1
|
Alonso-Sáez L, Palacio AS, Cabello AM, Robaina-Estévez S, González JM, Garczarek L, López-Urrutia Á. Transcriptional Mechanisms of Thermal Acclimation in Prochlorococcus. mBio 2023:e0342522. [PMID: 37052490 DOI: 10.1128/mbio.03425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Low temperature limits the growth and the distribution of the key oceanic primary producer Prochlorococcus, which does not proliferate above a latitude of ca. 40°. Yet, the molecular basis of thermal acclimation in this cyanobacterium remains unexplored. We analyzed the transcriptional response of the Prochlorococcus marinus strain MIT9301 in long-term acclimations and in natural Prochlorococcus populations along a temperature range enabling its growth (17 to 30°C). MIT9301 upregulated mechanisms of the global stress response at the temperature minimum (17°C) but maintained the expression levels of genes involved in essential metabolic pathways (e.g., ATP synthesis and carbon fixation) along the whole thermal niche. Notably, the declining growth of MIT9301 from the optimum to the minimum temperature was coincident with a transcriptional suppression of the photosynthetic apparatus and a dampening of its circadian expression patterns, indicating a loss in their regulatory capacity under cold conditions. Under warm conditions, the cellular transcript inventory of MIT9301 was strongly streamlined, which may also induce regulatory imbalances due to stochasticity in gene expression. The daytime transcriptional suppression of photosynthetic genes at low temperature was also observed in metatranscriptomic reads mapping to MIT9301 across the global ocean, implying that this molecular mechanism may be associated with the restricted distribution of Prochlorococcus to temperate zones. IMPORTANCE Prochlorococcus is a major marine primary producer with a global impact on atmospheric CO2 fixation. This cyanobacterium is widely distributed across the temperate ocean, but virtually absent at latitudes above 40° for yet unknown reasons. Temperature has been suggested as a major limiting factor, but the exact mechanisms behind Prochlorococcus thermal growth restriction remain unexplored. This study brings us closer to understanding how Prochlorococcus functions under challenging temperature conditions, by focusing on its transcriptional response after long-term acclimation from its optimum to its thermal thresholds. Our results show that the drop in Prochlorococcus growth rate under cold conditions was paralleled by a transcriptional suppression of the photosynthetic machinery during daytime and a loss in the organism's regulatory capacity to maintain circadian expression patterns. Notably, warm temperature induced a marked shrinkage of the organism's cellular transcript inventory, which may also induce regulatory imbalances in the future functioning of this cyanobacterium.
Collapse
Affiliation(s)
- Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Antonio S Palacio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | - Ana M Cabello
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain
| | | | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Laurence Garczarek
- Sorbonne Université, CNRS, UMR 7144 Adaptation and Diversity in the Marine Environment (AD2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ángel López-Urrutia
- Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, IEO-CSIC, Gijón, Asturias, Spain
| |
Collapse
|
2
|
Landa M, Turk-Kubo KA, Cornejo-Castillo FM, Henke BA, Zehr JP. Critical Role of Light in the Growth and Activity of the Marine N 2-Fixing UCYN-A Symbiosis. Front Microbiol 2021; 12:666739. [PMID: 34025621 PMCID: PMC8139342 DOI: 10.3389/fmicb.2021.666739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/27/2022] Open
Abstract
The unicellular N2-fixing cyanobacteria UCYN-A live in symbiosis with haptophytes in the Braarudosphaera bigelowii lineage. Maintaining N2-fixing symbioses between two unicellular partners requires tight coordination of multiple biological processes including cell growth and division and, in the case of the UCYN-A symbiosis, N2 fixation of the symbiont and photosynthesis of the host. In this system, it is thought that the host photosynthesis supports the high energetic cost of N2 fixation, and both processes occur during the light period. However, information on this coordination is very limited and difficult to obtain because the UCYN-A symbiosis has yet to be available in culture. Natural populations containing the UCYN-A2 symbiosis were manipulated to explore the effects of alterations of regular light and dark periods and inhibition of host photosynthesis on N2 fixation (single cell N2 fixation rates), nifH gene transcription, and UCYN-A2 cell division (fluorescent in situ hybridization and nifH gene abundances). The results showed that the light period is critical for maintenance of regular patterns of gene expression, N2 fixation and symbiont replication and cell division. This study suggests a crucial role for the host as a producer of fixed carbon, rather than light itself, in the regulation and implementation of these cellular processes in UCYN-A.
Collapse
Affiliation(s)
- Marine Landa
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Kendra A Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | | | - Britt A Henke
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
3
|
Davenport EJ, Neudeck MJ, Matson PG, Bullerjahn GS, Davis TW, Wilhelm SW, Denney MK, Krausfeldt LE, Stough JMA, Meyer KA, Dick GJ, Johengen TH, Lindquist E, Tringe SG, McKay RML. Metatranscriptomic Analyses of Diel Metabolic Functions During a Microcystis Bloom in Western Lake Erie (United States). Front Microbiol 2019; 10:2081. [PMID: 31551998 PMCID: PMC6746948 DOI: 10.3389/fmicb.2019.02081] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/02/2022] Open
Abstract
This study examined diel shifts in metabolic functions of Microcystis spp. during a 48-h Lagrangian survey of a toxin-producing cyanobacterial bloom in western Lake Erie in the aftermath of the 2014 Toledo Water Crisis. Transcripts mapped to the genomes of recently sequenced lower Great Lakes Microcystis isolates showed distinct patterns of gene expression between samples collected across day (10:00 h, 16:00 h) and night (22:00 h, 04:00 h). Daytime transcripts were enriched in functions related to Photosystem II (e.g., psbA), nitrogen and phosphate acquisition, cell division (ftsHZ), heat shock response (dnaK, groEL), and uptake of inorganic carbon (rbc, bicA). Genes transcribed during nighttime included those involved in phycobilisome protein synthesis and Photosystem I core subunits. Hierarchical clustering and principal component analysis (PCA) showed a tightly clustered group of nighttime expressed genes, whereas daytime transcripts were separated from each other over the 48-h duration. Lack of uniform clustering within the daytime transcripts suggested that the partitioning of gene expression in Microcystis is dependent on both circadian regulation and physicochemical changes within the environment.
Collapse
Affiliation(s)
- Emily J. Davenport
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States
| | - Michelle J. Neudeck
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Paul G. Matson
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - George S. Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,*Correspondence: George S. Bullerjahn,
| | - Timothy W. Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States
| | - Steven W. Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Maddie K. Denney
- Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Lauren E. Krausfeldt
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Joshua M. A. Stough
- Department of Microbiology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Kevin A. Meyer
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States,Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Thomas H. Johengen
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI, United States
| | - Erika Lindquist
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Susannah G. Tringe
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Robert Michael L. McKay
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, United States,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
4
|
Fernández-Pinos MC, Vila-Costa M, Arrieta JM, Morales L, González-Gaya B, Piña B, Dachs J. Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants. Sci Rep 2017; 7:8029. [PMID: 28808349 PMCID: PMC5556013 DOI: 10.1038/s41598-017-08425-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
The impact of organic pollutants on oceanic ecosystem functioning is largely unknown. Prochlorococcus, the most abundant known photosynthetic organism on Earth, has been suggested to be especially sensible to exposure to organic pollutants, but the sub-lethal effects of organic pollutants on its photosynthetic function at environmentally relevant concentrations and mixtures remain unexplored. Here we show the modulation of the expression of two photosynthetic genes, rbcL (RuBisCO large subunit) and psbA (PSII D1 protein), of oceanic populations of Prochlorococcus from the Atlantic, Indian and Pacific Oceans when exposed to mixtures of organic pollutants consisting of the non-polar fraction of a seawater extract. This mixture included most persistent organic pollutants, semivolatile aromatic-like compounds, and the unresolved complex mixture of hydrocarbons. Prochlorococcus populations in the controls showed the expected diel cycle variations in expression of photosynthetic genes. However, exposure to a complex mixture at concentrations only 2-fold above the environmental levels resulted in a decrease of expression of both genes, suggesting an effect on the photosynthetic function. While organic pollutant effects on marine phytoplankton have been already demonstrated at the cellular level, this is the first field study showing alterations at the molecular level of the photosynthetic function due to organic pollutants.
Collapse
Affiliation(s)
| | - Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jesús M Arrieta
- Spanish Institute of Oceanography (IEO), Oceanographic Center of The Canary Islands, Santa Cruz de Tenerife, 38180, Spain.,Department of Global Change Research, IMEDEA-UIB-CSIC, Esporles, Mallorca, Spain
| | - Laura Morales
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Belén González-Gaya
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain.
| |
Collapse
|
5
|
Fernández-Pinos MC, Casado M, Caballero G, Zinser ER, Dachs J, Piña B. Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus. PLoS One 2015; 10:e0133207. [PMID: 26244890 PMCID: PMC4526520 DOI: 10.1371/journal.pone.0133207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/24/2015] [Indexed: 01/04/2023] Open
Abstract
Newly designed primers targeting rbcL (CO2 fixation), psbA (photosystem II) and rnpB (reference) genes were used in qRT-PCR assays to assess the photosynthetic capability of natural communities of Prochlorococcus, the most abundant photosynthetic organism on Earth and a major contributor to primary production in oligotrophic oceans. After optimizing sample collection methodology, we analyzed a total of 62 stations from the Malaspina 2010 circumnavigation (including Atlantic, Pacific and Indian Oceans) at three different depths. Sequence and quantitative analyses of the corresponding amplicons showed the presence of high-light (HL) and low-light (LL) Prochlorococcus clades in essentially all 182 samples, with a largely uniform stratification of LL and HL sequences. Synechococcus cross-amplifications were detected by the taxon-specific melting temperatures of the amplicons. Laboratory exposure of Prochlorococcus MED4 (HL) and MIT9313 (LL) strains to organic pollutants (PAHs and organochlorine compounds) showed a decrease of rbcL transcript abundances, and of the rbcL to psbA ratios for both strains. We propose this technique as a convenient assay to evaluate effects of environmental stressors, including pollution, on the oceanic Prochlorococcus photosynthetic function.
Collapse
Affiliation(s)
| | - Marta Casado
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Gemma Caballero
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Erik R. Zinser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
6
|
Halsey KH, Jones BM. Phytoplankton strategies for photosynthetic energy allocation. ANNUAL REVIEW OF MARINE SCIENCE 2014; 7:265-297. [PMID: 25149563 DOI: 10.1146/annurev-marine-010814-015813] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phytoplankton physiology is dynamic and highly responsive to the environment. Phytoplankton acclimate to changing environmental conditions by a complex reallocation of carbon and energy through metabolic pathways to optimize growth. Considering the tremendous diversity of phytoplankton, it is not surprising that different phytoplankton taxa use different strategies to partition carbon and energy resources. It has therefore been satisfying to discover that general principles of energetic stoichiometry appear to govern these complex processes and can be broadly applied to interpret phytoplankton distributions, productivity, and food web dynamics. The expectation of future changes in aquatic environments brought on by climate change warrants gathering knowledge about underlying patterns of photosynthetic energy allocation and their impacts on community structure and ecosystem productivity.
Collapse
Affiliation(s)
- Kimberly H Halsey
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331;
| | | |
Collapse
|
7
|
Voigt K, Sharma CM, Mitschke J, Lambrecht SJ, Voß B, Hess WR, Steglich C. Comparative transcriptomics of two environmentally relevant cyanobacteria reveals unexpected transcriptome diversity. ISME JOURNAL 2014; 8:2056-68. [PMID: 24739626 DOI: 10.1038/ismej.2014.57] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 11/09/2022]
Abstract
Prochlorococcus is a genus of abundant and ecologically important marine cyanobacteria. Here, we present a comprehensive comparison of the structure and composition of the transcriptomes of two Prochlorococcus strains, which, despite their similarities, have adapted their gene pool to specific environmental constraints. We present genome-wide maps of transcriptional start sites (TSS) for both organisms, which are representatives of the two most diverse clades within the two major ecotypes adapted to high- and low-light conditions, respectively. Our data suggest antisense transcription for three-quarters of all genes, which is substantially more than that observed in other bacteria. We discovered hundreds of TSS within genes, most notably within 16 of the 29 prochlorosin genes, in strain MIT9313. A direct comparison revealed very little conservation in the location of TSS and the nature of non-coding transcripts between both strains. We detected extremely short 5' untranslated regions with a median length of only 27 and 29 nt for MED4 and MIT9313, respectively, and for 8% of all protein-coding genes the median distance to the start codon is only 10 nt or even shorter. These findings and the absence of an obvious Shine-Dalgarno motif suggest that leaderless translation and ribosomal protein S1-dependent translation constitute alternative mechanisms for translation initiation in Prochlorococcus. We conclude that genome-wide antisense transcription is a major component of the transcriptional output from these relatively small genomes and that a hitherto unrecognized high degree of complexity and variability of gene expression exists in their transcriptional architecture.
Collapse
Affiliation(s)
- Karsten Voigt
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Cynthia M Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
| | - Jan Mitschke
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Björn Voß
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
8
|
Diversity of KaiC-based timing systems in marine Cyanobacteria. Mar Genomics 2014; 14:3-16. [PMID: 24388874 DOI: 10.1016/j.margen.2013.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
The coordination of biological activities into daily cycles provides an important advantage for the fitness of diverse organisms. Most eukaryotes possess an internal clock ticking with a periodicity of about one day to anticipate sunrise and sunset. The 24-hour period of the free-running rhythm is highly robust against many changes in the natural environment. Among prokaryotes, only Cyanobacteria are known to harbor such a circadian clock. Its core oscillator consists of just three proteins, KaiA, KaiB, and KaiC that produce 24-hour oscillations of KaiC phosphorylation, even in vitro. This unique three-protein oscillator is well documented for the freshwater cyanobacterium Synechococcus elongatus PCC 7942. Several physiological studies demonstrate a circadian clock also for other Cyanobacteria including marine species. Genes for the core clock components are present in nearly all marine cyanobacterial species, though there are large differences in the specific composition of these genes. In the first section of this review we summarize data on the model circadian clock from S. elongatus PCC 7942 and compare it to the reduced clock system of the marine cyanobacterium Prochlorococcus marinus MED4. In the second part we discuss the diversity of timing mechanisms in other marine Cyanobacteria with regard to the presence or absence of different components of the clock.
Collapse
|
9
|
McGinley MP, Suggett DJ, Warner ME. Transcript patterns of chloroplast-encoded genes in cultured Symbiodinium spp. (Dinophyceae): testing the influence of a light shift and diel periodicity. JOURNAL OF PHYCOLOGY 2013; 49:709-718. [PMID: 27007203 DOI: 10.1111/jpy.12079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 06/05/2023]
Abstract
Microalgae possess numerous cellular mechanisms specifically employed for acclimating the photosynthetic pathways to changes in the physical environment. Despite the importance of coral-dinoflagellate symbioses, little focus has been given as to how the symbiotic algae (Symbiodinium spp.) regulate the expression of their photosynthetic genes. This study used real-time PCR to investigate the transcript abundance of the plastid-encoded genes, psbA (encoding the D1 protein of photosystem II) and psaA (encoding the P700 protein in photosystem I), within the cultured Symbiodinium ITS-2 (internal transcribed spacer region) types A20 and A13. Transcript abundance was monitored during a low to high-light shift, as well as over a full diel light cycle. In addition, psaA was characterized in three isolates (A20, A13, and D4-5) and noted as another example of a dinoflagellate plastid gene encoded on a minicircle. In general, the overall incongruence of transcript patterns for both psbA and psaA between the Symbiodinium isolates and other models of transcriptionally controlled chloroplast gene expression (e.g., Pisum sativum [pea], Sinapis alba [mustard seedling], and Synechocystis sp. PCC 6803 [cyanobacteria]) suggests that Symbiodinium is reliant on posttranscriptional mechanisms for homeostatic regulation of its photosynthetic proteins.
Collapse
Affiliation(s)
- Michael P McGinley
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Deleware 19958, USA
| | - David J Suggett
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Mark E Warner
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, Deleware 19958, USA
| |
Collapse
|
10
|
Mella-Flores D, Six C, Ratin M, Partensky F, Boutte C, Le Corguillé G, Marie D, Blot N, Gourvil P, Kolowrat C, Garczarek L. Prochlorococcus and Synechococcus have Evolved Different Adaptive Mechanisms to Cope with Light and UV Stress. Front Microbiol 2012; 3:285. [PMID: 23024637 PMCID: PMC3441193 DOI: 10.3389/fmicb.2012.00285] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/19/2012] [Indexed: 11/13/2022] Open
Abstract
Prochlorococcus and Synechococcus, which numerically dominate vast oceanic areas, are the two most abundant oxygenic phototrophs on Earth. Although they require solar energy for photosynthesis, excess light and associated high UV radiations can induce high levels of oxidative stress that may have deleterious effects on their growth and productivity. Here, we compared the photophysiologies of the model strains Prochlorococcus marinus PCC 9511 and Synechococcus sp. WH7803 grown under a bell-shaped light/dark cycle of high visible light supplemented or not with UV. Prochlorococcus exhibited a higher sensitivity to photoinactivation than Synechococcus under both conditions, as shown by a larger drop of photosystem II (PSII) quantum yield at noon and different diel patterns of the D1 protein pool. In the presence of UV, the PSII repair rate was significantly depressed at noon in Prochlorococcus compared to Synechococcus. Additionally, Prochlorococcus was more sensitive than Synechococcus to oxidative stress, as shown by the different degrees of PSII photoinactivation after addition of hydrogen peroxide. A transcriptional analysis also revealed dramatic discrepancies between the two organisms in the diel expression patterns of several genes involved notably in the biosynthesis and/or repair of photosystems, light-harvesting complexes, CO(2) fixation as well as protection mechanisms against light, UV, and oxidative stress, which likely translate profound differences in their light-controlled regulation. Altogether our results suggest that while Synechococcus has developed efficient ways to cope with light and UV stress, Prochlorococcus cells seemingly survive stressful hours of the day by launching a minimal set of protection mechanisms and by temporarily bringing down several key metabolic processes. This study provides unprecedented insights into understanding the distinct depth distributions and dynamics of these two picocyanobacteria in the field.
Collapse
Affiliation(s)
- Daniella Mella-Flores
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de ChileSantiago, Chile
| | - Christophe Six
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Morgane Ratin
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Frédéric Partensky
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Christophe Boutte
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Gildas Le Corguillé
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- CNRS, FR 2424, Service Informatique et GénomiqueRoscoff, France
| | - Dominique Marie
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Nicolas Blot
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise PascalClermont-Ferrand, France
- Laboratoire Microorganismes: Génome et Environnement, CNRS, UMR 6023Aubière, France
| | - Priscillia Gourvil
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| | - Christian Kolowrat
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
- Center for Doctoral Studies, University of ViennaVienna, Austria
| | - Laurence Garczarek
- Station Biologique, UPMC-Université Paris VIRoscoff, France
- Groupe Plancton Océanique, CNRS, UMR 7144Roscoff, France
| |
Collapse
|
11
|
Paerl RW, Tozzi S, Kolber ZS, Zehr JP. VARIATION IN THE ABUNDANCE OF SYNECHOCOCCUS SP. CC9311 NARB MRNA RELATIVE TO CHANGES IN LIGHT, NITROGEN GROWTH CONDITIONS AND NITRATE ASSIMILATION(1). JOURNAL OF PHYCOLOGY 2012; 48:1028-1039. [PMID: 27009013 DOI: 10.1111/j.1529-8817.2012.01197.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synechococcus- and Prochlorococcus-specific narB genes that encode for an assimilatory nitrate reductase are found in coastal to open-ocean waters. However, it remains uncertain if these picocyanobacteria assimilate nitrate in situ. This unknown can potentially be addressed by examining narB mRNA from the environment, but this requires a better understanding of the influence of environmental factors on narB gene transcription. In laboratory experiments with Synechococcus sp. CC9311 cultures exposed to diel light fluctuations and grown on nitrate or ammonium, there was periodic change in narB transcript abundance. This periodicity was broken in cultures subjected to a doubling of irradiance (40-80 μmol photons · m(-2) · s(-1) ) during the mid-light period. Therefore, the irradiance level, not circadian rhythm, was the dominant factor controlling narB transcription. In nitrate-grown cultures, diel change in narB transcript abundance and nitrate assimilation rate did not correlate; suggesting narB mRNA levels better indicate nitrate assimilation activity than assimilation rate. Growth history also affected narB transcription, as changes in narB mRNA levels in nitrogen-deprived CC9311 cultures following nitrate amendment were distinct from cultures grown solely on nitrate. Environmental sampling for narB transcripts should consider time, irradiance, and the growth status of cells to ecologically interpret narB transcript abundances.
Collapse
Affiliation(s)
- Ryan W Paerl
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA
| | - Sasha Tozzi
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA
| | - Zbigniew S Kolber
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA
| | - Jonathan P Zehr
- Department of Ocean Sciences, University of California Santa Cruz, 1156 High Street EMS D446, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Kolowrat C, Partensky F, Mella-Flores D, Le Corguillé G, Boutte C, Blot N, Ratin M, Ferréol M, Lecomte X, Gourvil P, Lennon JF, Kehoe DM, Garczarek L. Ultraviolet stress delays chromosome replication in light/dark synchronized cells of the marine cyanobacterium Prochlorococcus marinus PCC9511. BMC Microbiol 2010; 10:204. [PMID: 20670397 PMCID: PMC2921402 DOI: 10.1186/1471-2180-10-204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 07/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (approximately 1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. RESULTS The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. CONCLUSIONS Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.
Collapse
Affiliation(s)
- Christian Kolowrat
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Frédéric Partensky
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Daniella Mella-Flores
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Gildas Le Corguillé
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, FR 2424, Service Informatique et Génomique, 29680 Roscoff, France
| | - Christophe Boutte
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Nicolas Blot
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
- Clermont Université, Université Blaise Pascal, UMR CNRS 6023, Laboratoire Microorganismes: Génome et Environnement, BP 10448, 63000 Clermont-Ferrand, France
| | - Morgane Ratin
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Martial Ferréol
- CEMAGREF, UR Biologie des Ecosystèmes Aquatiques, Laboratoire d'Hydroécologie Quantitative, 3 bis quai Chauveau, CP 220, 69336 Lyon Cedex 09, France
| | - Xavier Lecomte
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Priscillia Gourvil
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| | - Jean-François Lennon
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
| | - David M Kehoe
- Department of Biology, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA
| | - Laurence Garczarek
- UPMC-Université Paris 06, Station Biologique, Place Georges Teissier, 29680 Roscoff, France
- CNRS, UMR 7144, Groupe Plancton Océanique, 29680 Roscoff, France
| |
Collapse
|
13
|
Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, Wright MA, Rector T, Steen R, McNulty N, Thompson LR, Chisholm SW. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus. PLoS One 2009; 4:e5135. [PMID: 19352512 PMCID: PMC2663038 DOI: 10.1371/journal.pone.0005135] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 01/19/2009] [Indexed: 01/11/2023] Open
Abstract
The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night— metabolic processes that share some of the same enzymes — appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a ‘deficient’ circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.
Collapse
Affiliation(s)
- Erik R. Zinser
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Debbie Lindell
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zackary I. Johnson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Matthias E. Futschik
- Institute of Theoretical Biology, Humboldt University, Berlin, Germany
- Center for Molecular and Structural Biomedicine, University of Algarve, Faro, Portugal
| | - Claudia Steglich
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Maureen L. Coleman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew A. Wright
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Trent Rector
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Steen
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nathan McNulty
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Luke R. Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Holtzendorff J, Partensky F, Mella D, Lennon JF, Hess WR, Garczarek L. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J Biol Rhythms 2008; 23:187-99. [PMID: 18487411 DOI: 10.1177/0748730408316040] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The core oscillator of the circadian clock in cyanobacteria consists of 3 proteins, KaiA, KaiB, and KaiC. All 3 have previously been shown to be essential for clock function. Accordingly, most cyanobacteria possess at least 1 copy of each kai gene. One exception is the marine genus Prochlorococcus, which we suggest here has suffered a stepwise deletion of the kaiA gene, together with significant genome streamlining. Nevertheless, natural Prochlorococcus populations and laboratory cultures are strongly synchronized by the alternation of day and night, displaying 24-h rhythms in DNA replication, with a temporal succession of G1, S, and G2-like cell cycle phases. Using quantitative real-time PCR, we show here that in Prochlorococcus marinus PCC 9511, the mRNA levels of the clock genes kaiB and kaiC, as well as a few other selected genes including psbA, also displayed marked diel variations when cultures were kept under a light-dark rhythm. However, both cell cycle and psbA gene expression rhythms damped very rapidly under continuous light. In the closely related Synechococcus sp. WH8102, which possesses all 3 kai genes, cell cycle rhythms persisted over several days, in agreement with established cyanobacterial models. These data indicate a correlation between the loss of kaiA and a loss of robustness in the endogenous oscillator of Prochlorococcus and raise questions about how a basic KaiBC system may function and through which mechanism the daily "lights-on" and "lights-off" signal could be mediated.
Collapse
Affiliation(s)
- Julia Holtzendorff
- Université Pierre et Marie Curie (Paris 06) and Centre National de la Recherche Scientifique (UMR 7144), Station Biologique, France
| | | | | | | | | | | |
Collapse
|
15
|
Cai F, Heinhorst S, Shively JM, Cannon GC. Transcript analysis of the Halothiobacillus neapolitanus cso operon. Arch Microbiol 2007; 189:141-50. [PMID: 17899012 DOI: 10.1007/s00203-007-0305-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/13/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Carboxysomes are polyhedral microcompartments that sequester the CO(2)-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase in many autotrophic bacteria. Their protein constituents are encoded by a set of tightly clustered genes that are thought to form an operon (the cso operon). This study is the first to systematically address transcriptional regulation of carboxysome protein expression. Quantification of transcript levels derived from the cso operon of Halothiobacillus neapolitanus, the sulfur oxidizer that has emerged as the model organism for carboxysome structural and functional studies, indicated that all cso genes are transcribed, albeit at different levels. Combined with comparative genomic evidence, this study supports the premise that the cso gene cluster constitutes an operon. Characterization of transcript 5'- and 3'-ends and examination of likely regulatory sequences and secondary structure elements within the operon suggested potential strategies by which the vastly different levels of individual carboxysome proteins in the microcompartment could have arisen.
Collapse
Affiliation(s)
- Fei Cai
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | | | | | | |
Collapse
|
16
|
Axmann IM, Holtzendorff J, Voss B, Kensche P, Hess WR. Two distinct types of 6S RNA in Prochlorococcus. Gene 2007; 406:69-78. [PMID: 17640832 DOI: 10.1016/j.gene.2007.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/12/2007] [Accepted: 06/04/2007] [Indexed: 11/21/2022]
Abstract
Different forms of the 6S non-coding RNA (ncRNA) exist in enterobacteria and in B. subtilis but there is only limited information about this RNA from other groups of bacteria. Prochlorococcus is an oceanic, ecologically important, cyanobacterium. It possesses the most streamlined genome within the cyanobacterial phylum, lacking many regulatory proteins and mechanisms well-known from other bacteria. Here we show the accumulation of two distinct types of 6S RNA in Prochlorococcus MED4. One of these RNAs is transcribed from a specific promoter located 23 nucleotides downstream the terminal codon of the purK gene, whereas the longer transcript is produced by processing from a purK-6S RNA precursor. The expression of both 6S transcripts is under diel control, reaching maxima during the day and minima coinciding with the S- and G2-like phases which are typical for synchronized cultures of this prokaryote. Based on data from four closely related Prochlorococcus strains and 11 environmental sequences from the Sargasso Sea, a previously unknown structural element is predicted within the 6S RNA 5' domain by comparative computational analysis. The divergent expression in synchronized cultures and unusual structural domains that were detected based on metagenomic data sets indicate that 6S RNA is an extremely important global regulator in these marine cyanobacteria.
Collapse
Affiliation(s)
- Ilka M Axmann
- Humboldt University Berlin, Institute for Theoretical Biology, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Abstract
The circadian system of prokaryotes is probably the oldest among the circadian systems of living organisms. The genes comprising the system are very different in their evolutionary histories. The reconstruction of macroevolution of the circadian genes in cyanobacteria suggests that there are probably at least two types of circadian systems, based either on the threekaigenes (kaiA, kaiB, andkaiC) or onkaiBandkaiC.When referred to the recently published results about a genomic timescale of prokaryote evolution, the origin ofkaiBandsasAcorresponds to the appearance of anoxygenic photosynthesis, while the origin of thekaiBCoperon corresponds to the time when oxygenic photosynthesis evolved.The results of the studies performed so far suggest that major steps in macroevolution of the circadian system in cyanobacteria have been related to global changes in the environment and to keystone advances in biological evolution. This macroevolution has involved selection, multiple lateral transfers, gene duplications, and fusions as its primary driving forces. The proposed scenario of the circadian system's macroevolution is far from complete and will be updated as new genomic and sequence data are accumulated.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- Department of Biological Sciences, Kent State University
- Laboratory of Molecular Population Genetics and Evolution, M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, vul
| |
Collapse
|
18
|
Vogel J, Axmann IM, Herzel H, Hess WR. Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 2003; 31:2890-9. [PMID: 12771216 PMCID: PMC156731 DOI: 10.1093/nar/gkg398] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In contrast to certain model eubacteria, little is known as to where transcription is initiated in the genomes of cyanobacteria, which are largely distinct from other prokaryotes. In this work, 25 transcription start sites (TSS) of 21 different genes of Prochlorococcus sp. MED4 were determined experimentally. The data suggest more than one TSS for the genes ftsZ, petH, psbD and ntcA. In contrast, the rbcL-rbcS operon encoding ribulose 1,5-bisphosphate carboxylase/oxygenase lacks a detectable promoter and is co-transcribed with the upstream located gene ccmK. The entire set of experimental data was used in a genome-wide scan for putative TSS in Prochlorococcus. A -10 element could be defined, whereas at the -35 position there was no element common to all investigated sequences. However, splitting the data set into sub-classes revealed different types of putative -35 boxes. Only one of them resembled the consensus sequence TTGACA recognized by the vegetative sigma factor (sigma70) of enterobacteria. Using a scoring matrix of the -10 element, more than 3000 TSS were predicted, about 40% of which were estimated to be functional. This is the first systematic study of transcription initiation sites in a cyanobacterium.
Collapse
Affiliation(s)
- Jörg Vogel
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
19
|
The Photosynthetic Apparatus of Chlorophyll b- and d-Containing Oxyphotobacteria. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Photoacclimation of Light Harvesting Systems in Eukaryotic Algae. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_15] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Holtzendorff J, Marie D, Post AF, Partensky F, Rivlin A, Hess WR. Synchronized expression of ftsZ in natural Prochlorococcus populations of the Red Sea. Environ Microbiol 2002; 4:644-53. [PMID: 12460272 DOI: 10.1046/j.1462-2920.2002.00347.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of ftsZ, encoding the initiating protein of the prokaryotic cell division was analysed in natural Prochlorococcus populations in the Gulf of Aqaba, northern Red Sea. During the seasonal Prochlorococcus bloom in September 2000, picoplankton was collected from the deep chlorophyll maximum (DCM) at 2-4 h intervals over 3 consecutive days. Flow cytometric measurements as well as DNA sequence analyses showed that Prochlorococcus was the dominant photosynthetic organism. Cell densities peaked as high as 1.4 x 10(5) cells ml(-1). This DCM population mainly consisted of brightly red fluorescing Prochlorococcus cells, corresponding to low light-adapted 'ecotypes' (sensu Moore et al., 1998, Nature 393: 464-467). Prochlorococcus populations grew in a highly synchronized fashion with DNA replication in the afternoon and cell division during the night. The ftsZ mRNA level reached maximum values within the replication phase between 14.00 and 16.00 hours, and minimum values between 02.00 and 06.00 hours. Thus, the transcriptional regulation of ftsZ could be a major factor triggering the synchronized cell division of Prochlorococcus populations. This is the first application of quantitative reverse transcriptase-coupled real-time polymerase chain reaction (PCR) to natural populations of an environmentally relevant marine organism.
Collapse
Affiliation(s)
- Julia Holtzendorff
- Humboldt-University, Institute of Biology/Genetics, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Ting CS, Rocap G, King J, Chisholm SW. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 2002; 10:134-42. [PMID: 11864823 DOI: 10.1016/s0966-842x(02)02319-3] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prochlorococcus and Synechococcus are abundant unicellular cyanobacteria and major participants in global carbon cycles. Although they are closely related and often coexist in the same ocean habitat, they possess very different photosynthetic light-harvesting antennas. Whereas Synechococcus and the majority of cyanobacteria use phycobilisomes, Prochlorococcus has evolved to use a chlorophyll a(2)/b(2) light-harvesting complex. Here, we present a scenario to explain how the Prochlorococcus antenna might have evolved in an ancestral cyanobacterium in iron-limited oceans, resulting in the diversification of the Prochlorococcus and marine Synechococcus lineages from a common phycobilisome-containing ancestor. Differences in the absorption properties and cellular costs between chlorophyll a(2)/b(2) and phycobilisome antennas in extant Prochlorococcus and Synechococcus appear to play a role in differentiating their ecological niches in the ocean environment.
Collapse
Affiliation(s)
- Claire S Ting
- Dept of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Holtzendorff J, Partensky F, Jacquet S, Bruyant F, Marie D, Garczarek L, Mary I, Vaulot D, Hess WR. Diel expression of cell cycle-related genes in synchronized cultures of Prochlorococcus sp. strain PCC 9511. J Bacteriol 2001; 183:915-20. [PMID: 11208789 PMCID: PMC94958 DOI: 10.1128/jb.183.3.915-920.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 11/07/2000] [Indexed: 11/20/2022] Open
Abstract
The cell cycle of the chlorophyll b-possessing marine cyanobacterium Prochlorococcus is highly synchronized under natural conditions. To understand the underlying molecular mechanisms we cloned and sequenced dnaA and ftsZ, two key cell cycle-associated genes, and studied their expression. An axenic culture of Prochlorococcus sp. strain PCC 9511 was grown in a turbidostat with a 12 h-12 h light-dark cycle for 2 weeks. During the light periods, a dynamic light regimen was used in order to simulate the natural conditions found in the upper layers of the world's oceans. This treatment resulted in strong cell cycle synchronization that was monitored by flow cytometry. The steady-state mRNA levels of dnaA and ftsZ were monitored at 4-h intervals during four consecutive division cycles. Both genes exhibited clear diel expression patterns with mRNA maxima during the replication (S) phase. Western blot experiments indicated that the peak of FtsZ concentration occurred at night, i.e., at the time of cell division. Thus, the transcript accumulation of genes involved in replication and division is coordinated in Prochlorococcus sp. strain PCC 9511 and might be crucial for determining the timing of DNA replication and cell division.
Collapse
Affiliation(s)
- J Holtzendorff
- Institute of Biology/Genetics, Humboldt-University, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|