1
|
Meklef RA, Siemers F, Rein S. Development of a 3D-immunofluorescence analysis for sensory nerve endings in human ligaments. J Neurosci Methods 2022; 382:109724. [PMID: 36207004 DOI: 10.1016/j.jneumeth.2022.109724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The analysis of ligamentous mechanoreceptors is difficult due to a high amount of unclassifiable mechanoreceptors, which result from incomplete visualization through limited microscopic techniques. NEW METHOD The method was developed using dorsal intercarpal ligaments and dorsal regions of the scapholunate interosseous ligament from human cadaver wrists. Consecutive 70 µm thick cryosections were stained with immunofluorescence markers for protein S100B, neurotrophin receptor p75 (p75), protein gene product 9.5 (PGP 9.5) and 4',6-diamidino-2-phenylindole (DAPI). 3D images of sensory nerve endings were obtained using a confocal laser scanning microscope. Experimental point spread functions (PSF) were used to deconvolve images. Sensory nerve endings were localised in each section plane and classified according to Freeman and Wyke. Finally, confocal data was visualized as 3D-images. RESULTS The method produced excellent image quality, revealing detailed three-dimensional structures. The created 3D-model of sensory nerve endings could be analyzed in all three dimensions, augmenting visualization of the form and immunoreactive pattern of sensory nerve endings. Deconvolution with experimentally measured PSFs aided in enhancing image quality. COMPARISON WITH EXISTING METHODS Using a triple immunofluorescent staining method allows to visualize the structure of sensory nerve endings more precisely than techniques with serial analysis of different monostaining of neural markers. Imaging in three dimensions enhances morphologic details, which are limited in 2D-microscopy. CONCLUSION 3D-triple immunofluorescence produces high quality visualization of mechanoreceptors, thereby improving their analysis. As an elaborate technique, it is ideal for defined research questions concerning the microstructure of sensory nerve endings.
Collapse
Affiliation(s)
- Rami Al Meklef
- Department of Plastic and Hand Surgery, Burn Unit, Klinikum Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany; Martin-Luther-University Halle-Wittenberg, Germany
| | - Frank Siemers
- Martin-Luther-University Halle-Wittenberg, Germany; Department of Plastic and Hand Surgery with Burn Unit, Trauma Center Bergmannstrost, 06112 Halle, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery, Burn Unit, Klinikum Sankt Georg, Delitzscher Straße 141, 04129 Leipzig, Germany; Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
2
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
3
|
Santos-Carvalho A, Ambrósio AF, Cavadas C. Neuropeptide Y system in the retina: From localization to function. Prog Retin Eye Res 2015; 47:19-37. [DOI: 10.1016/j.preteyeres.2015.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
|
4
|
Swanson JC, Krishnamurthy G, Itoh A, Kvitting JPE, Bothe W, Miller DC, Ingels NB. Vagal nerve stimulation reduces anterior mitral valve leaflet stiffness in the beating ovine heart. J Biomech 2012; 45:2007-13. [PMID: 22703898 DOI: 10.1016/j.jbiomech.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 04/05/2012] [Accepted: 04/05/2012] [Indexed: 11/30/2022]
Abstract
AIM The functional significance of the autonomic nerves in the anterior mitral valve leaflet (AML) is unknown. We tested the hypothesis that remote stimulation of the vagus nerve (VNS) reduces AML stiffness in the beating heart. METHODS Forty-eight radiopaque-markers were implanted into eleven ovine hearts to delineate left ventricular and mitral anatomy, including an AML array. The anesthetized animals were then taken to the catheterization laboratory and 4-D marker coordinates obtained from biplane videofluoroscopy before and after VNS. Circumferential (E(circ)) and radial (E(rad)) stiffness values for three separate AML regions, Annulus, Belly and Edge, were obtained from inverse finite element analysis of AML displacements in response to trans-leaflet pressure changes during isovolumic contraction (IVC) and isovolumic relaxation (IVR). RESULTS VNS reduced heart rate: 94±9 vs. 82±10min(-1), (mean±SD, p<0.001). Circumferential AML stiffness was significantly reduced in all three regions during IVC and IVR (all p<0.05). Radial AML stiffness was reduced from control in the annular and belly regions at both IVC and IVR (P<0.05), while the reduction did not reach significance at the AML edge. CONCLUSION These observations suggest that one potential functional role for the parasympathetic nerves in the AML is to alter leaflet stiffness. Neural control of the contractile tissue in the AML could be part of a central control system capable of altering valve stiffness to adapt to changing hemodynamic demands.
Collapse
Affiliation(s)
- Julia C Swanson
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Culshaw GJ, French AT, Han RI, Black A, Pearson GT, Corcoran BM. Evaluation of innervation of the mitral valves and the effects of myxomatous degeneration in dogs. Am J Vet Res 2010; 71:194-202. [PMID: 20113227 DOI: 10.2460/ajvr.71.2.194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To map aspects of the innervation of the mitral valve complex and determine any association with the development or progression of myxomatous mitral valve disease (MMVD) in dogs. SAMPLE POPULATION Septal mitral valve leaflets from 11 dogs aged 6 months to > 10 years. PROCEDURES Expression of protein gene product 9.5 (general neuronal marker), tyrosine hydroxylase (adrenergic innervation marker), vasoactive intestinal peptide (parasympathetic innervation marker), and calcitonin gene-related peptide (sensory innervation marker) was assessed by use of a standard immunohistochemical technique. Innervation was assessed qualitatively and semiquantitatively. Differences between valvular zones and between groups were analyzed statistically. RESULTS MMVD was present in leaflets of all dogs > or = 5 years of age. Innervation was confirmed in all leaflets but was markedly reduced in leaflets of dogs > 10 years of age. Innervation was most dense at the base of valves and mainly associated with the epimysial, perimysial, and endomysial layers of the muscle and blood vessels within the valve. Innervation was reduced within the middle zone of the valve and lacking at the free edge. Innervation was not identified at the tip of the leaflet, the free edge, or the chordae. Nerve fibers were mostly sympathetic, with the remainder being parasympathetic or sensory. Existence of MMVD did not alter the pattern or density of innervation. CONCLUSIONS AND CLINICAL RELEVANCE Mitral valve leaflets in the study dogs were innervated, with most of the nerve fibers associated with the myocardium in the valve base. Development of MMVD appeared to precede the reduction of innervation associated with advancing age.
Collapse
Affiliation(s)
- Geoff J Culshaw
- Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, EH25 9RG, Scotland.
| | | | | | | | | | | |
Collapse
|
6
|
Lovasova K, Kluchova D, Bolekova A, Dorko F, Spakovska T. Distribution of NADPH-diaphorase and AChE activity in the anterior leaflet of rat mitral valve. Eur J Histochem 2010; 54:e5. [PMID: 20353912 PMCID: PMC3167287 DOI: 10.4081/ejh.2010.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/21/2009] [Accepted: 01/07/2010] [Indexed: 11/23/2022] Open
Abstract
The mitral valve, as an active flap, forms the major part of the left ventricular inflow tract and therefore plays an important function in many aspects of left ventricular performance. The anterior leaflet of this valve is the largest and most ventrally placed of two leaflets that come together during ventricular systole to close the left atrioventricular orifice. Various neurotransmitters are responsible for different functions including controlling valve movement, inhibiting or causing the failure of impulse conduction in the valve and the sensation of pain. Nitric oxide acts as a gaseous free radical neurotransmitter, neuromediator and effective cardiovascular modulator. Acetyl-choline is known to function as a typical neurotransmitter. Histochemical methods for detection of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), as an indirect nitric oxide-synthase marker, and method for detection of acetylcholinesterase (AChE) were used. Both methods were performed on the same valve sample. A widespread distribution of nerve fibres was observed in the anterior leaflet of the mitral valve. The fine NADPH-d positive (nitrergic) nerve fibres were identified in all zones of valve leaflet. AChE positive (cholinergic) nerve fibres were identified forming dense network and fibres organized in stripes. Endocardial cells and vessels manifested heavy NADPH-d activity. Our observations suggest a different arrangement of nitrergic and cholinergic nerve fibres in the anterior leaflet of the mitral valve. The presence of nitrergic and cholinergic activity confirms the involvement of both neurotransmitters in nerve plexuses and other structures of mitral valve.
Collapse
Affiliation(s)
- K Lovasova
- Department of Anatomy, Faculty of Medicine, P.J. Safarik University, Slovak Republic.
| | | | | | | | | |
Collapse
|
7
|
Itoh A, Krishnamurthy G, Swanson JC, Ennis DB, Bothe W, Kuhl E, Karlsson M, Davis LR, Miller DC, Ingels NB. Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 2009; 296:H1766-73. [PMID: 19363135 DOI: 10.1152/ajpheart.00120.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anterior leaflet of the mitral valve (MV), viewed traditionally as a passive membrane, is shown to be a highly active structure in the beating heart. Two types of leaflet contractile activity are demonstrated: 1) a brief twitch at the beginning of each beat (reflecting contraction of myocytes in the leaflet in communication with and excited by left atrial muscle) that is relaxed by midsystole and whose contractile activity is eliminated with beta-receptor blockade and 2) sustained tone during isovolumic relaxation, insensitive to beta-blockade, but doubled by stimulation of the neurally rich region of aortic-mitral continuity. These findings raise the possibility that these leaflets are neurally controlled tissues, with potentially adaptive capabilities to meet the changing physiological demands on the heart. They also provide a basis for a permanent paradigm shift from one viewing the leaflets as passive flaps to one viewing them as active tissues whose complex function and dysfunction must be taken into account when considering not only therapeutic approaches to MV disease, but even the definitions of MV disease itself.
Collapse
Affiliation(s)
- Akinobu Itoh
- Department of Cardiothoracic Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson JC, Karlsson M, Kuhl E, Miller DC, Ingels NB. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol 2008; 295:H1141-H1149. [PMID: 18621858 DOI: 10.1152/ajpheart.00284.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We measured leaflet displacements and used inverse finite-element analysis to define, for the first time, the material properties of mitral valve (MV) leaflets in vivo. Sixteen miniature radiopaque markers were sewn to the MV annulus, 16 to the anterior MV leaflet, and 1 on each papillary muscle tip in 17 sheep. Four-dimensional coordinates were obtained from biplane videofluoroscopic marker images (60 frames/s) during three complete cardiac cycles. A finite-element model of the anterior MV leaflet was developed using marker coordinates at the end of isovolumic relaxation (IVR; when the pressure difference across the valve is approximately 0), as the minimum stress reference state. Leaflet displacements were simulated during IVR using measured left ventricular and atrial pressures. The leaflet shear modulus (G(circ-rad)) and elastic moduli in both the commisure-commisure (E(circ)) and radial (E(rad)) directions were obtained using the method of feasible directions to minimize the difference between simulated and measured displacements. Group mean (+/-SD) values (17 animals, 3 heartbeats each, i.e., 51 cardiac cycles) were as follows: G(circ-rad) = 121 +/- 22 N/mm2, E(circ) = 43 +/- 18 N/mm2, and E(rad) = 11 +/- 3 N/mm2 (E(circ) > E(rad), P < 0.01). These values, much greater than those previously reported from in vitro studies, may result from activated neurally controlled contractile tissue within the leaflet that is inactive in excised tissues. This could have important implications, not only to our understanding of mitral valve physiology in the beating heart but for providing additional information to aid the development of more durable tissue-engineered bioprosthetic valves.
Collapse
Affiliation(s)
- Gaurav Krishnamurthy
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Batulevicius D, Pauziene N, Pauza DH. Architecture and age-related analysis of the neuronal number of the guinea pig intrinsic cardiac nerve plexus. Ann Anat 2005; 187:225-43. [PMID: 16130822 DOI: 10.1016/j.aanat.2005.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aims of the present study have been to determine the architecture of the guinea pig intrinsic cardiac nerve plexus (ICNP) and to test whether or not the heart of this species undergoes decrease in neuronal number with aging. Nine young (3-4 weeks of age) and nine adult (18-24 months of age) animals were examined employing histochemistry for acetylcholinesterase to reveal the ICNP in total hearts. The number of intracardiac neurons in seven animals was assessed via counting of the nerve cells both on total hearts and in serial sections of the atrial walls. The intracardiac neurons from adult guinea pigs were amassed within 329 +/- 15 ganglia. The hearts of young animals contained significantly fewer ganglia, only 211 +/- 27. In adult guinea pigs approximately 60% of the intracardiac neurons were distributed within ganglia of not more than 20 neurons, but the ganglia of such size accumulated only 45% of the neurons in young animals. The total number of the intracardiac neurons estimated per guinea pig heart was 2321 +/- 215, and this number did not differ significantly between young and adult animals. The nerves entering the guinea pig heart were found both in the arterial and venous part of the heart hilum. The nerves from the arterial part of the heart hilum proceeded into the ventricles, but the nerves from the venous part of the hilum formed a nerve plexus of the cardiac hilum located on the heart base. Within the guinea pig epicardium, intrinsic nerves divided into six routes and proceeded to separate atrial, ventricular and septal regions. In conclusion, findings of this study contradict the age-related decrease of the neuronal number in the guinea pig heart and illustrate the remarkable similarity in the architecture of the intracardiac nerve plexuses between guinea pig and rat.
Collapse
Affiliation(s)
- Darius Batulevicius
- Laboratory for Biophysics of Excitable Systems, Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | |
Collapse
|
10
|
Gangi S, Johansson O. A theoretical model based upon mast cells and histamine to explain the recently proclaimed sensitivity to electric and/or magnetic fields in humans. Med Hypotheses 2000; 54:663-71. [PMID: 10859662 DOI: 10.1054/mehy.1999.0923] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relationship between exposure to electromagnetic fields (EMFs) and human health is more and more in focus. This is mainly because of the rapid increasing use of such EMFs within our modern society. Exposure to EMFs has been linked to different cancer forms, e.g. leukemia, brain tumors, neurological diseases, such as Alzheimer's disease, asthma and allergy, and recently to the phenomena of 'electrosupersensitivity' and 'screen dermatitis'. There is an increasing number of reports about cutaneous problems as well as symptoms from internal organs, such as the heart, in people exposed to video display terminals (VDTs). These people suffer from subjective and objective skin and mucosa-related symptoms, such as itch, heat sensation, pain, erythema, papules and pustules. In severe cases, people can not, for instance, use VDTs or artificial light at all, or be close to mobile telephones. Mast cells (MCs), when activated, release a spectrum of mediators, among them histamine, which is involved in a variety of biological effects with clinical relevance, e.g. allergic hypersensitivity, itch, edema, local erythema and many types of dermatoses. From the results of recent studies, it is clear that EMFs affect the MC, and also the dendritic cell, population and may degranulate these cells. The release of inflammatory substances, such as histamine, from MCs in the skin results in a local erythema, edema and sensation of itch and pain, and the release of somatostatin from the dendritic cells may give rise to subjective sensations of on-going inflammation and sensitivity to ordinary light. These are, as mentioned, the common symptoms reported from patients suffering from 'electrosupersensitivity'/'screen dermatitis'. MCs are also present in the heart tissue and their localization is of particular relevance to their function. Data from studies made on interactions of EMFs with the cardiac function have demonstrated that highly interesting changes are present in the heart after exposure to EMFs. One could speculate that the cardiac MCs are responsible for these changes due to degranulation after exposure to EMFs. However, it is still not known how, and through which mechanisms, all these different cells are affected by EMFs. In this article, we present a theoretical model, based upon observations on EMFs and their cellular effects, to explain the proclaimed sensitivity to electric and/or magnetic fields in humans.
Collapse
Affiliation(s)
- S Gangi
- Experimental Dermatology Unit, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
11
|
Kumar SD, Tay SS. Changes in peptidergic nerves in the atrioventricular valves of streptozotocin-induced diabetic rats: a confocal microscopy study. THE ANATOMICAL RECORD 2000; 258:277-85. [PMID: 10705348 DOI: 10.1002/(sici)1097-0185(20000301)258:3<277::aid-ar7>3.0.co;2-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several previous studies have described the distribution of neuropeptide Y (NPY)-like and calcitonin gene related peptide (CGRP)-like immunoreactive nerve fibres in the atrioventricular valves of humans and various animals. It has been suggested that peptide-containing nerve fibres might have motor or sensory roles in valvular function. Although there is evidence that diabetic changes occur in the sympathetic (preganglionic and postganglionic), parasympathetic (vagal) and peptidergic nerves of rats, the changes of peptide-containing nerve fibres in the atrioventricular valves of the diabetic rat have not been studied. The distribution, relative density and staining intensity of NPY-like and CGRP-like immunoreactive nerve fibres in the mitral and tricuspid valves were studied in whole mount preparations using confocal microscopy with a computer-assisted image analysis system. Streptozotocin-induced diabetic and control rats were sacrificed at 12 and 24 months. The nerve staining intensity within the tricuspid valve was greater than the mitral valve in both control (P < 0.01) and diabetic (P < 0.001) rats. Nerve density in the anterior leaflet was greater than the posterior leaflet of the mitral valve. However, the anterior leaflet of the mitral and tricuspid valves showed a decreased number of nerve fibres, followed by drastic reduction in the staining intensities for both the peptides studied (P < 0.001) in the long-term diabetic rat. The decrease in the number of nerve fibres that follow the mechanical interruption of nerves raises the possibility that cycles of degeneration may occur. It is suggested that these peptide-containing nerve fibres in the atrioventricular valves may be involved in valvular dysfunction in the diabetic state.
Collapse
Affiliation(s)
- S D Kumar
- Department of Anatomy, Faculty of Medicine, National University of Singapore, Singapore 117597
| | | |
Collapse
|