XY, Li D, Yang L, Huang SP. Short-term use of antiepileptic drugs is neurotoxic to the immature brain. Neural Regen Res 2015; 10:599-604. [PMID: 26170821 PMCID: PMC4424753 DOI: 10.4103/1673-5374.155434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2015] [Indexed: 11/29/2022] Open
Abstract
Previous studies have shown that the long-term use of antiepileptic drugs can cause nervous system damage. However, short-term antiepileptic drug treatment is frequently given to infants, especially neonates, to control seizure. Whether the short-term use of antiepileptic drugs is neurotoxic remains unclear. In the present study, immature rats, 3–21 days of age, were intraperitoneally injected with phenobarbital and/or topiramate for 3 consecutive days. Hematoxylin-eosin and immunohistochemical staining revealed that phenobarbital and topiramate, individually or in combination, were cytotoxic to hippocampal CA1 neurons and inhibited the expression of GluR1 and NR2B, excitatory glutamate receptor subunits. Furthermore, the combination of the two drugs caused greater damage than either drug alone. The results demonstrate that the short-term use of antiepileptic drugs damages neurons in the immature brain and that the combined use of antiepileptic drugs exacerbates damage. Our findings suggest that clinicians should consider the potential neurotoxic risk associated with the combined use of antiepileptic drugs in the treatment of seizure.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xue-Ying Wang
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Dan Li
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lin Yang
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shao-Ping Huang
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
34
|
Bernard PB, Castano AM, Beitzel CS, Carlson VB, Benke TA. Behavioral changes following a single episode of early-life seizures support the latent development of an autistic phenotype. Epilepsy Behav 2015; 44:78-85. [PMID: 25659043 PMCID: PMC4405461 DOI: 10.1016/j.yebeh.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
Abstract
We probed the developmental and behavioral consequences of a single episode of kainic acid-induced early-life seizures (KA-ELS) in the rat on postnatal day 7. Correlates of developmental trajectory were not altered, demonstrating that long-term consequences following KA-ELS are not initiated by secondary causes, such as malnourishment or alterations in maternal care. We report reduced marble burying in adult rats, suggestive of restricted interests, a trait common to experimental and clinical autism. We did not detect increased repetitive grooming during habituated cage behavior. However, we did detect reduced grooming in adult KA-ELS rats in the presence of an unfamiliar rat, supporting altered social anxiety following KA-ELS. Reanalysis of a social approach task further indicated abnormal social interactions. Taken together with previous physiological and behavioral data, these data support the hypothesis that KA-ELS lead to a latent autistic phenotype in adult rats not attributable to other early alterations in development.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Anna M Castano
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Christy S Beitzel
- Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA
| | - Vivian B Carlson
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, USA; Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA; Department of Neurology, University of Colorado, School of Medicine, USA; Department of Pharmacology, University of Colorado, School of Medicine, USA; Department of Otolaryngology, University of Colorado, School of Medicine, USA.
| |
Collapse
|
35
|
Abstract
Epilepsy is more prevalent in populations with high measures of stress, but the neurobiological mechanisms are unclear. Stress is a common precipitant of seizures in individuals with epilepsy, and may provoke seizures by several mechanisms including changes in neurotransmitter and hormone levels within the brain. Importantly, stress during sensitive periods early in life contributes to ‘brain programming’, influencing neuronal function and brain networks. However, it is unclear if early-life stress influences limbic excitability and promotes epilepsy. Here we used an established, naturalistic model of chronic early-life stress (CES), and employed chronic cortical and limbic video-EEGs combined with molecular and cellular techniques to probe the contributions of stress to age-specific epilepsies and network hyperexcitability and identify the underlying mechanisms. In control male rats, EEGs obtained throughout development were normal and no seizures were observed. EEGs demonstrated epileptic spikes and spike series in the majority of rats experiencing CES, and 57% of CES rats developed seizures: Behavioral events resembling the human age-specific epilepsy infantile spasms occurred in 11/23 (48%), accompanied by EEG spikes and/or electrodecrements, and two additional rats (9%) developed limbic seizures that involved the amygdala. Probing for stress-dependent, endogenous convulsant molecules within amygdala, we examined the expression of the pro-convulsant neuropeptide corticotropin-releasing hormone (CRH), and found a significant increase of amygdalar--but not cortical--CRH expression in adolescent CES rats. In conclusion, CES of limited duration has long-lasting effects on brain excitability and may promote age-specific seizures and epilepsy. Whereas the mechanisms involved require further study, these findings provide important insights into environmental contributions to early-life seizures.
Collapse
|
36
|
Sayin U, Hutchinson E, Meyerand ME, Sutula T. Age-dependent long-term structural and functional effects of early-life seizures: evidence for a hippocampal critical period influencing plasticity in adulthood. Neuroscience 2014; 288:120-134. [PMID: 25555928 DOI: 10.1016/j.neuroscience.2014.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/15/2014] [Accepted: 12/14/2014] [Indexed: 12/19/2022]
Abstract
Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). Magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and electrophysiological methods at ⩾P95 following seizures induced from P1 to P90 demonstrated consistent patterns of gross atrophy, microstructural abnormalities in the corpus callosum (CC) and hippocampus, and functional alterations in hippocampal circuitry at ⩾P95 that were independent of the method of seizure induction and varied systematically as a function of age at the time of seizures. Three distinct epochs were observed in which seizures resulted in distinct long-term structural and functional outcomes at ⩾P95. Seizures prior to P20 resulted in DTI abnormalities in CC and hippocampus in the absence of gross cerebral atrophy, and increased paired-pulse inhibition (PPI) in the dentate gyrus (DG) at ⩾P95. Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the DG at ⩾P95. In contrast, seizures between P20 and P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the DG compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal-dependent behaviors and functional properties.
Collapse
Affiliation(s)
- U Sayin
- Department of Neurology, University of Wisconsin UW Medical Foundation Centennial Building 1685 Highland Ave Madison, WI 53705, USA
| | - E Hutchinson
- Department of Neurology, University of Wisconsin UW Medical Foundation Centennial Building 1685 Highland Ave Madison, WI 53705, USA.,Department of Medical Physics, University of Wisconsin Wisconsin Institutes Medical Research 1111 Highland Avenue Madison, WI 53705, USA
| | - M E Meyerand
- Department of Medical Physics, University of Wisconsin Wisconsin Institutes Medical Research 1111 Highland Avenue Madison, WI 53705, USA.,Department of Biomedical Engineering, University of Wisconsin Room 2130 Engineering Centers Building 1550 Engineering Drive Madison, WI 53706-1609, USA
| | - T Sutula
- Department of Neurology, University of Wisconsin UW Medical Foundation Centennial Building 1685 Highland Ave Madison, WI 53705, USA
| |
Collapse
|
37
|
Akman O, Moshé SL, Galanopoulou AS. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci Ther 2014; 21:181-92. [PMID: 25311088 DOI: 10.1111/cns.12335] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 12/25/2022] Open
Abstract
AIMS Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. METHODS 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. RESULTS 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. CONCLUSIONS Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events.
Collapse
Affiliation(s)
- Ozlem Akman
- Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Istanbul, Turkey
| | | | | |
Collapse
|
38
|
Bernard PB, Benke TA. Early life seizures: evidence for chronic deficits linked to autism and intellectual disability across species and models. Exp Neurol 2014; 263:72-8. [PMID: 25284323 DOI: 10.1016/j.expneurol.2014.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 11/08/2022]
Abstract
Recent work in Exp Neurol by Lugo et al. (2014b) demonstrated chronic alterations in sociability, learning and memory following multiple early life seizures (ELS) in a mouse model. This work adds to the growing body of evidence supporting the detrimental nature of ELS on the developing brain to contribute to aspects of an autistic phenotype with intellectual disability. Review of the face validity of behavioral testing and the construct validity of the models used informs the predictive ability and thus the utility of these models to translate underlying molecular and cellular mechanisms into future human studies.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, USA; Neuroscience Graduate Program, University of Colorado, School of Medicine, USA; Department of Neurology, University of Colorado, School of Medicine, USA; Department of Pharmacology, University of Colorado, School of Medicine, USA; Department of Otolaryngology, University of Colorado, School of Medicine, USA.
| |
Collapse
|
39
|
Castelhano ASS, Ramos FO, Scorza FA, Cysneiros RM. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination. J Neural Transm (Vienna) 2014; 122:349-55. [PMID: 25139483 DOI: 10.1007/s00702-014-1291-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/05/2014] [Indexed: 11/08/2022]
Abstract
Previously, we demonstrated that male Wistar rats submitted to neonatal status epilepticus showed abnormal social behavior characterized by deficit in social discrimination and enhanced emotionality. Taking into account that early insult can produce different biological manifestations in a gender-dependent manner, we aimed to investigate the social behavior and anxiety-like behavior in female Wistar rats following early life seizures. Neonate female Wistar rats at 9 days postnatal were subject to pilocarpine-induced status epilepticus and the control received saline. Behavioral tests started from 60 days postnatal and were carried out only during the diestrus phase of the reproductive cycle. In sociability test experimental animals exhibited reduced motivation for social encounter and deficit in social discrimination. In open field and the elevated plus maze, experimental animals showed enhanced emotionality with no changes in basal locomotor activity. The results showed that female rats submitted to neonatal status epipepticus showed impaired social behavior, characterized by reduced motivation to novelty and deficit in social discrimination in addition to enhanced emotionality.
Collapse
|
40
|
Zhang FX, Sun QJ, Zheng XY, Lin YT, Shang W, Wang AH, Duan RS, Chi ZF. Abnormal expression of synaptophysin, SNAP-25, and synaptotagmin 1 in the hippocampus of kainic acid-exposed rats with behavioral deficits. Cell Mol Neurobiol 2014; 34:813-24. [PMID: 24832394 PMCID: PMC11488916 DOI: 10.1007/s10571-014-0068-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/27/2014] [Indexed: 12/29/2022]
Abstract
Temporal lobe epilepsy is characterized by spontaneous recurrent seizures (SRS) and associated with behavioral problems. However, the molecular mechanisms underlying these problems are not yet clear. In this study, kainic acid (KA) was systemically administered to immature male Wistar rats to induce SRS. The behavior of the immature rats was evaluated with a water maze, elevated-plus mazes, and open field tests. The expression patterns of synaptophysin, SNAP-25, and synaptotagmin 1 (Syt 1) were examined by reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. KA-treated rats with SRS demonstrated learning and memory deficits, reduced anxiety, and increased locomotor activity, compared with placebo-treated rats and KA-treated rats without SRS. No neuronal cell loss was observed in the hippocampus 6 weeks after exposure to KA. However, RT-PCR and Western blot analyses revealed decreased synaptophysin, SNAP-25, and Syt 1 expression in KA-treated rats with SRS. Synaptophysin, SNAP-25, and Syt1 expression levels were found to be positively correlated with learning and memory but negatively correlated with anxiety and locomotor activity. These data suggested that SRS may induce changes in synaptophysin, SNAP-25, and Syt1 expression and may be functionally related to SRS-induced behavioral deficits.
Collapse
Affiliation(s)
- Feng-Xia Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 jingwuweiqi Road, Jinan, 250021 China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Qin-Jian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 jingwuweiqi Road, Jinan, 250021 China
| | - Xing-Yue Zheng
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 jingwuweiqi Road, Jinan, 250021 China
| | - You-Ting Lin
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324 jingwuweiqi Road, Jinan, 250021 China
| | - Wei Shang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250100 China
| | - Ai-Hua Wang
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, 250014 China
| | - Rui-Sheng Duan
- Department of Neurology, Qianfoshan Hospital, Shandong University, Jinan, 250014 China
| | - Zhao-Fu Chi
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, 250012 China
| |
Collapse
|
41
|
Glass HC, Wusthoff CJ, Shellhaas RA, Tsuchida TN, Bonifacio SL, Cordeiro M, Sullivan J, Abend NS, Chang T. Risk factors for EEG seizures in neonates treated with hypothermia: a multicenter cohort study. Neurology 2014; 82:1239-44. [PMID: 24610326 DOI: 10.1212/wnl.0000000000000282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the risk factors for electrographic seizures among neonates treated with therapeutic hypothermia for hypoxic-ischemic encephalopathy (HIE). METHODS Three-center observational cohort study of 90 term neonates treated with hypothermia, monitored with continuous video-EEG (cEEG) within the first day of life (median age at onset of recording 9.5 hours, interquartile range 6.3-14.5), and continued for >24 hours (total recording 93.3 hours, interquartile range 80.1-112.8 among survivors). A pediatric electroencephalographer at each site reviewed cEEGs for electrographic seizures and initial EEG background category. RESULTS A total of 43 (48%) had electrographic seizures, including 9 (10%) with electrographic status epilepticus. Abnormal initial EEG background classification (excessively discontinuous, depressed and undifferentiated, burst suppression, or extremely low voltage), but not clinical variables (including pH <6.8, base excess ≤-20, or 10-minute Apgar ≤ 3), was strongly associated with seizures. CONCLUSIONS Electrographic seizures are common among neonates with HIE undergoing hypothermia and are difficult to predict based on clinical features. These results justify the recommendation for cEEG monitoring in neonates treated with hypothermia.
Collapse
Affiliation(s)
- Hannah C Glass
- From the Departments of Neurology (H.C.G., J.S.) and Pediatrics (H.C.G., S.L.B., J.S.), University of California, San Francisco; Division of Child Neurology (C.J.W.), Stanford University School of Medicine, California; the Departments of Neurology and Pediatrics (N.S.A.), The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania; the Department of Pediatrics & Communicable Diseases (Division of Pediatric Neurology) (R.A.S.), University of Michigan, Ann Arbor; and the Division of Neurophysiology, Epilepsy & Critical Care (T.N.T., M.C., T.C.), Children's National Medical Center, Washington, DC
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Seizures occur in approximately 1 to 5 per 1000 live births and are among the most common neurologic conditions managed by a neonatal neurocritical care service. There are several, age-specific factors that are particular to the developing brain, which influence excitability and seizure generation, response to medications, and impact of seizures on brain structure and function. Neonatal seizures are often associated with serious underlying brain injury such as hypoxia-ischemia, stroke, or hemorrhage. Conventional, prolonged, continuous video electroencephalogram is the gold standard for detecting seizures, whereas amplitude-integrated EEG is a convenient and useful bedside tool.
Collapse
Affiliation(s)
- Hannah C. Glass
- Departments of Neurology and Pediatrics University of California, San Francisco, United States of America
| |
Collapse
|
43
|
Maia GH, Quesado JL, Soares JI, do Carmo JM, Andrade PA, Andrade JP, Lukoyanov NV. Loss of hippocampal neurons after kainate treatment correlates with behavioral deficits. PLoS One 2014; 9:e84722. [PMID: 24409306 PMCID: PMC3883667 DOI: 10.1371/journal.pone.0084722] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/18/2013] [Indexed: 11/18/2022] Open
Abstract
Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain.
Collapse
Affiliation(s)
- Gisela H. Maia
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - José L. Quesado
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Joana I. Soares
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Joana M. do Carmo
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Pedro A. Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - José P. Andrade
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Nikolai V. Lukoyanov
- Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- Neural Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
Effects of undernourishment, recurrent seizures and enriched environment during early life in hippocampal morphology. Int J Dev Neurosci 2013; 33:81-7. [DOI: 10.1016/j.ijdevneu.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022] Open
|
45
|
Lakhina V, Subramanian L, Huilgol D, Shetty AS, Vaidya VA, Tole S. Seizure evoked regulation of LIM-HD genes and co-factors in the postnatal and adult hippocampus. F1000Res 2013; 2:205. [PMID: 25110573 PMCID: PMC4111125 DOI: 10.12688/f1000research.2-205.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/03/2022] Open
Abstract
The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity. We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed. We report a distinct and field-specific regulation of LIM-HD genes
Lhx1,Lhx2, and
Lhx9, LIM-only gene
Lmo4, and cofactor
Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals. Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Lewis Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Lakshmi Subramanian
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Department of Neurology, University of California, San Francisco, CA, USA
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Cold Spring Harbor Laboratory, NY, USA
| | - Ashwin S Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
46
|
Brooks-Kayal AR, Bath KG, Berg AT, Galanopoulou AS, Holmes GL, Jensen FE, Kanner AM, O'Brien TJ, Whittemore VH, Winawer MR, Patel M, Scharfman HE. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 2013; 54 Suppl 4:44-60. [PMID: 23909853 PMCID: PMC3924317 DOI: 10.1111/epi.12298] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many symptoms of neurologic or psychiatric illness--such as cognitive impairment, depression, anxiety, attention deficits, and migraine--occur more frequently in people with epilepsy than in the general population. These diverse comorbidities present an underappreciated problem for people with epilepsy and their caregivers because they decrease quality of life, complicate treatment, and increase mortality. In fact, it has been suggested that comorbidities can have a greater effect on quality of life in people with epilepsy than the seizures themselves. There is increasing recognition of the frequency and impact of cognitive and behavioral comorbidities of epilepsy, highlighted in the 2012 Institute of Medicine report on epilepsy. Comorbidities have also been acknowledged, as a National Institutes of Health (NIH) Benchmark area for research in epilepsy. However, relatively little progress has been made in developing new therapies directed specifically at comorbidities. On the other hand, there have been many advances in understanding underlying mechanisms. These advances have made it possible to identify novel targets for therapy and prevention. As part of the International League Against Epilepsy/American Epilepsy Society workshop on preclinical therapy development for epilepsy, our working group considered the current state of understanding related to terminology, models, and strategies for therapy development for the comorbidities of epilepsy. Herein we summarize our findings and suggest ways to accelerate development of new therapies. We also consider important issues to improve research including those related to methodology, nonpharmacologic therapies, biomarkers, and infrastructure.
Collapse
Affiliation(s)
- Amy R Brooks-Kayal
- Departments of Pediatrics, Neurology and Pharmaceutical Sciences, University of Colorado Schools of Medicine and Pharmacy, Children's Hospital Colorado, Aurora, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bernard PB, Castano AM, O'Leary H, Simpson K, Browning MD, Benke TA. Phosphorylation of FMRP and alterations of FMRP complex underlie enhanced mLTD in adult rats triggered by early life seizures. Neurobiol Dis 2013; 59:1-17. [PMID: 23831253 DOI: 10.1016/j.nbd.2013.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022] Open
Abstract
Outside of Fragile X syndrome (FXS), the role of Fragile-X Mental Retardation Protein (FMRP) in mediating neuropsychological abnormalities is not clear. FMRP, p70-S6 kinase (S6K) and protein phosphatase 2A (PP2A) are thought to cooperate as a dynamic signaling complex. In our prior work, adult rats have enhanced CA1 hippocampal long-term depression (LTD) following an early life seizure (ELS). We now show that mGluR-mediated LTD (mLTD) is specifically enhanced following ELS, similar to FMRP knock-outs. Total FMRP expression is unchanged but S6K is hyperphosphorylated, consistent with S6K overactivation. We postulated that either disruption of the FMRP-S6K-PP2A complex and/or removal of this complex from synapses could explain our findings. Using subcellular fractionation, we were surprised to find that concentrations of FMRP and PP2A were undisturbed in the synaptosomal compartment but reduced in parallel in the cytosolic compartment. Following ELS FMRP phosphorylation was reduced in the cytosolic compartment and increased in the synaptic compartment, in parallel with the compartmentalization of S6K activation. Furthermore, FMRP and PP2A remain bound following ELS. In contrast, the interaction of S6K with FMRP is reduced by ELS. Blockade of PP2A results in enhanced mLTD; this is occluded by ELS. This suggests a critical role for the location and function of the FMRP-S6K-PP2A signaling complex in limiting the amount of mLTD. Specifically, non-synaptic targeting and the function of the complex may influence the "set-point" for regulating mLTD. Consistent with this, striatal-enriched protein tyrosine phosphatase (STEP), an FMRP "target" which regulates mLTD expression, is specifically increased in the synaptosomal compartment following ELS. Further, we provide behavioral data to suggest that FMRP complex dysfunction may underlie altered socialization, a symptom associated and observed in other rodent models of autism, including FXS.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | | | | | | | | | | |
Collapse
|
48
|
Castelhano ASS, Cassane GDST, Scorza FA, Cysneiros RM. Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 2013; 7:36. [PMID: 23675329 PMCID: PMC3648772 DOI: 10.3389/fnbeh.2013.00036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023] Open
Abstract
Neonatal seizures are the most common manifestation of neurological dysfunction in the neonate. The prognosis of neonatal seizures is highly variable, and the controversy remains whether the severity, duration, or frequency of seizures may contribute to brain damage independently of its etiology. Animal data indicates that seizures during development are associated with a high probability of long-term adverse effects such as learning and memory impairment, behavioral changes and even epilepsy, which is strongly age dependent, as well as the severity, duration, and frequency of seizures. In preliminary studies, we demonstrated that adolescent male rats exposed to one-single neonatal status epilepticus (SE) episode showed social behavior impairment, and we proposed the model as relevant for studies of developmental disorders. Based on these facts, the goal of this study was to verify the existence of a persistent deficit and if the anxiety-related behavior could be associated with that impairment. To do so, male Wistar rats at 9 days postnatal were submitted to a single episode of SE by pilocarpine injection (380 mg/kg, i.p.) and control animals received saline (0.9%, 0.1 mL/10 g). It was possible to demonstrate that in adulthood, animals exposed to neonatal SE displayed low preference for social novelty, anxiety-related behavior, and increased stereotyped behavior in anxiogenic environment with no locomotor activity changes. On the balance, these data suggests that neonatal SE in rodents leads to altered anxiety-related and abnormal social behaviors.
Collapse
|
49
|
Wasterlain CG, Gloss DS, Niquet J, Wasterlain AS. Epileptogenesis in the developing brain. HANDBOOK OF CLINICAL NEUROLOGY 2013; 111:427-39. [PMID: 23622191 DOI: 10.1016/b978-0-444-52891-9.00046-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neonatal brain has poorly developed GABAergic circuits, and in many of them GABA is excitatory, favoring ictogenicity. Frequently repeated experimental seizures impair brain development in an age-dependent manner. At critical ages, they delay developmental milestones, permanently lower seizure thresholds, and can cause very specific cognitive and learning deficits, such as the permanent impairment of neuronal spatial maps. Some types of experimental status epilepticus cause neuronal necrosis and apoptosis, and are followed by chronic epilepsy with spontaneous recurrent seizures, others appear relatively benign, so that seizure-induced neuronal injury and epileptogenesis are highly age-, seizure model-, and species-dependent. Experimental febrile seizures can be epileptogenic, and hyperthermia aggravates both neuronal injury and epileptogenicity. Antiepileptic drugs, the mainstay of treatment, have major risks of their own, and can, at therapeutic or near-therapeutic doses, trigger neuronal apoptosis, which is also age-, drug-, cell type-, and species-dependent. The relevance of these experimental results to human disease is still uncertain, but while their brains are quite different, the basic biology of neurons in rodents and humans is strikingly similar. Further research is needed to elucidate the molecular mechanisms of epileptogenesis and of seizure- or drug-induced neuronal injury, in order to prevent their long-term consequences.
Collapse
Affiliation(s)
- Claude G Wasterlain
- Department of Neurology, VA Greater Los Angeles Health Care System, and David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
50
|
Yatsenko L, Pozdnyakova N, Dudarenko M, Himmelreich N. The dynamics of changes in hippocampal GABAergic system in rats exposed to early-life hypoxia-induced seizures. Neurosci Lett 2012; 524:69-73. [PMID: 22841699 DOI: 10.1016/j.neulet.2012.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022]
Abstract
Hypoxia-evoked seizures (H/S) early in life lead to multiple chronic neurological deficits. Here, we present the results of studying GABA release and uptake in hippocampal axon terminals of rats exposed to H/S at 10-12 days of age. We characterized (i) exocytotic release of GABA; (ii) the initial rate of GABA uptake; (iii) the regulation of GABA release by presynaptic GABA(B) receptors. Rats were used for experiments 2, 4 and 8 weeks after H/S. We found that exocytotic [(3)H]GABA release was higher in rats exposed to H/S, and a maximal difference in the release was observed between the control and experimental rats tested 2 weeks after H/S. In contrast, the initial rate of GABA uptake decreased with age, and this tendency was more pronounced in rats exposed to H/S. Using (±)-baclofen and SKF 97541 as agonists of GABA(B) receptor, we revealed that a significant difference in the auto-inhibition of exocytotic [(3)H]GABA release was detected only between the control and experimental adult rats (8 weeks after hypoxia). The inhibitory effect dropped dramatically in the control adults, but only slightly decreased in adult rats exposed to H/S, thus becoming threefold more potent after hypoxic injury. Together, the results show that H/S affects the dynamics of age-dependent changes in the GABAergic system, and that the enhanced GABA(B) receptor-mediated auto-inhibition can be an important factor in weakening the postsynaptic inhibition and in the development of hyperexcitability in rats exposed to H/S.
Collapse
Affiliation(s)
- L Yatsenko
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovich Str. 9, Kyiv 01601, Ukraine
| | | | | | | |
Collapse
|