1
|
Moran RL, Richards EJ, Ornelas-García CP, Gross JB, Donny A, Wiese J, Keene AC, Kowalko JE, Rohner N, McGaugh SE. Selection-driven trait loss in independently evolved cavefish populations. Nat Commun 2023; 14:2557. [PMID: 37137902 PMCID: PMC10156726 DOI: 10.1038/s41467-023-37909-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra, Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.
Collapse
Affiliation(s)
- Rachel L Moran
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA.
- Department of Biology, Texas A&M University, College Station, TX, USA.
| | - Emilie J Richards
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Claudia Patricia Ornelas-García
- Colección Nacional de Peces, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior S/N. CP 04510, D. F. México, México City, México
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Alexandra Donny
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Jonathan Wiese
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Johanna E Kowalko
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular & Integrative Physiology, KU Medical Center, Kansas City, KS, USA
| | - Suzanne E McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
2
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Ram Y, Hadany L. Evolution of Stress-Induced Mutagenesis in the Presence of Horizontal Gene Transfer. Am Nat 2019; 194:73-89. [PMID: 31251650 DOI: 10.1086/703457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Stress-induced mutagenesis has been observed in multiple species of bacteria and yeast. It has been suggested that in asexual populations, a mutator allele that increases the mutation rate during stress can sweep to fixation with the beneficial mutations it generates. However, even asexual microbes can undergo horizontal gene transfer and rare recombination, which typically interfere with the spread of mutator alleles. Here we examine the effect of horizontal gene transfer on the evolutionary advantage of stress-induced mutator alleles. Our results demonstrate that stress-induced mutator alleles are favored by selection even in the presence of horizontal gene transfer and more so when the mutator alleles also increase the rate of horizontal gene transfer. We suggest that when regulated by stress, mutation and horizontal gene transfer can be complementary rather than competing adaptive strategies and that stress-induced mutagenesis has important implications for evolutionary biology, ecology, and epidemiology, even in the presence of horizontal gene transfer and rare recombination.
Collapse
|
4
|
Gao X, Pi D, Chen N, Li X, Liu X, Yang H, Wei W, Zhang X. Survival, Virulent Characteristics, and Transcriptomic Analyses of the Pathogenic Vibrio anguillarum Under Starvation Stress. Front Cell Infect Microbiol 2018; 8:389. [PMID: 30505805 PMCID: PMC6250815 DOI: 10.3389/fcimb.2018.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Many bacteria have developed strategies for metamorphosis into sophisticated survival forms to survive extended periods of environmental stress. As a global causative agent of vibriosis in marine fish farming, Vibrio anguillarum (V. anguillarum) can efficiently grow and proliferate under environmental stress, but the specific mechanism is not clear. In the present study, survival, virulent characteristics, and transcriptomic analysis of the V. anguillarum BH1 were performed under starvation stress. The results demonstrated that V. anguillarum was still culturable and showed rippled surface after 6 months of starvation. Starved cells maintained their infectivity in half-smooth tongue sole (Cynoglossus semilaevi). Detection of virulence factors and virulence-associated genes in starved cells showed that the starved strain still produced β-hemolysis on rabbit blood agar, caseinase, dnase, and gelatinase, and possessed empA, vah1, vah2, vah3, vah4, vah5, rtxA, flaA, flaD, flaE, virC, tonB, mreB, toxR, rpoS, and ftsZ virulence-related genes. In addition, we first reported the RNA-seq study for V. anguillarum with and without starvation treatment for a period of 6 months and emphasized the regulation of gene expression at the whole transcriptional level. It indicated that V. anguillarum expressed 3,089 and 3,072 genes in the control group and starvation stress group, respectively. The differently expressed genes (DEGs) of the starved strain were thereby identified, including 251 up-regulated genes and 272 down-regulated genes in comparison with the non-starved strain. Gene Ontology (GO) analysis and Kyto Encyclopedia Genes and Genomes (KEGG) enrichment analysis of DEGs were also analyzed. GO functional classification revealed that among the significantly regulated genes with known function categories, more genes affiliated with signal transducer activity, molecular transducer activity, and cell communication were significantly up-regulated, and more genes affiliated with cellular macromolecule, cellular component, and structural molecule activity were significantly down-regulated. In addition, the DEGs involved in the pathway of two-component system was significantly up-regulated, and the pathways of ribosome and flagellar assembly were significantly down-regulated. This study provides valuable insight into the survival strategies of V. anguillarum and suggests that a portion of the bacterial populations may remain pathogenic while persisting under starvation stress by up-regulating or down-regulating a series of genes.
Collapse
Affiliation(s)
- Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Daming Pi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Nan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Tymensen L, Zaheer R, Cook SR, Amoako KK, Goji N, Read R, Booker CW, Hannon SJ, Neumann N, McAllister TA. Clonal expansion of environmentally-adapted Escherichia coli contributes to propagation of antibiotic resistance genes in beef cattle feedlots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:657-664. [PMID: 29758422 DOI: 10.1016/j.scitotenv.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Livestock wastewater lagoons represent important environmental reservoirs of antibiotic resistance genes (ARGs), although factors contributing to their proliferation within these reservoirs remain poorly understood. Here, we characterized Escherichia coli from feedlot cattle feces and associated wastewater lagoons using CRISPR1 subtyping, and demonstrated that while generic E. coli were genetically diverse, populations were dominated by several 'feedlot-adapted' CRISPR types (CTs) that were widely distributed throughout the feedlot. Moreover, E. coli bearing beta-lactamase genes, which confer reduced susceptibility to third-generation cephalosporin's, predominantly belonged to these feedlot-adapted CTs. Remarkably, the genomic region containing the CRISPR1 allele was more frequently subject to genetic exchange among wastewater isolates compared to fecal isolates, implicating this region in environmental adaptation. This allele is proximal to the mutS-rpoS-nlpD region, which is involved in regulating recombination barriers and adaptive stress responses. There were no loss-of-function mutS or rpoS mutations or beneficial accessory genes present within the mutS-rpoS-nlpD region that would account for increased environmental fitness among feedlot-adapted isolates. However, comparative sequence analysis revealed that protein sequences within this region were conserved among most feedlot-adapted CTs, but not transient fecal CTs, and did not reflect phylogenetic relatedness, implying that adaptation to wastewater environments may be associated with genetic variation related to stress resistance. Collectively, our findings suggest adaptation of E. coli to feedlot environments may contribute to propagation of ARGs in wastewater lagoons.
Collapse
Affiliation(s)
- Lisa Tymensen
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada.
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Shaun R Cook
- Alberta Agriculture and Forestry, Irrigation and Farm Water Branch, Lethbridge, Alberta T1J 4V6, Canada
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge, Alberta, Canada
| | - Ron Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta T1Y 6J4, Canada
| | - Calvin W Booker
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Sherry J Hannon
- Feedlot Health Management Services, Ltd., Okotoks, Alberta T1S 2A2, Canada
| | - Norman Neumann
- School of Public Health, University of Alberta, 3-300 Edmonton Clinic Health Authority, 11405-87 Ave, Edmonton, Alberta T6G 1C9, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
6
|
Zhang QG, Lu HS, Buckling A. Temperature drives diversification in a model adaptive radiation. Proc Biol Sci 2018; 285:rspb.2018.1515. [PMID: 30185639 DOI: 10.1098/rspb.2018.1515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/15/2018] [Indexed: 01/10/2023] Open
Abstract
The warmer regions harbour more species, attributable to accelerated speciation and increased ecological opportunities for coexistence. While correlations between temperature and energy availability and habitat area have been suggested as major drivers of these biodiversity patterns, temperature can theoretically also have direct effects on the evolution of diversity. Here, we experimentally studied the evolution of diversity in a model adaptive radiation of the bacterium Pseudomonas fluorescens across a temperature gradient. Diversification increased at higher temperatures, driven by both faster generation of genetic variation and stronger diversifying selection. Specifically, low temperatures could limit the generation of diversity, suggested by the observation that supply of genetic variation through immigration increased diversity at low, but not high temperatures. The two major determinants of mutation supply, population size and mutation rate, both showed a positive temperature dependence. Stronger diversifying selection in warmer environments was suggested by promoted coexistence, and further explicitly inferred by the ability of evolved phenotypes to invade the ancestral type from rare. We discuss possible physiological and environmental mechanisms underlying the findings, most of which are likely to be general.
Collapse
Affiliation(s)
- Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Han-Shu Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Angus Buckling
- ESI and CEC, Biosciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
7
|
Chu XL, Zhang BW, Zhang QG, Zhu BR, Lin K, Zhang DY. Temperature responses of mutation rate and mutational spectrum in an Escherichia coli strain and the correlation with metabolic rate. BMC Evol Biol 2018; 18:126. [PMID: 30157765 PMCID: PMC6116381 DOI: 10.1186/s12862-018-1252-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 11/28/2022] Open
Abstract
Background Temperature is a major determinant of spontaneous mutation, but the precise mode, and the underlying mechanisms, of the temperature influences remain less clear. Here we used a mutation accumulation approach combined with whole-genome sequencing to investigate the temperature dependence of spontaneous mutation in an Escherichia coli strain. Experiments were performed under aerobic conditions at 25, 28 and 37 °C, three temperatures that were non-stressful for the bacterium but caused significantly different bacterial growth rates. Results Mutation rate did not differ between 25 and 28 °C, but was higher at 37 °C. Detailed analyses of the molecular spectrum of mutations were performed; and a particularly interesting finding is that higher temperature led to a bias of mutation to coding, relative to noncoding, DNA. Furthermore, the temperature response of mutation rate was extremely similar to that of metabolic rate, consistent with an idea that metabolic rate predicts mutation rate. Conclusions Temperature affects mutation rate and the types of mutation supply, both being crucial for the opportunity of natural selection. Our results help understand how temperature drives evolutionary speed of organisms and thus the global patterns of biodiversity. This study also lend support to the metabolic theory of ecology for linking metabolic rate and molecular evolution rate. Electronic supplementary material The online version of this article (10.1186/s12862-018-1252-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Lin Chu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Bo-Wen Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Bi-Ru Zhu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Kui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, 100875, People's Republic of China.
| |
Collapse
|
8
|
Miska EA, Ferguson-Smith AC. Transgenerational inheritance: Models and mechanisms of non-DNA sequence-based inheritance. Science 2016; 354:59-63. [PMID: 27846492 DOI: 10.1126/science.aaf4945] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heritability has traditionally been thought to be a characteristic feature of the genetic material of an organism-notably, its DNA. However, it is now clear that inheritance not based on DNA sequence exists in multiple organisms, with examples found in microbes, plants, and invertebrate and vertebrate animals. In mammals, the molecular mechanisms have been challenging to elucidate, in part due to difficulties in designing robust models and approaches. Here we review some of the evidence, concepts, and potential mechanisms of non-DNA sequence-based transgenerational inheritance. We highlight model systems and discuss whether phenotypes are replicated or reconstructed over successive generations, as well as whether mechanisms operate at transcriptional and/or posttranscriptional levels. Finally, we explore the short- and long-term implications of non-DNA sequence-based inheritance. Understanding the effects of non-DNA sequence-based mechanisms is key to a full appreciation of heritability in health and disease.
Collapse
Affiliation(s)
- Eric A Miska
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
9
|
Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species. Antimicrob Agents Chemother 2015; 59:5951-8. [PMID: 26169406 DOI: 10.1128/aac.00027-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
To gain insights into the diversification trajectories of qnrB genes, a phylogenetic and comparative genomics analysis of these genes and their surrounding genetic sequences was performed. For this purpose, Citrobacter sp. isolates (n = 21) and genome or plasmid sequences (n = 56) available in public databases harboring complete or truncated qnrB genes were analyzed. Citrobacter species identification was performed by phylogenetic analysis of different genotypic markers. The clonal relatedness among isolates, the location of qnrB genes, and the genetic surroundings of qnrB genes were investigated by pulsed-field gel electrophoresis (PFGE), S1-/I-CeuI-PFGE and hybridization, and PCR mapping and sequencing, respectively. Identification of Citrobacter isolates was achieved using leuS and recN gene sequences, and isolates characterized in this study were diverse and harbored chromosomal qnrB genes. Phylogenetic analysis of all known qnrB genes revealed seven main clusters and two branches, with most of them included in two clusters. Specific platforms (comprising pspF and sapA and varying in synteny and/or identity of other genes and intergenic regions) were associated with each one of these qnrB clusters, and the reliable identification of all Citrobacter isolates revealed that each platform evolved in different recognizable (Citrobacter freundii, C. braakii, C. werkmanii, and C. pasteurii) and putatively new species. A high identity was observed between some of the platforms identified in the chromosome of Citrobacter spp. and in different plasmids of Enterobacteriaceae. Our data corroborate Citrobacter as the origin of qnrB and further suggest divergent evolution of closely related qnrB genes/platforms in particular Citrobacter spp., which were delineated using particular genotypic markers.
Collapse
|
10
|
Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics 2013; 194:409-20. [PMID: 23589461 DOI: 10.1534/genetics.113.151837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.
Collapse
|
11
|
Sharma A, Kottur J, Narayanan N, Nair DT. A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res 2013; 41:5104-14. [PMID: 23525461 PMCID: PMC3643571 DOI: 10.1093/nar/gkt146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Y-family DNA polymerase IV or PolIV (Escherichia coli) is the founding member of the DinB family and is known to play an important role in stress-induced mutagenesis. We have determined four crystal structures of this enzyme in its pre-catalytic state in complex with substrate DNA presenting the four possible template nucleotides that are paired with the corresponding incoming nucleotide triphosphates. In all four structures, the Ser42 residue in the active site forms interactions with the base moieties of the incipient Watson–Crick base pair. This residue is located close to the centre of the nascent base pair towards the minor groove. In vitro and in vivo assays show that the fidelity of the PolIV enzyme increases drastically when this Ser residue was mutated to Ala. In addition, the structure of PolIV with the mismatch A:C in the active site shows that the Ser42 residue plays an important role in stabilizing dCTP in a conformation compatible with catalysis. Overall, the structural, biochemical and functional data presented here show that the Ser42 residue is present at a strategic location to stabilize mismatches in the PolIV active site, and thus facilitate the appearance of transition and transversion mutations.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
12
|
On-chip cellomics assay enabling algebraic and geometric understanding of epigenetic information in cellular networks of living systems. 1. Temporal aspects of epigenetic information in bacteria. SENSORS 2012; 12:7169-206. [PMID: 22969343 PMCID: PMC3435972 DOI: 10.3390/s120607169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022]
Abstract
A series of studies aimed at developing methods and systems of analyzing epigenetic information in cells and in cell networks, as well as that of genetic information, was examined to expand our understanding of how living systems are determined. Because cells are minimum units reflecting epigenetic information, which is considered to map the history of a parallel-processing recurrent network of biochemical reactions, their behaviors cannot be explained by considering only conventional DNA information-processing events. The role of epigenetic information on cells, which complements their genetic information, was inferred by comparing predictions from genetic information with cell behaviour observed under conditions chosen to reveal adaptation processes, population effects and community effects. A system of analyzing epigenetic information was developed starting from the twin complementary viewpoints of cell regulation as an “algebraic” system (emphasis on temporal aspects) and as a “geometric” system (emphasis on spatial aspects). Exploiting the combination of latest microfabrication technology and measurement technologies, which we call on-chip cellomics assay, we can control and re-construct the environments and interaction of cells from “algebraic” and “geometric” viewpoints. In this review, temporal viewpoint of epigenetic information, a part of the series of single-cell-based “algebraic” and “geometric” studies of celluler systems in our research groups, are summerized and reported. The knowlege acquired from this study may lead to the use of cells that fully control practical applications like cell-based drug screening and the regeneration of organs.
Collapse
|
13
|
Moeller R, Vlašić I, Reitz G, Nicholson WL. Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol 2012; 194:759-67. [PMID: 22484477 DOI: 10.1007/s00203-012-0811-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/29/2022]
Abstract
Mutations in the RNA polymerase β-subunit gene rpoB causing resistance to rifampicin (Rif(R)) in Bacillus subtilis were previously shown to lead to alterations in the expression of a number of global phenotypes known to be under transcriptional control. To better understand the influence of rpoB mutations on sporulation and spore resistance to heat and chemicals, cells and spores of the wild-type and twelve distinct congenic Rif(R) mutant strains of B. subtilis were tested. Different levels of glucose catabolite repression during sporulation and spore resistance to heat and chemicals were observed in the Rif(R) mutants, indicating the important role played by the RNA polymerase β-subunit, not only in the catalytic aspect of transcription, but also in the initiation of sporulation and in the spore resistance properties of B. subtilis.
Collapse
Affiliation(s)
- Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center, Linder Hoehe, 51147 Cologne, Germany.
| | | | | | | |
Collapse
|
14
|
Abstract
Numerous empirical studies show that stress of various kinds induces a state of hypermutation in bacteria via multiple mechanisms, but theoretical treatment of this intriguing phenomenon is lacking. We used deterministic and stochastic models to study the evolution of stress-induced hypermutation in infinite and finite-size populations of bacteria undergoing selection, mutation, and random genetic drift in constant environments and in changing ones. Our results suggest that if beneficial mutations occur, even rarely, then stress-induced hypermutation is advantageous for bacteria at both the individual and the population levels and that it is likely to evolve in populations of bacteria in a wide range of conditions because it is favored by selection. These results imply that mutations are not, as the current view holds, uniformly distributed in populations, but rather that mutations are more common in stressed individuals and populations. Because mutation is the raw material of evolution, these results have a profound impact on broad aspects of evolution and biology.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
15
|
Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 2010; 27:1281-96. [PMID: 25187127 DOI: 10.1007/s11274-010-0584-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.
Collapse
|
16
|
Abstract
In this issue of Molecular Cell, Kohanski et al. (2010) demonstrate that even subinhibitory concentrations of bactericidal antibiotics result in the generation of reactive oxygen species, leading to an increase in mutation rate and the emergence of multidrug-resistant bacterial strains.
Collapse
Affiliation(s)
- Benjamin B Kaufmann
- Infectious Disease Initiative, The Broad Institute, Cambridge, MA 02141, USA; Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
17
|
Short-term signatures of evolutionary change in the Salmonella enterica serovar typhimurium 14028 genome. J Bacteriol 2009; 192:560-7. [PMID: 19897643 DOI: 10.1128/jb.01233-09] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes gastroenteritis in humans and a typhoid-like disease in mice and is often used as a model for the disease promoted by the human-adapted S. enterica serovar Typhi. Despite its health importance, the only S. Typhimurium strain for which the complete genomic sequence has been determined is the avirulent LT2 strain, which is extensively used in genetic and physiologic studies. Here, we report the complete genomic sequence of the S. Typhimurium strain 14028s, as well as those of its progenitor and two additional derivatives. Comparison of these S. Typhimurium genomes revealed differences in the patterns of sequence evolution and the complete inventory of genetic alterations incurred in virulent and avirulent strains, as well as the sequence changes accumulated during laboratory passage of pathogenic organisms.
Collapse
|
18
|
Molecular characterization and lytic activities of Streptococcus agalactiae bacteriophages and determination of lysogenic-strain features. J Bacteriol 2009; 191:4776-85. [PMID: 19465660 DOI: 10.1128/jb.00426-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The application of mitomycin C induction to 114 genetically diverse Streptococcus agalactiae strains generated 36 phage suspensions. On electron microscopy of the phage suspensions, it was possible to assign the phages to the Siphoviridae family, with three different morphotypes (A, B, and C). Phage genetic diversity was evaluated by a PCR-based multilocus typing method targeting key modules located in the packaging, structural, host lysis, lysogeny, replication, and transcriptional regulation clusters and in the integrase genes and by DNA digestion with EcoRI, HindIII, and ClaI. Thirty-three phages clustering in six distantly related molecular phage groups (I to VI) were identified. Each molecular group was morphotype specific except for morphotype A phages, which were found in five of the six phage groups. The various phage groups defined on the basis of molecular group and morphotype had specific lytic activities, suggesting that each recognized particular host cell targets and had particular lytic mechanisms. Comparison of the characteristics of lysogenic and propagating strains showed no difference in the serotype or clonal complex (CC) identified by multilocus sequence typing. However, all the lysogenic CC17 and CC19 strains presented catabolic losses due to a lack of catabolic decay of dl-alpha-glycerol-phosphate substrates (CC17) and of alpha-d-glucose-1-phosphate (CC19). Moreover, the phages from CC17 lysogenic strains displayed lytic replication in bacterial hosts from all S. agalactiae phylogenetic lineages other than CC23, whereas phages obtained from non-CC17 lysogenic strains lysed bacteria of similar evolutionary origin. Our findings suggest that the adaptive evolution of S. agalactiae exposed the bacteria of this species to various phage-mediated horizontal gene transfers, which may have affected the fitness of the more virulent clones.
Collapse
|
19
|
Abstract
As a first step towards describing the role of proteolysis in maintaining genomic integrity, we have determined the effect of the loss of ClpXP, a major energy-dependent cytoplasmic protease that degrades truncated proteins as well as a number of regulatory proteins, on spontaneous mutagenesis. In a rifampicin-sensitive to rifampicin-resistance assay that detects base substitution mutations in the essential rpoB gene, there is a modest, but appreciable increase in mutagenesis in Delta(clpP-clpX) cells relative to wild-type cells. A colony papillation analysis using a set of lacZ strains revealed that genetic -1 frameshift mutations are strongly elevated in Clp-defective cells. A quantitative analysis using a valine-sensitive to valine-resistance assay that detects frameshift mutations showed that mutagenesis is elevated 50-fold in Clp-defective cells. Elevated frameshift mutagenesis observed in Clp-deficient cells is essentially abolished in lexA1[Ind(-)] (SOS-uninducible) cells, and in cells deleted for the SOS gene dinB, which codes for DNA polymerase IV. In contrast, mutagenesis is unaffected or stimulated in cells deleted for umuC or umuD, which code for critical components of DNA polymerase V. Loss of rpoS, which codes for a stress-response sigma factor known to upregulate dinB expression in stationary phase, does not affect mutagenesis. We propose that elevated DinB expression, as well as stabilization of UmuD/UmuD' heterodimers in Delta(clpP-clpX) cells, contributes to elevated mutagenesis. These findings suggest that in normal cells, Clp-mediated proteolysis plays an important role in preventing gratuitous mutagenesis.
Collapse
Affiliation(s)
- Abu Amar M Al Mamun
- University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Department of Microbiology and Molecular Genetics, International Center for Public Health, Newark, NJ 07101, USA
| | | |
Collapse
|
20
|
Abstract
The treatment of bacterial infections is increasingly complicated because microorganisms can develop resistance to antimicrobial agents. This article discusses the information that is required to predict when antibiotic resistance is likely to emerge in a bacterial population. Indeed, the development of the conceptual and methodological tools required for this type of prediction represents an important goal for microbiological research. To this end, we propose the establishment of methodological guidelines that will allow researchers to predict the emergence of resistance to a new antibiotic before its clinical introduction.
Collapse
Affiliation(s)
- José L Martínez
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública and Unidad Asociada al CSIC Resistencia a los Antibióticos y Virulencia Bacteriana, Cantoblanco, 28049-Madrid, Spain.
| | | | | |
Collapse
|
21
|
Saint-Ruf C, Pesut J, Sopta M, Matic I. Causes and consequences of DNA repair activity modulation during stationary phase in Escherichia coli. Crit Rev Biochem Mol Biol 2007; 42:259-70. [PMID: 17687668 DOI: 10.1080/10409230701495599] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Escherichia coli responds to nutrient exhaustion by entering a state commonly referred to as the stationary phase. Cells entering the stationary phase redirect metabolic circuits to scavenge any available nutrients and become resistant to different stresses. However, many DNA repair pathways are downregulated in stationary-phase cells, which results in increased mutation rates. DNA repair activity generally depends on consumption of energy and often requires de novo proteins synthesis. Consequently, unless stringently regulated during stationary phase, DNA repair activities may lead to an irreversible depletion of energy sources and, therefore to cell death. Most stationary phase morphological and physiological modifications are regulated by an alternative RNA polymerase sigma factor RpoS. However, nutrient availability, and the frequency and nature of stresses, are different in distinct environmental niches, which impose conflicting choices that result in selection of the loss or of the modification of RpoS function. Consequently, DNA repair activity, which is partially controlled by RpoS, is differently modulated in different environments. This results in the variable mutation rates among different E. coli ecotypes. Hence, the polymorphism of mutation rates in natural E. coli populations can be viewed as a byproduct of the selection for improved fitness.
Collapse
Affiliation(s)
- Claude Saint-Ruf
- INSERM, U571, Faculté de Médicine, Université Paris 5, Paris, France
| | | | | | | |
Collapse
|
22
|
Abstract
Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
Collapse
Affiliation(s)
- Rodrigo S Galhardo
- Department of Molecular and Human Genetics, Baylor College, Houston, Texas 77030-3411, USA
| | | | | |
Collapse
|
23
|
Tark M, Tover A, Koorits L, Tegova R, Kivisaar M. Dual role of NER in mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2007; 7:20-30. [PMID: 17720631 DOI: 10.1016/j.dnarep.2007.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/14/2007] [Accepted: 07/16/2007] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most important repair systems which counteracts different forms of DNA damage either induced by various chemicals or irradiation. At the same time, less is known about the functions of NER in repair of DNA that is not exposed to exogenous DNA-damaging agents. We have investigated the role of NER in mutagenesis in Pseudomonas putida. The genome of this organism contains two uvrA genes, uvrA and uvrA2. Genetic studies on the effects of uvrA, uvrA2, uvrB and UvrC in mutagenic processes revealed that all of these genes are responsible for the repair of UV-induced DNA damage in P. putida. However, uvrA plays more important role in this process than uvrA2 since the deletion of uvrA2 gene had an effect on the UV-tolerance of bacteria only in the case when uvrA was also inactivated. Interestingly, the lack of functional uvrB, uvrC or uvrA2 gene reduced the frequency of stationary-phase mutations. The contribution of uvrA2, uvrB and uvrC to the mutagenesis appeared to be most significant in the case of 1-bp deletions whose emergence is dependent on error-prone DNA polymerase Pol IV. These data imply that NER has a dual role in mutagenesis in P. putida-besides functioning in repair of damaged DNA, NER is also important in generation of mutations. We hypothesize that NER enzymes may initiate gratuitous DNA repair and the following DNA repair synthesis might be mutagenic.
Collapse
Affiliation(s)
- Mariliis Tark
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
24
|
Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, Matic I. Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 2007; 176:1431-40. [PMID: 17483416 PMCID: PMC1931539 DOI: 10.1534/genetics.107.072405] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polkappa, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment.
Collapse
Affiliation(s)
- Ivana Bjedov
- INSERM U571, Faculté de Médecine, Université Paris 5, 75730 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
25
|
Umehara S, Hattori A, Inoue I, Yasuda K. Asynchrony in the growth and motility responses to environmental changes by individual bacterial cells. Biochem Biophys Res Commun 2007; 356:464-9. [PMID: 17350591 DOI: 10.1016/j.bbrc.2007.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 03/01/2007] [Indexed: 11/28/2022]
Abstract
Knowing how individual cells respond to environmental changes helps one understand phenotypic diversity in a bacterial cell population, so we simultaneously monitored the growth and motility of isolated motile Escherichia coli cells over several generations by using a method called on-chip single-cell cultivation. Starved cells quickly stopped growing but remained motile for several hours before gradually becoming immotile. When nutrients were restored the cells soon resumed their growth and proliferation but remained immotile for up to six generations. A flagella visualization assay suggested that deflagellation underlies the observed loss of motility. This set of results demonstrates that single-cell transgenerational study under well-characterized environmental conditions can provide information that will help us understand distinct functions within individual cells.
Collapse
Affiliation(s)
- Senkei Umehara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Koorits L, Tegova R, Tark M, Tarassova K, Tover A, Kivisaar M. Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair (Amst) 2007; 6:863-8. [PMID: 17331811 DOI: 10.1016/j.dnarep.2007.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/17/2007] [Accepted: 01/25/2007] [Indexed: 11/16/2022]
Abstract
Several bacterial species carry in their genomes a so-called "mutagenesis" gene cluster encoding ImuB which is similar to Y-family DNA polymerases, and DnaE2 related to the catalytic subunit DnaE of Pol III. Y-family DNA polymerases are known to be involved in stationary-phase mutagenesis and DnaE2 homologues characterized so far have expressed a mutator phenotype. In this study, we raised a question about the involvement of ImuB and DnaE2 in stationary-phase mutagenesis. Here, we show that Pseudomonas putida ImuB and DnaE2 have antagonistic effects on stationary-phase mutagenesis. ImuB facilitated accumulation of stationary-phase mutants up to two-fold. In contrast to that, DnaE2 had no significant effect on emergence of 1-bp deletion mutants and moreover, it acted as an anti-mutator in accumulation of base substitution mutants in starving bacteria. Similar antagonistic effects of DnaE2 and ImuB on mutagenesis appeared also in UV-mutagenesis study. This data distinguishes the DnaE2 of P. putida from its homologues studied in other organisms.
Collapse
Affiliation(s)
- Lauri Koorits
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Tuberculosis continues to be the main cause of death from a single infectious agent in developing countries. The causative agent, Mycobacterium tuberculosis, is thought to have diverged from its common ancestor as recently as 15,000 years ago. Subsequently, various genetic elements have evolved over time at different rates and can be used to elucidate patterns of infection. When individual elements are studied within genetic families, very low rates of variation are observed for almost every marker. For example, when all M. tuberculosis genetic families are considered, the number of alleles observed at each mycobacterial interspersed repetitive unit (MIRU) locus usually drops when viewed within a single genetic family, indicating that the rate of repeat variation may be low, as each member of that family is a descendant of a single common ancestor. Also, the low level of silent nucleotide variation observed indicates that M. tuberculosis is, in evolutionary terms, very young. Mapping the variation of the different markers used in molecular epidemiology within a genetic framework enables the relative rates of variation of these markers to be determined and, together with a complete chronology, allows the identification of more informative panels of markers tailored to individual genetic families.
Collapse
Affiliation(s)
- C Arnold
- Applied and Functional Genomics, Centre for Infections, Health Protection Agency, London, UK.
| |
Collapse
|
28
|
Prieto AI, Ramos-Morales F, Casadesús J. Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics 2006; 174:575-84. [PMID: 16888329 PMCID: PMC1602091 DOI: 10.1534/genetics.106.060889] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exposure of Salmonella enterica to sodium cholate, sodium deoxycholate, sodium chenodeoxycholate, sodium glycocholate, sodium taurocholate, or sodium glycochenodeoxycholate induces the SOS response, indicating that the DNA-damaging activity of bile resides in bile salts. Bile increases the frequency of GC --> AT transitions and induces the expression of genes belonging to the OxyR and SoxRS regulons, suggesting that bile salts may cause oxidative DNA damage. S. enterica mutants lacking both exonuclease III (XthA) and endonuclease IV (Nfo) are bile sensitive, indicating that S. enterica requires base excision repair (BER) to overcome DNA damage caused by bile salts. Bile resistance also requires DinB polymerase, suggesting the need of SOS-associated translesion DNA synthesis. Certain recombination functions are also required for bile resistance, and a key factor is the RecBCD enzyme. The extreme bile sensitivity of RecB-, RecC-, and RecA- RecD- mutants provides evidence that bile-induced damage may impair DNA replication.
Collapse
Affiliation(s)
- Ana I Prieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville 41080, Spain
| | | | | |
Collapse
|