1
|
Halgren AS, Siegel Z, Golden R, Bazhenov M. Multielectrode Cortical Stimulation Selectively Induces Unidirectional Wave Propagation of Excitatory Neuronal Activity in Biophysical Neural Model. J Neurosci 2023; 43:2482-2496. [PMID: 36849415 PMCID: PMC10082457 DOI: 10.1523/jneurosci.1784-21.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes traveling waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit mechanisms.SIGNIFICANCE STATEMENT Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuropsychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to predict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore normal brain function and become a powerful therapy for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Alma S Halgren
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Department of Integrative Biology, University of California - Berkeley, Berkeley, California 94720
| | - Zarek Siegel
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Ryan Golden
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Maxim Bazhenov
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| |
Collapse
|
2
|
Allison-Walker T, Hagan MA, Price NSC, Wong YT. Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimul 2021; 14:741-750. [PMID: 33975054 DOI: 10.1016/j.brs.2021.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Cortical visual prostheses often use penetrating electrode arrays to deliver microstimulation to the visual cortex. To optimize electrode placement within the cortex, the neural responses to microstimulation at different cortical depths must first be understood. OBJECTIVE We investigated how the neural responses evoked by microstimulation in cortex varied with cortical depth, of both stimulation and response. METHODS A 32-channel single shank electrode array was inserted into the primary visual cortex of anaesthetized rats, such that it spanned all cortical layers. Microstimulation with currents up to 14 μA (single biphasic pulse, 200 μs per phase) was applied at depths spanning 1600 μm, while simultaneously recording neural activity on all channels within a response window 2.25-11 ms. RESULTS Stimulation elicited elevated neuronal firing rates at all depths of cortex. Compared to deep sites, superficial stimulation sites responded with higher firing rates at a given current and had lower thresholds. The laminar spread of evoked activity across cortical depth depended on stimulation depth, in line with anatomical models. CONCLUSION Stimulation in the superficial layers of visual cortex evokes local neural activity with the lowest thresholds, and stimulation in the deep layers evoked the most activity across the cortical column. In conjunction with perceptual reports, these data suggest that the optimal electrode placement for cortical microstimulation prostheses has electrodes positioned in layers 2/3, and at the top of layer 5.
Collapse
Affiliation(s)
- Tim Allison-Walker
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia; Monash Vision Group, Monash University, Clayton, Vic, 3800, Australia
| | - Maureen A Hagan
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia
| | - Nicholas S C Price
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia
| | - Yan T Wong
- Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Vic, 3800, Australia; ARC Centre of Excellence for Integrative Brain Function, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Vic, 3800, Australia; Monash Vision Group, Monash University, Clayton, Vic, 3800, Australia.
| |
Collapse
|
3
|
Chen X, Wang F, Fernandez E, Roelfsema PR. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 2020; 370:1191-1196. [DOI: 10.1126/science.abd7435] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Blindness affects 40 million people across the world. A neuroprosthesis could one day restore functional vision in the blind. We implanted a 1024-channel prosthesis in areas V1 and V4 of the visual cortex of monkeys and used electrical stimulation to elicit percepts of dots of light (called phosphenes) on hundreds of electrodes, the locations of which matched the receptive fields of the stimulated neurons. Activity in area V4 predicted phosphene percepts that were elicited in V1. We simultaneously stimulated multiple electrodes to impose visible patterns composed of a number of phosphenes. The monkeys immediately recognized them as simple shapes, motions, or letters. These results demonstrate the potential of electrical stimulation to restore functional, life-enhancing vision in the blind.
Collapse
Affiliation(s)
- Xing Chen
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Feng Wang
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
| | - Eduardo Fernandez
- Bioengineering Institute and CIBER-BBN, Miguel Hernández University of Elche, Elche, Spain
| | - Pieter R. Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Postbus 22660, 1100 DD Amsterdam, Netherlands
| |
Collapse
|
4
|
Foroushani AN, Neupane S, De Heredia Pastor P, Pack CC, Sawan M. Spatial resolution of local field potential signals in macaque V4. J Neural Eng 2020; 17:026003. [PMID: 32023554 DOI: 10.1088/1741-2552/ab7321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE An important challenge for the development of cortical visual prostheses is to generate spatially localized percepts of light, using artificial stimulation. Such percepts are called phosphenes, and the goal of prosthetic applications is to generate a pattern of phosphenes that matches the structure of the retinal image. A preliminary step in this process is to understand how the spatial positions of phosphene-like visual stimuli are encoded in the distributed activity of cortical neurons. The spatial resolution with which the distributed responses discriminate positions puts a limit on the capability of visual prosthesis devices to induce phosphenes at multiple positions. While most previous prosthetic devices have targeted the primary visual cortex, the extrastriate cortex has the advantage of covering a large part of the visual field with a smaller amount of cortical tissue, providing the possibility of a more compact implant. Here, we studied how well ensembles of Local Field Potentials (LFPs) and Multiunit activity (MUA) responses from extrastriate cortical visual area V4 of a behaving macaque monkey can discriminate between two-dimensional spatial positions. APPROACH We used support vector machines (SVM) to determine the capabilities of LFPs and MUA to discriminate responses to phosphene-like stimuli (probes) at different spatial separations. We proposed a selection strategy based on the combined responses of multiple electrodes and used the linear learning weights to find the minimum number of electrodes for fine and coarse discriminations. We also measured the contribution of correlated trial-to-trial variability in the responses to the discrimination performance for MUA and LFP. MAIN RESULTS We found that despite the large receptive field sizes in V4, the combined responses from multiple sites, whether MUA or LFP, are capable of fine and coarse discrimination of positions. Our electrode selection procedure significantly increased discrimination performance while reducing the required number of electrodes. Analysis of noise correlations in MUA and LFP responses showed that noise correlations in LFPs carry more information about spatial positions. SIGNIFICANCE This study determined the coding strategy for fine discrimination, suggesting that spatial positions could be well localized with patterned stimulation in extrastriate area V4. It also provides a novel approach to build a compact prosthesis with relatively few electrodes, which has the potential advantage of reducing tissue damage in real applications.
Collapse
Affiliation(s)
- Armin Najarpour Foroushani
- PolyStim Neurotechnology Lab., Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
5
|
Tanaka Y, Nomoto T, Shiki T, Sakata Y, Shimada Y, Hayashida Y, Yagi T. Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J Neural Eng 2019; 16:036007. [PMID: 30818288 DOI: 10.1088/1741-2552/ab0b80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Microstimulation to the cortical tissue applied with penetrating electrodes delivers current that spreads concentrically around the electrode tip and is known to evoke focal visual sensations, i.e. phosphenes. However, to date, there is no direct evidence depicting the spatiotemporal properties of neuronal activity induced immediately after microstimulation and how such activity drives the subsequent local cortical circuits. APPROACH In the present study, we imaged the spatiotemporal distribution of action potentials (APs) directly induced by microstimulation and the subsequent trans-synaptic signal propagation using a voltage-sensitive dye (VSD) and a calcium-sensitive dye (CaSD) in slice preparations of the mouse primary visual cortex. MAIN RESULTS The directly induced APs were confined to the close vicinity of the electrode tip, and the effective distance of excitation was proportional to the square root of the current intensity. The excitation around the electrode tip in layer IV mainly propagated to layer II/III to further induce the subsequent focal activation in downstream local cortical circuits. The extent of activation in the downstream circuits was restrained by competitive interactions between excitatory and inhibitory signals. Namely, the spread of the excitation to lateral neighbor neurons along the layer II/III was confined by the delayed inhibition that also spread laterally at a faster rate. SIGNIFICANCE These observations indicate that dynamic interactions between excitatory and inhibitory signals play a critical role in the focal activation of a cortical circuit in response to intracortical microstimulation and, therefore, in evoking a localized phosphene.
Collapse
Affiliation(s)
- Yuta Tanaka
- Division of Electrical, Electronic, and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Griggs WS, Kim HF, Ghazizadeh A, Costello MG, Wall KM, Hikosaka O. Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs. Front Neuroanat 2017; 11:106. [PMID: 29225570 PMCID: PMC5705870 DOI: 10.3389/fnana.2017.00106] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Anatomically distinct areas within the basal ganglia encode flexible- and stable-value memories for visual objects (Hikosaka et al., 2014), but an important question remains: do they receive inputs from the same or different brain areas or neurons? To answer this question, we first located flexible and stable value-coding areas in the caudate head (CDh) and caudate tail (CDt) of two rhesus macaque monkeys, and then injected different retrograde tracers into these areas of each monkey. We found that CDh and CDt received different inputs from several cortical and subcortical areas including temporal cortex, prefrontal cortex, cingulate cortex, amygdala, claustrum and thalamus. Superior temporal cortex and inferior temporal cortex projected to both CDh and CDt, with more CDt-projecting than CDh-projecting neurons. In superior temporal cortex and dorsal inferior temporal cortex, layers 3 and 5 projected to CDh while layers 3 and 6 projected to CDt. Prefrontal and cingulate cortex projected mostly to CDh bilaterally, less to CDt unilaterally. A cluster of neurons in the basolateral amygdala projected to CDt. Rostral-dorsal claustrum projected to CDh while caudal-ventral claustrum projected to CDt. Within the thalamus, different nuclei projected to either CDh or CDt. The medial centromedian nucleus and lateral parafascicular nucleus projected to CDt while the medial parafascicular nucleus projected to CDh. The inferior pulvinar and lateral dorsal nuclei projected to CDt. The ventral anterior and medial dorsal nuclei projected to CDh. We found little evidence of neurons projecting to both CDh and CDt across the brain. These data suggest that CDh and CDt can control separate functions using anatomically separate circuits. Understanding the roles of these striatal projections will be important for understanding how value memories are created and stored.
Collapse
Affiliation(s)
- Whitney S Griggs
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hyoung F Kim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, South Korea.,Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea
| | - Ali Ghazizadeh
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - M Gabriela Costello
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn M Wall
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
7
|
Klink PC, Dagnino B, Gariel-Mathis MA, Roelfsema PR. Distinct Feedforward and Feedback Effects of Microstimulation in Visual Cortex Reveal Neural Mechanisms of Texture Segregation. Neuron 2017. [PMID: 28625487 DOI: 10.1016/j.neuron.2017.05.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization.
Collapse
Affiliation(s)
- P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Neuromodulation and Behaviour, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV Amsterdam, the Netherlands
| | - Bruno Dagnino
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Marie-Alice Gariel-Mathis
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, 1100 DD Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner. J Neurosci 2017; 37:2234-2257. [PMID: 28119401 PMCID: PMC5338763 DOI: 10.1523/jneurosci.1984-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/04/2022] Open
Abstract
The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects.
Collapse
|
9
|
Overstreet CK, Klein JD, Helms Tillery SI. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex. J Neural Eng 2013; 10:066016. [PMID: 24280531 DOI: 10.1088/1741-2560/10/6/066016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Electrical stimulation of cortical tissue could be used to deliver sensory information as part of a neuroprosthetic device, but current control of the location, resolution, quality, and intensity of sensations elicited by intracortical microstimulation (ICMS) remains inadequate for this purpose. One major obstacle to resolving this problem is the poor understanding of the neural activity induced by ICMS. Even with new imaging methods, quantifying the activity of many individual neurons within cortex is difficult. APPROACH We used computational modeling to examine the response of somatosensory cortex to ICMS. We modeled the axonal arbors of eight distinct morphologies of interneurons and seven types of pyramidal neurons found in somatosensory cortex and identified their responses to extracellular stimulation. We then combined these axonal elements to form a multi-layered slab of simulated cortex and investigated the patterns of neural activity directly induced by ICMS. Specifically we estimated the number, location, and variety of neurons directly recruited by stimulation on a single penetrating microelectrode. MAIN RESULTS The population of neurons activated by ICMS was dependent on both stimulation strength and the depth of the electrode within cortex. Strikingly, stimulation recruited interneurons and pyramidal neurons in very different patterns. Interneurons are primarily recruited within a dense, continuous region around the electrode, while pyramidal neurons were recruited in a sparse fashion both near the electrode and up to several millimeters away. Thus ICMS can lead to an unexpectedly complex spatial distribution of firing neurons. SIGNIFICANCE These results lend new insights to the complexity and range of neural activity that can be induced by ICMS. This work also suggests mechanisms potentially responsible for the inconsistency and unnatural quality of sensations initiated by ICMS. Understanding these mechanisms will aid in the design of stimulation that can be used to generate effective sensory feedback for neuroprosthetic devices.
Collapse
Affiliation(s)
- C K Overstreet
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | | |
Collapse
|
10
|
Tehovnik E, Slocum W. Two-photon imaging and the activation of cortical neurons. Neuroscience 2013; 245:12-25. [DOI: 10.1016/j.neuroscience.2013.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/22/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
|
11
|
Tehovnik EJ, Slocum WM. Electrical induction of vision. Neurosci Biobehav Rev 2013; 37:803-18. [PMID: 23535445 DOI: 10.1016/j.neubiorev.2013.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/28/2013] [Accepted: 03/17/2013] [Indexed: 11/26/2022]
Abstract
We assess what monkeys see during electrical stimulation of primary visual cortex (area V1) and relate the findings to visual percepts evoked electrically from human V1. Discussed are: (1) the electrical, cytoarchitectonic, and visuo-behavioural factors that affect the ability of monkeys to detect currents in V1; (2) the methods used to ascertain what monkeys see when electrical stimulation is delivered to V1; (3) a corticofugal mechanism for the induction of visual percepts; and (4) the quantity of information transferred to V1 by electrical stimulation. Experiments are proposed that should advance our understanding of how electrical stimulation affects macaque and human V1. This work contributes to the development of a cortical visual prosthesis for the blind. We dedicate this work to the late Robert W. Doty.
Collapse
|
12
|
Histed MH, Ni AM, Maunsell JHR. Insights into cortical mechanisms of behavior from microstimulation experiments. Prog Neurobiol 2012; 103:115-30. [PMID: 22307059 DOI: 10.1016/j.pneurobio.2012.01.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 11/15/2022]
Abstract
Even the simplest behaviors depend on a large number of neurons that are distributed across many brain regions. Because electrical microstimulation can change the activity of localized subsets of neurons, it has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review what has been learned about cortical function from behavioral studies using microstimulation in animals and humans. Experiments that examine how microstimulation affects the perception of stimuli have shown that the effects of microstimulation are usually highly specific and can be related to the stimuli preferred by neurons at the stimulated site. Experiments that ask subjects to detect cortical microstimulation in the absence of other stimuli have provided further insights. Although subjects typically can detect microstimulation of primary sensory or motor cortex, they are generally unable to detect stimulation of most of cortex without extensive practice. With practice, however, stimulation of any part of cortex can become detected. These training effects suggest that some patterns of cortical activity cannot be readily accessed to guide behavior, but that the adult brain retains enough plasticity to learn to process novel patterns of neuronal activity arising anywhere in cortex.
Collapse
Affiliation(s)
- Mark H Histed
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Parker RA, Davis TS, House PA, Normann RA, Greger B. The functional consequences of chronic, physiologically effective intracortical microstimulation. PROGRESS IN BRAIN RESEARCH 2011; 194:145-65. [PMID: 21867801 DOI: 10.1016/b978-0-444-53815-4.00010-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Many studies have demonstrated the ability of chronically implanted multielectrode arrays (MEAs) to extract information from the motor cortex of both humans and nonhuman primates. Similarly, many studies have shown the ability of intracortical microstimulation to impart information to the brain via a single or a few electrodes acutely implanted in sensory cortex of nonhuman primates, but relatively few microstimulation studies characterizing chronically implanted MEAs have been performed. Additionally, device and tissue damage have been reported at the levels of microstimulation used in these studies. Whether the damage resulting from microstimulation impairs the ability of MEAs to chronically produce physiological effects, however, has not been directly tested. In this study, we examined the functional consequences of multiple months of periodic microstimulation via chronically implanted MEAs at levels capable of evoking physiological responses, that is, electromyogram (EMG) activity. The functionality of the MEA and neural tissue was determined by measuring impedances, the ability of microstimulation to evoke EMG responses, and the recording of action potentials. We found that impedances and the number of recorded action potentials followed the previously reported trend of decreasing over time in both animals that received microstimulation and those which did not receive microstimulation. Despite these trends, the ability to evoke EMG responses and record action potentials was retained throughout the study. The results of this study suggest that intracortical microstimulation via MEAs did not cause functional failure, suggesting that MEA-based microstimulation is ready to transition into subchronic (< 30 days) human trials to determine whether complex spatiotemporal sensory percepts can be evoked by patterned microstimulation.
Collapse
Affiliation(s)
- Rebecca A Parker
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
14
|
Baluch F, Itti L. Mechanisms of top-down attention. Trends Neurosci 2011; 34:210-24. [DOI: 10.1016/j.tins.2011.02.003] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 12/14/2022]
|
15
|
Lee J, Kim HR, Lee C. Trial-to-trial variability of spike response of V1 and saccadic response time. J Neurophysiol 2010; 104:2556-72. [PMID: 20810695 DOI: 10.1152/jn.01040.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single neurons in the primary visual cortex (V1) show variability in spike activity in response to an identical visual stimulus. In the current study, we examined the behavioral significance of the variability in spike activity of V1 neurons for visually guided saccades. We recorded single-cell activity from V1 of monkeys trained to detect and make saccades toward visual targets of varying contrast and analyzed trial-to-trial covariation between the onset time or firing rate of neural response and saccadic response time (RT). Neural latency (NL, the time of the first spike of neural response) was correlated with RT, whereas firing rate (FR) was not. When FR was computed with respect to target onset ignoring NL, a "false" correlation between FR and RT emerged. Multiple regression and partial correlation analyses on NL and FR for predictability of RT variability, as well as a simulation with artificial Poisson spike trains, supported the conclusion that the correlation between FR with respect to target onset and RT was mediated by a correlation between NL and RT, emphasizing the role of trial-to-trial variability of NL for extracting RT-related signals. We attempted to examine laminar differences in RT-related activity. Neurons recorded in the superficial layers tended to show a higher sensitivity to stimulus contrast and a lower correlation with RT compared with those in the lower layers, suggesting a sensory-to-motor transformation within V1 that follows the order of known anatomical connections. These results demonstrate that the trial-to-trial variability of neural response in V1 propagates to the stage of saccade execution, resulting in trial-to-trial variability of RT of a visually guided saccade.
Collapse
Affiliation(s)
- Jungah Lee
- Department of Psychology, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
16
|
Tehovnik EJ, Slocum WM. Background luminance affects the detection of microampere currents delivered to macaque striate cortex. Eur J Neurosci 2009; 30:263-71. [PMID: 19558620 DOI: 10.1111/j.1460-9568.2009.06810.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monkeys detect electrical microstimulation delivered to the striate cortex (area V1). We examined whether the ability of monkeys to detect such stimulation is affected by background luminance. While remaining fixated on a spot of light centered on a monitor, a monkey was required to detect a 100 ms train of electrical stimulation delivered to a site within area V1 situated from 1 to 1.5 mm below the cortical surface. A monkey signaled the delivery of stimulation by depressing a lever after which it was rewarded with a drop of apple juice. Control trials were interleaved during which time no stimulation was delivered and the monkey was rewarded for not depressing the lever. Biphasic pulses were delivered at 200 Hz and the current ranged from 2 to 30 microA using 0.2 ms anode-first biphasic pulses. The background luminance level of the monitor could be varied from 0.005 to 148 cd/m(2). It was found that, for monitor luminance levels below 10 cd/m(2), the current threshold to evoke a detection response increased. We discuss the significance of this result with regard to phosphenes elicited from human V1 and in relation to visual perception.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Abstract
Monkeys can detect electrical stimulation delivered to the striate cortex (area V1). We examined whether such stimulation is layer dependent. While remaining fixated on a spot of light, a rhesus monkey was required to detect a 100-ms train of electrical stimulation delivered to a site within area V1. A monkey signaled the delivery of stimulation by depressing a lever after which he was rewarded with a drop of apple juice. Control trials were interleaved during which time no stimulation was delivered and the monkey was rewarded for not depressing the lever. Biphasic pulses were delivered at 200 Hz, and the current was typically at or < 30 muA using 0.2-ms cathode-first biphasic pulses. For some experiments, the pulse duration was varied from 0.05 to 0.7 ms and anode-first pulses were used. The current threshold for detecting cathode-first pulses 50% of the time was the lowest (< 10 muA) when stimulation was delivered to the deepest layers of V1 (between 1.0 and 2.5 mm below the cortical surface). Also, the shortest chronaxies (< 0.2 ms) and the shortest latencies (< 200 ms) for detecting the stimulation were observed at these depths. Finally, anode-first pulses were most effective at evoking a detection response in superficial V1 and cathode-first pulses were most effective at evoking a detection response in deep V1 (> 1.75 mm below the cortical surface). Accordingly, the deepest layers of V1 are the most sensitive for the induction of a detection response to electrical stimulation in monkeys.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
18
|
Tehovnik EJ, Slocum WM, Smirnakis SM, Tolias AS. Microstimulation of visual cortex to restore vision. PROGRESS IN BRAIN RESEARCH 2009; 175:347-75. [PMID: 19660667 DOI: 10.1016/s0079-6123(09)17524-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review argues that one reason why a functional visuo-cortical prosthetic device has not been developed to restore even minimal vision to blind individuals is because there is no animal model to guide the design and development of such a device. Over the past 8 years we have been conducting electrical microstimulation experiments on alert behaving monkeys with the aim of better understanding how electrical stimulation of the striate cortex (area V1) affects oculo- and skeleto-motor behaviors. Based on this work and upon review of the literature, we arrive at several conclusions: (1) As with the development of the cochlear implant, the development of a visuo-cortical prosthesis can be accelerated by using animals to test the perceptual effects of microstimulating V1 in intact and blind monkeys. (2) Although a saccade-based paradigm is very convenient for studying the effectiveness of delivering stimulation to V1 to elicit saccadic eye movements, it is less ideal for probing the volitional state of monkeys, as they perceive electrically induced phosphenes. (3) Electrical stimulation of V1 can delay visually guided saccades generated to a punctate target positioned in the receptive field of the stimulated neurons. We call the region of visual space affected by the stimulation a delay field. The study of delay fields has proven to be an efficient way to study the size and shape of phosphenes generated by stimulation of macaque V1. (4) An alternative approach to ascertain what monkeys see during electrical stimulation of V1 is to have them signal the detection of current with a lever press. Monkeys can readily detect currents of 1-2 microA delivered to V1. In order to evoke featured phosphenes currents of under 5 microA will be necessary. (5) Partially lesioning the retinae of monkeys is superior to completely lesioning the retinae when determining how blindness affects phosphene induction. We finish by proposing a future experimental paradigm designed to determine what monkeys see when stimulation is delivered to V1, by assessing how electrical fields generated through multiple electrodes interact for the production of phosphenes, and by depicting a V1 circuit that could mediate electrically induced phosphenes.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
19
|
Kawasaki K, Sheinberg DL. Learning to recognize visual objects with microstimulation in inferior temporal cortex. J Neurophysiol 2008; 100:197-211. [PMID: 18463185 DOI: 10.1152/jn.90247.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The malleability of object representations by experience is essential for adaptive behavior. It has been hypothesized that neurons in inferior temporal cortex (IT) in monkeys are pivotal in visual association learning, evidenced by experiments revealing changes in neural selectivity following visual learning, as well as by lesion studies, wherein functional inactivation of IT impairs learning. A critical question remaining to be answered is whether IT neuronal activity is sufficient for learning. To address this question directly, we conducted experiments combining visual classification learning with microstimulation in IT. We assessed the effects of IT microstimulation during learning in cases where the stimulation was exclusively informative, conditionally informative, and informative but not necessary for the classification task. The results show that localized microstimulation in IT can be used to establish visual classification learning, and the same stimulation applied during learning can predictably bias judgments on subsequent recognition. The effect of induced activity can be explained neither by direct stimulation-motor association nor by simple detection of cortical stimulation. We also found that the learning effects are specific to IT stimulation as they are not observed by microstimulation in an adjacent auditory area. Our results add the evidence that the differential activity in IT during visual association learning is sufficient for establishing new associations. The results suggest that experimentally manipulated activity patterns within IT can be effectively combined with ongoing visually induced activity during the formation of new associations.
Collapse
Affiliation(s)
- Keisuke Kawasaki
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
20
|
Butovas S, Schwarz C. Detection psychophysics of intracortical microstimulation in rat primary somatosensory cortex. Eur J Neurosci 2007; 25:2161-9. [PMID: 17419757 DOI: 10.1111/j.1460-9568.2007.05449.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A problem of purposeful intracortical microstimulation is the long duration of neuronal integration time and the associated complex temporal interactions of effects to individual pulses in trains. Here we investigated the effects of repetitive stimuli on perception. We trained head-restraint rats to indicate the detection of cortical microstimulation in infragranular layers of barrel cortex. Three stimulus parameters: stimulus intensity, number of pulses and frequency were varied, and psychometric detection curves were assessed using the method of constant stimuli. The average psychophysical threshold of single pulses was 2.0 nC--a measure very close to what has been found earlier for the evocation of short-latency action potentials in neurons near the stimulation electrode. Detection of single-pulse stimulation always saturated at probabilities of about 0.8. In contrast, repetitive stimuli gave rise to lower thresholds (by a factor of two at 15 pulses, 320 Hz), and to saturation at probabilities close to 1. Interestingly, a large fraction of these perceptual benefits was observed already with double pulses. Moreover, the perceptual efficacy of individual pulses was higher using double pulses compared with longer sequences, i.e. double pulses were detected better than expected from the assumption of independence of single-pulse effects, while trains of 15 pulses fell well short of this expectation. The present results thus point to double-pulse stimulation as an optimal choice when trading economic stimulation against optimizing of the percept.
Collapse
Affiliation(s)
- Sergejus Butovas
- Hertie-Institute for Clinical Brain Research, Department of Cognitive Neurology, University Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
21
|
Murphey DK, Maunsell JHR. Behavioral detection of electrical microstimulation in different cortical visual areas. Curr Biol 2007; 17:862-7. [PMID: 17462895 PMCID: PMC2034326 DOI: 10.1016/j.cub.2007.03.066] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/03/2007] [Accepted: 03/29/2007] [Indexed: 11/18/2022]
Abstract
The extent to which areas in the visual cerebral cortex differ in their ability to support perceptions has been the subject of considerable speculation. Experiments examining the activity of individual neurons have suggested that activity in later stages of the visual cortex is more closely linked to perception than that in earlier stages [1-9]. In contrast, results from functional imaging, transcranial magnetic stimulation, and lesion studies have been interpreted as showing that earlier stages are more closely coupled to perception [10-15]. We examined whether neuronal activity in early and later stages differs in its ability to support detectable signals by measuring behavioral thresholds for detecting electrical microstimulation in different cortical areas in two monkeys. By training the animals to perform a two-alternative temporal forced-choice task, we obtained criterion-free thresholds from five visual areas--V1, V2, V3A, MT, and the inferotemporal cortex. Every site tested yielded a reliable threshold. Thresholds varied little within and between visual areas, rising gradually from early to later stages. We similarly found no systematic differences in the slopes of the psychometric detection functions from different areas. These results suggest that neuronal signals of similar magnitude evoked in any part of visual cortex can generate percepts.
Collapse
Affiliation(s)
- Dona K Murphey
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
22
|
Abstract
Every day we shift our gaze about 150.000 times mostly without noticing it. The direction of these gaze shifts are not random but directed by sensory information and internal factors. After each movement the eyes hold still for a brief moment so that visual information at the center of our gaze can be processed in detail. This means that visual information at the saccade target location is sufficient to accurately guide the gaze shift but yet is not sufficiently processed to be fully perceived. In this paper I will discuss the possible role of activity in the primary visual cortex (V1), in particular figure-ground activity, in oculo-motor behavior. Figure-ground activity occurs during the late response period of V1 neurons and correlates with perception. The strength of figure-ground responses predicts the direction and moment of saccadic eye movements. The superior colliculus, a gaze control center that integrates visual and motor signals, receives direct anatomical connections from V1. These projections may convey the perceptual information that is required for appropriate gaze shifts. In conclusion, figure-ground activity in V1 may act as an intermediate component linking visual and motor signals.
Collapse
Affiliation(s)
- Hans Supèr
- ICREA & Department Basic Psychology, Faculty of Psychology, University of Barcelona (UB), Pg. Vall d'Hebron 171, 08035 Barcelona, Spain.
| |
Collapse
|
23
|
Lalli S, Hussain Z, Ayub A, Cracco RQ, Bodis-Wollner I, Amassian VE. Role of the calcarine cortex (V1) in perception of visual cues for saccades. Clin Neurophysiol 2006; 117:2030-8. [PMID: 16884952 DOI: 10.1016/j.clinph.2006.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the initial level at which the pathways for cue perception, saccades and antisaccades diverge. METHODS Two procedures: single pulse transcranial magnetic stimulation (sTMS) over posterior occiput and backward masking were used. A visual cue directed saccades to the left or right, either a pro-saccade (to the side of the cue but beyond it) or an antisaccade, i.e., contraversive saccade. No visual target was presented. RESULTS Latencies of the two types of saccades did not differ. Focal sTMS applied unilaterally over V1 suppressed both perception of a cue flashed 80-90ms earlier contralaterally (but not ipsilaterally) and the appropriate saccade. Masking at a delay of 100ms abolished the appropriate saccade and cue perception. CONCLUSIONS V1 is essential for the perception of a flashed cue and for executing appropriate pro- and contraversive saccades. Masking may occur beyond V1, where the pathways for perception and for saccades at least to the next visual processing level start separating. SIGNIFICANCE VI is needed for rapid, accurate perceptual and motor responses to the crudest (left versus right) cues. It is unlikely that the "where" system can have a major direct input bypassing V1.
Collapse
Affiliation(s)
- S Lalli
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
24
|
Supèr H, Lamme VAF. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task. Cereb Cortex 2006; 17:1468-75. [PMID: 16920884 DOI: 10.1093/cercor/bhl058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.
Collapse
Affiliation(s)
- Hans Supèr
- ICREA & Dep. Psicología Básica, Facultad de Psicología, Universidad de Barcelona, 08035 Barcelona, Spain.
| | | |
Collapse
|
25
|
Tehovnik EJ, Slocum WM. Microstimulation of V1 delays visually guided saccades: a parametric evaluation of delay fields. Exp Brain Res 2006; 176:413-24. [PMID: 16896978 DOI: 10.1007/s00221-006-0625-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/01/2006] [Indexed: 11/25/2022]
Abstract
Electrical microstimulation of macaque striate cortex (area V1) delays the execution of saccadic eye movements made to a visual target placed in the receptive field of the stimulated neurons. The region of visual space within which saccades are delayed is called a delay field. We examined the effects of changing the parameters of stimulation and target size on the size of a delay field. Rhesus monkeys were required to generate a saccadic eye movement to a punctate and white visual target presented within or outside the receptive field of the neurons under study. On 50% of trials, a train of stimulation consisting of 0.2-ms anode-first pulses was delivered to the neurons before the onset of the visual target. Stimulations were performed in the operculum at 0.9-2.0 mm below the cortical surface. It was found that increases in current (50-100 microA), pulse frequency (100-300 Hz), or train duration (75-300 ms) increased the size of a delay field and increases in target size (0.1 degrees -0.2 degrees of visual angle) decreased the size of a delay field. Delay fields varied in size between 0.1 and 0.6 degrees of visual angle. These results are related to the properties of phosphenes induced by electrical stimulation of V1 in humans and compared to the interference effects observed following transcranial magnetic stimulation of human V1.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Bldg. 46-6041, Cambridge, MA 02139, USA.
| | | |
Collapse
|
26
|
Tehovnik EJ, Slocum WM, Schiller PH. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields. Eur J Neurosci 2005; 22:2635-43. [PMID: 16307605 DOI: 10.1111/j.1460-9568.2005.04454.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Electrical microstimulation of macaque primary visual cortex (area V1) is known to delay the execution of saccadic eye movements made to a punctate visual target placed into the receptive field of the stimulated neurons. We examined the spatial extent of this delay effect, which we call a delay field, by placing a 0.2 degrees visual target at various locations relative to the receptive field of the stimulated neurons and by stimulating different sites within the operculum of V1. A 100-ms train of stimulation consisting of current pulses at or less than 100 microA was delivered immediately before monkeys generated a saccadic eye movement to the visual target. The region of tissue activated was within 0.5 mm from the electrode tip. The depth of stimulation for a given site ranged from 0.9 to 2.0 mm below the cortical surface. The location of the receptive fields of the stimulated neurons ranged from 1.8 to 4.4 degrees of eccentricity from the center of gaze. Within this range, the size of the delay field increased from 0.1 to 0.55 degrees of visual angle. The shape of the field was roughly circular. The size of the delay field increased as the stimulation site was located further from the foveal representation of V1. These results are consistent with the finding that phosphenes evoked by electrical stimulation of human V1 are circular and increase in size as the stimulating electrode is placed more distant from the foveal representation of V1.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
27
|
Tehovnik EJ, Slocum WM. Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast. Exp Brain Res 2005; 165:305-14. [PMID: 15942738 DOI: 10.1007/s00221-005-2306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/04/2005] [Indexed: 11/30/2022]
Abstract
Electrical microstimulation of the striate cortex (area V1) in monkeys delays the execution of saccadic eye movements generated to a visual target located in the receptive field of the stimulated neurons. We have argued that this effect is because of disruption of the visual signal transmitted along the geniculostriate pathway. The delivery of electrical stimulation to V1 evokes a punctate light or dark phosphene in human subjects. If electrical stimulation of V1 in monkeys evokes a light or dark phosphene, then one might expect that the delay effect might vary according to whether monkeys are required to detect a light or a dark visual target. For instance, if the stimulation is activating V1 elements coding for a light visual stimulus but not a dark visual stimulus then stimulation may delay saccades generated to a light target but not to a dark target. We tested this idea by having monkeys generate saccadic eye movements to light or dark visual targets immediately after the stimulation was delivered to V1. We found that the delay effect induced by stimulation varied with target contrast, but remained invariant to whether a bright or dark visual target was presented in the receptive field of the stimulated neurons. The significance of these results is discussed with regard to using monkeys to develop a visual prosthesis for the blind.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA.
| | | |
Collapse
|
28
|
Tehovnik EJ, Slocum WM, Carvey CE, Schiller PH. Phosphene Induction and the Generation of Saccadic Eye Movements by Striate Cortex. J Neurophysiol 2005; 93:1-19. [PMID: 15371496 DOI: 10.1152/jn.00736.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this review is to critically examine phosphene induction and saccadic eye movement generation by electrical microstimulation of striate cortex (area V1) in humans and monkeys. The following issues are addressed: 1) Properties of electrical stimulation as they pertain to the activation of V1 elements; 2) the induction of phosphenes in sighted and blind human subjects elicited by electrical stimulation using various stimulation parameters and electrode types; 3) the induction of phosphenes with electrical microstimulation of V1 in monkeys; 4) the generation of saccadic eye movements with electrical microstimulation of V1 in monkeys; and 5) the tasks involved for the development of a cortical visual prosthesis for the blind. In this review it is concluded that electrical microstimulation of area V1 in trained monkeys can be used to accelerate the development of an effective prosthetic device for the blind.
Collapse
Affiliation(s)
- E J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts, Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
29
|
Schiller PH, Tehovnik EJ. Neural mechanisms underlying target selection with saccadic eye movements. PROGRESS IN BRAIN RESEARCH 2005; 149:157-71. [PMID: 16226583 DOI: 10.1016/s0079-6123(05)49012-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In exploring the visual scene we make about three saccadic eye movements per second. During each fixation, in addition to analyzing the object at which we are looking, a decision has to be made as to where to look next. Although we perform this task with the greatest of ease, the computations to perform the task are complex and involve numerous brain structures. We have applied several investigative tools that include single-cell recordings, microstimulation, pharmacological manipulations and lesions to learn more about the neural control of visually guided eye saccadic movements. Electrical stimulation of the superior colliculus (SC), areas V1 and V2, the lateral intraparietal sulcus (LIP), the frontal eye fields (FEF) and the medial eye fields (MEF) produces saccadic eye movements at low current levels. After ablation of the SC, electrical microstimulation of V1, V2, and LIP no longer elicits saccadic eye movements whereas stimulation of the FEF and MEF continues to be effective. Ablation of the SC but not of the FEF eliminates short-latency saccadic eye movements to visual targets called "express saccades," whereas lesions of the FEF selectively interfere with target selection. Bilateral removal of both the SC and the FEF causes major, long lasting deficits: all visually elicited saccadic eye movements are eliminated. In intact monkeys, subthreshold electrical microstimulation of the FEF and MEF as well as the lower layers of V1 and V2 and of some subregions of LIP greatly facilitates the choice of targets presented in the receptive fields of the stimulated neurons. By contrast, stimulation of the upper layers of V1 and V2 and other sub-regions of LIP produces a dramatic interference in target selection. Examination of the role of inhibitory circuits in eye-movement generation reveals that local infusion of muscimol, a GABA (gamma-aminobutyric acid) agonist, or bicuculline, a GABA antagonist, interferes with target selection in V1. On the other hand, infusion of bicuculline into the FEF produces facilitation in target choice and irrepressible saccades. It appears therefore that inhibitory circuits play a central role in visual analysis in V1 and in the generation of saccadic eye movements in the FEF. It is proposed that two major streams can be discerned in visually guided eye-movement control, the posterior from occipital and parietal cortex that reaches the brainstem via the SC and the anterior from the FEF and MEF that has direct access to the brainstem oculomotor centers.
Collapse
Affiliation(s)
- Peter H Schiller
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-634, Cambridge, MA 02139, USA.
| | | |
Collapse
|
30
|
Slocum WM, Tehovnik EJ. Microstimulation of V1 input layers disrupts the selection and detection of visual targets by monkeys. Eur J Neurosci 2004; 20:1674-80. [PMID: 15355335 DOI: 10.1111/j.1460-9568.2004.03608.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrical microstimulation delivered to primary visual cortex (V1) concurrently with the presentation of visual targets interferes with the selection of these targets. To determine the source of this interference, we stimulated the visual input layers of V1 as rhesus monkeys generated saccadic eye movements to visual targets presented at and outside the receptive field of the stimulated neurons. Columns of cells in V1 innervated by the left and right eye are segregated according to eye dominance, such that cells within a column respond best to visual stimuli presented to the ocular dominant eye. Interference was maximal when targets were presented to the ocular dominant eye, moderate when presented to the ocular inferior eye, and negligible when presented to both eyes. Thus, electrical microstimulation of the visual input layers of V1 disrupts the flow of visual information along the geniculostriate pathway. Knowing how electrical stimulation of V1 affects visual behaviour is necessary when using monkeys to develop a visual prosthesis for the blind.
Collapse
Affiliation(s)
- Warren M Slocum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA.
| | | |
Collapse
|
31
|
Cohen MR, Newsome WT. What electrical microstimulation has revealed about the neural basis of cognition. Curr Opin Neurobiol 2004; 14:169-77. [PMID: 15082321 DOI: 10.1016/j.conb.2004.03.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurophysiologists have shown repeatedly that neural activity in different brain structures can be correlated with specific perceptual and cognitive functions, but the causal efficacy of the observed activity has generally been a matter of conjecture. By contrast, electrical microstimulation, which allows the experimenter to manipulate the activity of small groups of neurons with spatial and temporal precision, can now be used to demonstrate causal links between neural activity and specific cognitive functions. Here, we review this growing literature, including applications to the study of attention, visual and somatosensory perception, 'read-out' mechanisms for interpreting sensory maps, and contextual effects on perception. We also discuss potential applications of microstimulation to studies of higher cognitive functions such as decision-making and subjective experience.
Collapse
Affiliation(s)
- Marlene R Cohen
- Howard Hughes Medical Institute and Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
32
|
Supèr H, van der Togt C, Spekreijse H, Lamme VAF. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Proc Natl Acad Sci U S A 2004; 101:3230-5. [PMID: 14970334 PMCID: PMC365772 DOI: 10.1073/pnas.0400433101] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Indexed: 11/18/2022] Open
Abstract
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that approximately 100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior.
Collapse
Affiliation(s)
- Hans Supèr
- Netherlands Ophthalmic Research Institute, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Tehovnik EJ, Slocum WM. Behavioural state affects saccades elicited electrically from neocortex. Neurosci Biobehav Rev 2004; 28:13-25. [PMID: 15036930 DOI: 10.1016/j.neubiorev.2003.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 10/17/2003] [Accepted: 10/20/2003] [Indexed: 11/28/2022]
Abstract
Reviewed is how behavioural context influences saccadic eye movements elicited electrically from the neocortex of monkeys. Factors found to affect stimulation-evoked saccades include (1) motor state, i.e. whether stimulation is delivered during free-viewing, or during or after active fixation, or before an animal is about to execute a saccade to a target location, and (2) reward delivery, i.e. the characteristics and timing of reward, which can promote or inhibit the evocation of saccades. We conclude that anyone using electrical stimulation in neocortex to study sensory and cognitive processes must control for the possibility that stimulation of cortex is merely generating a saccade vector whose expression is being obscured by the behavioural paradigm in use. Areas of neocortex from which saccades can be evoked using low currents (<100 microA) are surprisingly widespread and include regions traditionally considered within the sensory domain (e.g. V1, V2, V4, and MT), in addition to visuomotor regions such as the lateral intraparietal area, the dorsomedial frontal cortex, the frontal eye fields, and the prefrontal cortex. This is especially true once the behavioural state of a stimulated animal is put under experimental control.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 400 Main Street, E25-634 Cambridge, MA 02139, USA.
| | | |
Collapse
|
34
|
Abstract
The role inhibitory circuits play in target selection with saccadic eye movements was examined in area V1, the frontal eye fields (FEF) and the lateral intraparietal sulcus (LIP) of the Rhesus Macaque monkey by making local infusions of the GABA agonist muscimol and antagonist bicuculline. In V1, both agents greatly interfered with target selection and visual discrimination of stimuli placed into the receptive field of the affected neurons. In the FEF, bicuculline facilitated target selection without affecting visual discrimination and generated many spontaneous saccades. Muscimol in the FEF interfered with saccadic eye-movement generation. In the LIP, bicuculline was ineffective and muscimol had only a small effect. These findings suggest that in the FEF GABAergic inhibitory circuits play a central role in eye-movement generation whereas in V1 these circuits are essential for visual analysis. Inhibitory circuits in the LIP do not appear to play a central role in target selection and in visual discrimination.
Collapse
Affiliation(s)
- Peter H Schiller
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
35
|
Tehovnik EJ, Slocum WM, Carvey CE. Behavioural state affects saccadic eye movements evoked by microstimulation of striate cortex. Eur J Neurosci 2003; 18:969-79. [PMID: 12925023 DOI: 10.1046/j.1460-9568.2003.02798.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examine how behavioural conditions affect the manner in which electrical stimulation of striate cortex (V1) influences the generation of saccadic eye movements. Monkeys were trained (i) to acquire a fixation spot and remain fixated for juice reward and (ii) to acquire a fixation spot and generate a saccade to a visual target for reward. Electrical stimulation was delivered at various times during the execution of these tasks. For stimulation trials, pulses were delivered at 200 Hz using a 100- or 200-ms train duration. Currents as high as 1500 micro A were not sufficient to evoke saccades from V1 when monkeys were actively fixating a visual target, whereas current < 100 micro A was sufficient to evoke saccades when monkeys were not actively fixating. By interleaving trials in which a visual target was presented in the receptive field of stimulated neurons with nontarget stimulation trials, saccades could be evoked from V1 during the nontarget stimulation trials with currents as low as 2 micro A. The position of the visual target on the interleaved trials affected the probability of saccade evocation on the nontarget stimulation trials. Additional factors that affected the evoked saccades were time of reward delivery, ratio of stimulation to nonstimulation trials, and whether stimulation was delivered on the interleaved trials in which a target was positioned in the receptive field of the stimulated neurons. We argue that the behavioural state of an animal acts on the nigra-collicular pathway to lower the current threshold for the elicitation of saccades from V1.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
36
|
Abstract
Recent observations of single axons and review of older literature show that axons afferent to the thalamus commonly branch, sending one branch to the thalamus and another to a motor or premotor center of the brain stem. That is, the messages that the thalamus relays to the cerebral cortex can be regarded as copies of motor instructions. This pattern of axonal branching is reviewed, particularly for the somatosensory and the visual pathways. The extent to which this anatomical evidence relates to views that link action to perception is explored. Most pathways going through the thalamus to the cortex are already involved in motor mechanisms. These motor links occur before and during activity in the parallel and hierarchical corticocortical circuitry that currently forms the focus of many studies of perceptual processing.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy, University of Wisconsin, School of Medicine, Madison, Wisconsin 53706, USA.
| |
Collapse
|
37
|
Tehovnik EJ, Slocum WM. Using ocular dominance to infer the depth of the visual input layers of V1 in behaving macaque monkey. J Neurosci Methods 2003; 125:121-8. [PMID: 12763238 DOI: 10.1016/s0165-0270(03)00047-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to use the ocular dominance properties of multiple unit activity in area V1 of the visual cortex of the behaving rhesus monkey to infer the depth of the visual input layers. Multiple unit activity was examined with a recording electrode at different depths (in 100 micrometer increments) within V1 for responses to a visual stimulus presented to the dominant and non-dominant eye. The cortical depth at which there was a maximal difference in unit firing rate between the dominant and non-dominant eye was used to infer the depth of the visual input layers of V1. This depth was found to vary from 0.8 to 1.2 mm below the cortical surface. This range of depths overlaps with the approximate location of lamina IVc, which is the major recipient of visual fibres from the lateral geniculate nucleus.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634 02139, Cambridge, MA, USA.
| | | |
Collapse
|
38
|
Abstract
Experiments were performed to assess the excitability of neural elements activated while inducing saccadic eye movements electrically from different cortical layers of striate cortex (area V1) in rhesus monkeys. Excitability was assessed by measuring current thresholds, saccadic latencies, chronaxies, and the effectiveness of anode-first vs. cathode-first pulses. Minimum current thresholds for the evocation of saccades (i.e. less than 5 microA) were observed when the deepest layers of V1 were stimulated. The shortest saccadic latencies were also observed at these depths. The shortest latency at 10 times the threshold current was 49 ms on average. The chronaxies of the elements mediating saccades were less in deep V1 (i.e. 0.17 ms) than in superficial V1 (i.e. 0.23 ms). Anode-first pulses were more effective at evoking saccades from superficial V1, whereas cathode-first pulses were more effective at evoking saccades from deep V1. These results indicate that the excitability properties of superficial and deep V1 are distinct for the generation of saccades. Moreover, the excitability of elements mediating saccades in V1 of monkeys is comparable to that of elements mediating phosphenes in human V1.
Collapse
Affiliation(s)
- Edward J Tehovnik
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|