1
|
Hunt JE, Pratt KG, Molnár Z. Ocular Necessities: A Neuroethological Perspective on Vertebrate Visual Development. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:96-108. [PMID: 38447544 PMCID: PMC11152017 DOI: 10.1159/000536035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/24/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.
Collapse
Affiliation(s)
- Jasper Elan Hunt
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kara Geo Pratt
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
- Program in Neuroscience, University of Wyoming, Laramie, WY, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G, De Stefano ME. Dystrophin Is Required for the Proper Timing in Retinal Histogenesis: A Thorough Investigation on the mdx Mouse Model of Duchenne Muscular Dystrophy. Front Neurosci 2020; 14:760. [PMID: 32982660 PMCID: PMC7487415 DOI: 10.3389/fnins.2020.00760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and β-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0–P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5–P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5–P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.
Collapse
Affiliation(s)
- Irene Persiconi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Francesca Cosmi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Center for Research in Neurobiology "Daniel Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Gao L, Han J, Bai J, Dong J, Zhang S, Zhang M, Zheng J. Nicotinic Acetylcholine Receptors are Associated with Ketamine-induced Neuronal Apoptosis in the Developing Rat Retina. Neuroscience 2018; 376:1-12. [DOI: 10.1016/j.neuroscience.2018.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/30/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022]
|
4
|
Abstract
Across the nervous system, neurons form highly stereotypic patterns of synaptic connections that are designed to serve specific functions. Mature wiring patterns are often attained upon the refinement of early, less precise connectivity. Much work has led to the prevailing view that many developing circuits are sculpted by activity-dependent competition among converging afferents, which results in the elimination of unwanted synapses and the maintenance and strengthening of desired connections. Studies of the vertebrate retina, however, have recently revealed that activity can play a role in shaping developing circuits without engaging competition among converging inputs that differ in their activity levels. Such neurotransmission-mediated processes can produce stereotypic wiring patterns by promoting selective synapse formation rather than elimination. We discuss how the influence of transmission may also be limited by circuit design and further highlight the importance of transmission beyond development in maintaining wiring specificity and synaptic organization of neural circuits.
Collapse
|
5
|
Bertolesi GE, Hehr CL, McFarlane S. Wiring the retinal circuits activated by light during early development. Neural Dev 2014; 9:3. [PMID: 24521229 PMCID: PMC3937046 DOI: 10.1186/1749-8104-9-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 01/26/2023] Open
Abstract
Background Light information is sorted by neuronal circuits to generate image-forming (IF) (interpretation and tracking of visual objects and patterns) and non-image-forming (NIF) tasks. Among the NIF tasks, photic entrainment of circadian rhythms, the pupillary light reflex, and sleep are all associated with physiological responses, mediated mainly by a small group of melanopsin-expressing retinal ganglion cells (mRGCs). Using Xenopus laevis as a model system, and analyzing the c-fos expression induced by light as a surrogate marker of neural activity, we aimed to establish the developmental time at which the cells participating in both systems come on-line in the retina. Results We found that the peripheral retina contains 80% of the two melanopsin-expressing cell types we identified in Xenopus: melanopsin-expressing horizontal cells (mHCs; opn4m+/opn4x+/Prox1+) and mRGCs (2.7% of the total RGCs; opn4m+/opn4x+/Pax6+/Isl1), in a ratio of 6:1. Only mRGCs induced c-fos expression in response to light. Dopaminergic (tyrosine hydroxylase-positive; TH+) amacrine cells (ACs) may be part of the melanopsin-mediated circuit, as shown by preferential c-fos induction by blue light. In the central retina, two cell types in the inner nuclear layer (INL) showed light-mediated induction of c-fos expression [(On-bipolar cells (Otx2+/Isl1+), and a sub-population of ACs (Pax6−/Isl1−)], as well as two RGC sub-populations (Isl1+/Pax6+ and Isl1+/Pax6−). Melanopsin and opsin expression turned on a day before the point at which c-fos expression could first be activated by light (Stage 37/38), in cells of both the classic vision circuit, and those that participate in the retinal component of the NIF circuit. Key to the classic vision circuit is that the component cells engage from the beginning as functional ‘unit circuits’ of two to three cells in the INL for every RGC, with subsequent growth of the vision circuit occurring by the wiring in of more units. Conclusions We identified melanopsin-expressing cells and specific cell types in the INL and the RGC layer which induce c-fos expression in response to light, and we determined the developmental time when they become active. We suggest an initial formulation of retinal circuits corresponding to the classic vision pathway and melanopsin-mediated circuits to which they may contribute.
Collapse
Affiliation(s)
| | | | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr, NW, Health Sciences Building, Room 2164, Calgary AB T2N4N1, Canada.
| |
Collapse
|
6
|
Non-cell-autonomous factor induces the transition from excitatory to inhibitory GABA signaling in retina independent of activity. Proc Natl Acad Sci U S A 2010; 107:22302-7. [PMID: 21135238 DOI: 10.1073/pnas.1008775108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, the effect of activating GABA(A) receptors switches from depolarizing to hyperpolarizing. Several environmental factors have been implicated in the timing of this GABA switch, including neural activity, although these observations remain controversial. By using acutely isolated retinas from KO mice and pharmacological manipulations in retinal explants, we demonstrate that the timing of the GABA switch in retinal ganglion cells (RGCs) is unaffected by blockade of specific neurotransmitter receptors or global activity. In contrast to RGCs in the intact retina, purified RGCs remain depolarized by GABA, indicating that the GABA switch is not cell-autonomous. Indeed, purified RGCs cocultured with dissociated cells from the superior colliculus or cultured in media conditioned by superior collicular cells undergo a normal switch. Thus, a diffusible signal that acts independent of local circuit activity regulates the maturation of GABAergic inhibition in mouse RGCs.
Collapse
|
7
|
Zhang RW, Wei HP, Xia YM, Du JL. Development of light response and GABAergic excitation-to-inhibition switch in zebrafish retinal ganglion cells. J Physiol 2010; 588:2557-69. [PMID: 20498234 PMCID: PMC2916988 DOI: 10.1113/jphysiol.2010.187088] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/17/2010] [Indexed: 01/02/2023] Open
Abstract
The zebrafish retina has been an important model for studying morphological development of neural circuits in vivo. However, its functional development is not yet well understood. To investigate the functional development of zebrafish retina, we developed an in vivo patch-clamp whole-cell recording technique in intact zebrafish larvae. We first examined the developmental profile of light-evoked responses (LERs) in retinal ganglion cells (RGCs) from 2 to 9 days post-fertilization (dpf). Unstable LERs were first observed at 2.5 dpf. By 4 dpf, RGCs exhibited reliable light responses. As the GABAergic system is critical for retinal development, we then performed in vivo gramicidin perforated-patch whole-cell recording to characterize the developmental change of GABAergic action in RGCs. The reversal potential of GABA-induced currents (E(GABA)) in RGCs gradually shifted from depolarized to hyperpolarized levels during 2-4 dpf and the excitation-to-inhibition (E-I) switch of GABAergic action occurred at around 2.5 dpf when RGCs became light sensitive. Meanwhile, GABAergic transmission upstream to RGCs also became inhibitory by 2.5 dpf. Furthermore, down-regulation of the K(+)/Cl() co-transporter (KCC2) by the morpholino oligonucleotide-based knockdown approach, which shifted RGC E(GABA) towards a more depolarized level and thus delayed the E-I switch by one day, postponed the appearance of RGC LERs by one day. In addition, RGCs exhibited correlated giant inward current (GICs) during 2.5-3.5 dpf. The period of GICs was shifted to 3-4.5 dpf by KCC2 knockdown. Taken together, the GABAergic E-I switch occurs coincidently with the emergence of light responses and GICs in zebrafish RGCs, and may contribute to the functional development of retinal circuits.
Collapse
Affiliation(s)
- Rong-wei Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | |
Collapse
|
8
|
Anishchenko A, Greschner M, Elstrott J, Sher A, Litke AM, Feller MB, Chichilnisky EJ. Receptive field mosaics of retinal ganglion cells are established without visual experience. J Neurophysiol 2010; 103:1856-64. [PMID: 20107116 DOI: 10.1152/jn.00896.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A characteristic feature of adult retina is mosaic organization: a spatial arrangement of cells of each morphological and functional type that produces uniform sampling of visual space. How the mosaics of visual receptive fields emerge in the retina during development is not fully understood. Here we use a large-scale multielectrode array to determine the mosaic organization of retinal ganglion cells (RGCs) in rats around the time of eye opening and in the adult. At the time of eye opening, we were able to reliably distinguish two types of ON RGCs and two types of OFF RGCs in rat retina based on their light response and intrinsic firing properties. Although the light responses of individual cells were not yet mature at this age, each of the identified functional RGC types formed a receptive field mosaic, where the spacing of the receptive field centers and the overlap of the receptive field extents were similar to those observed in the retinas of adult rats. These findings suggest that, although the light response properties of RGCs may need vision to reach full maturity, extensive visual experience is not required for individual RGC types to form a regular sensory map of visual space.
Collapse
|
9
|
Goldshmit Y, Galley S, Foo D, Sernagor E, Bourne JA. Anatomical changes in the primary visual cortex of the congenitally blind Crx-/- mouse. Neuroscience 2009; 166:886-98. [PMID: 20034544 DOI: 10.1016/j.neuroscience.2009.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the human cone-rod homeobox (Crx) gene are associated with retinal dystrophies such as Leber Congenital Amaurosis (LCA), characterized by complete or near complete absence of vision from birth. The photoreceptors of Crx-/- mice lack outer segments, and therefore cannot capture light signals through rods and cones, thus resulting in a lack of normal retinal ganglion cell activity from birth. Using specific antibodies to subsets of neurons and markers of activity, we examined the impact of this absence of sensory input on the development of the primary visual cortex (V1) in early postnatal Crx-/- mice, before wiring of the visual system is complete, and in adulthood. We revealed that Crx-/- mice did not exhibit gross anatomical differences in V1; however, they exhibited significantly fewer calcium-binding protein (parvalbumin and calbindin-D28k) expressing interneurons, as well as reduced nonphosphorylated neurofilament expression in V1. These results reveal that the Crx mutation and lack of light stimulation through the photoreceptor pathway regulate the development and phenotype of different neuronal populations in V1 but not its general morphology. We conclude, therefore, that photoreceptor-mediated visual input during development is crucial for the normal postnatal development and maturation of subsets of cortical neurons.
Collapse
Affiliation(s)
- Y Goldshmit
- Australian Regenerative Medicine Institute, Monash University, VIC, 3800 Australia
| | | | | | | | | |
Collapse
|
10
|
Cook JE, Becker DL. Gap-Junction Proteins in Retinal Development: New Roles for the “Nexus”. Physiology (Bethesda) 2009; 24:219-30. [DOI: 10.1152/physiol.00007.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gap-junction channels, the cytoplasmic proteins that associate with them, and the transcriptional networks that regulate them are increasingly being viewed as critical communications hubs for cell signaling in health and disease. As a result, the term “nexus,” which was the original structural name for these focal intercellular links, is coming back into use with new proteomic and transcriptomic meanings. The retina is better understood than any other part of the vertebrate central nervous system in respect of its developmental patterning, its diverse neuronal types and circuits, and the emergence of its definitive structure-function correlations. Thus, studies of the junctional and nonjunctional nexus roles of gap-junction proteins in coordinating retinal development should throw useful light on cell signaling in other developing nervous tissues.
Collapse
Affiliation(s)
- Jeremy E. Cook
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom
| | - David L. Becker
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
11
|
Landi S, Cenni MC, Maffei L, Berardi N. Environmental enrichment effects on development of retinal ganglion cell dendritic stratification require retinal BDNF. PLoS One 2007; 2:e346. [PMID: 17406670 PMCID: PMC1829175 DOI: 10.1371/journal.pone.0000346] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 03/12/2007] [Indexed: 11/18/2022] Open
Abstract
A well-known developmental event of retinal maturation is the progressive segregation of retinal ganglion cell (RGC) dendrites into a and b sublaminae of the inner plexiform layer (IPL), a morphological rearrangement crucial for the emergence of the ON and OFF pathways. The factors regulating this process are not known, although electrical activity has been demonstrated to play a role. Here we report that Environmental Enrichment (EE) accelerates the developmental segregation of RGC dendrites and prevents the effects exerted on it by dark rearing (DR). Development of RGC stratification was analyzed in a line of transgenic mice expressing plasma-membrane marker green fluorescent protein (GFP) under the control of Thy-1 promoter; we visualized the a and b sublaminae of the IPL by using an antibody selectively directed against a specific marker of cholinergic neurons. EE precociously increases Brain Derived Neurotrophic Factor (BDNF) in the retina, in parallel with the precocious segregation of RGC dendrites; in addition, EE counteracts retinal BDNF reduction in DR retinas and promotes a normal segregation of RGC dendrites. Blocking retinal BDNF by means of antisense oligos blocks EE effects on the maturation of RGC dendritic stratification. Thus, EE affects the development of RGC dendritic segregation and retinal BDNF is required for this effect to take place, suggesting that BDNF could play an important role in the emergence of the ON and OFF pathways.
Collapse
|
12
|
Lee EJ, Merwine DK, Padilla M, Grzywacz NM. Choline acetyltransferase-immunoreactive neurons in the retina of normal and dark-reared turtle. J Comp Neurol 2007; 503:768-78. [PMID: 17570494 DOI: 10.1002/cne.21416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual deprivation alters retinal-ganglion-cell response properties through changes in spontaneous wave-like activity (Sernagor and Grzywacz [1996] Curr Biol 6:1503-1508). This activity depends on cholinergic synaptic transmission in the turtle retina (ibid; Sernagor and Mehta [ 2001] J Anat 199:375-383). We studied the expression of choline acetyltransferase (ChAT) by immunocytochemistry and Western blot in developing retinas of control and dark-reared turtles. At postnatal day 0 (P0), right after hatching, ChAT-immunoreactivity was present in the ganglion cell layer (GCL), in the inner nuclear layer (INL), and in two distinct bands of the inner plexiform layer (IPL). In P14- and P28-control, and P14- and P28-dark-reared retinas, ChAT-immunoreactivity showed similar patterns to those in P0. However, in P14- and P28-dark-reared retinas the density of ChAT-immunoreactive cells was higher in both the INL and GCL than in P14- and P28-control retinas, respectively. Moreover, Western blotting showed that ChAT protein levels were significantly increased in the dark-reared retina compared to those of the control. TUNEL studies indicated that the difference between normal and dark-reared conditions was not due to extra apoptosis in the former. In turn, proliferating-cell nuclear antigen immunocytochemistry showed no extra proliferating cells in the latter. Finally, nearest-neighbor analysis revealed that the denser population of cholinergic cells in dark-reared turtles formed a mosaic as regular as the normal ones in the GCL. Thus, light deprivation increases the expression of ChAT, increasing the apparent density of cholinergic neurons in the developing turtle retina.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, and Center for Vision Science and Technology, University of Southern California, Los Angeles, California 90089-1111, USA
| | | | | | | |
Collapse
|
13
|
Landi S, Sale A, Berardi N, Viegi A, Maffei L, Cenni MC. Retinal functional development is sensitive to environmental enrichment: a role for BDNF. FASEB J 2006; 21:130-9. [PMID: 17135370 DOI: 10.1096/fj.06-6083com] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retina has long been considered less plastic than cortex or hippocampus, the very sites of experience-dependent plasticity. Now, we show that retinal development is responsive to the experience provided by an enriched environment (EE): the maturation of retinal acuity, which is a sensitive index of retinal circuitry development, is strongly accelerated in EE rats. This effect is present also in rats exposed to EE up to P10, that is before eye opening, suggesting that factors sufficient to trigger retinal acuity development are affected by EE during the first days of life. Brain derived neurotrophic factor (BDNF) is precociously expressed in the ganglion cell layer of EE with respect to non-EE rats and reduction of BDNF expression in EE animals counteracts EE effects on retinal acuity. Thus, EE controls the development of retinal circuitry, and this action depends on retinal BDNF expression.
Collapse
Affiliation(s)
- S Landi
- Laboratorio di Neurobiologia, Scuola Normale Superiore c/o Istituto di Neuroscienze del CNR, Via G. Moruzzi, 1, 56100 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Early neural activity, both prenatal spontaneous bursts and early visual experience, is believed to be important for dendritic proliferation and for the maturation of neural circuitry in the developing retina. In this study, we have investigated the possible role of early neural activity in shaping developing turtle retinal ganglion cell (RGC) dendritic arbors. RGCs were back-labelled from the optic nerve with horseradish peroxidase (HRP). Changes in dendritic growth patterns were examined across development and following chronic blockade or modification of spontaneous activity and/or visual experience. Dendrites reach peak proliferation at embryonic stage 25 (S25, one week before hatching), followed by pruning in large field RGCs around the time of hatching. When spontaneous activity is chronically blocked in vivo from early embryonic stages (S22) with curare, a cholinergic nicotinic antagonist, RGC dendritic growth is inhibited. On the other hand, enhancement of spontaneous activity by dark-rearing (Sernagor & Grzywacz (1996)Curr. Biol., 6, 1503-1508) promotes dendritic proliferation in large-field RGCs, an effect that is counteracted by exposure to curare from hatching. We also recorded spontaneous activity from individual RGCs labelled with lucifer yellow (LY). We found a tendency of RGCs with large dendritic fields to be spontaneously more active than small-field cells. From all these observations, we conclude that immature spontaneous activity promotes dendritic growth in developing RGCs.
Collapse
Affiliation(s)
- Vandana Mehta
- School of Neurology, Neurobiology and Psychiatry, Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
15
|
Mehta V, Sernagor E. Receptive field structure-function correlates in developing turtle retinal ganglion cells. Eur J Neurosci 2006; 24:787-94. [PMID: 16930408 DOI: 10.1111/j.1460-9568.2006.04971.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mature retinal ganglion cells (RGCs) have distinct morphologies that often reflect specialized functional properties such as On and Off responses. But the structural correlates of many complex receptive field (RF) properties (e.g. responses to motion) remain to be deciphered. In this study, we have investigated whether motion anisotropies (non-homogeneities) characteristic of embryonic turtle RGCs arise from immature dendritic arborization in these cells. To test this hypothesis, we have looked at structure-function correlates of developing turtle RGCs from Stage 23 (S23) when light responses emerge, until 15 weeks post-hatching (PH). Using whole cell patch clamp recordings, RGCs were labelled with Lucifer Yellow (LY) while recording their responses to moving edges of light. Comparison of RF and dendritic arbor layouts revealed a weak correlation. To obtain a larger structural sample of developing RGCs, we have looked at dendritic morphology in RGCs retrogradely filled with the tracer horseradish peroxidase (HRP) from S22 (when RGCs become spontaneously active, shortly before they become sensitive to light) until two weeks PH. We found that there was intense dendritic growth from S22 onwards, reaching peak proliferation at S25 (a week before hatching), while RGCs are still exhibiting significant motion anisotropies. Based on these observations, we suggest that immature anisotropic RGC RFs must originate from sparse synaptic inputs onto RGCs rather than from the immaturity of their growing dendritic trees.
Collapse
Affiliation(s)
- Vandana Mehta
- School of Neurology, Neurobiology and Psychiatry, Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
16
|
Stacy RC, Demas J, Burgess RW, Sanes JR, Wong ROL. Disruption and recovery of patterned retinal activity in the absence of acetylcholine. J Neurosci 2006; 25:9347-57. [PMID: 16221843 PMCID: PMC6725714 DOI: 10.1523/jneurosci.1800-05.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many developing neural circuits generate synchronized bursting activity among neighboring neurons, a pattern thought to be important for sculpting precise neural connectivity. Network output remains relatively constant as the cellular and synaptic components of these immature circuits change during development, suggesting the presence of homeostatic mechanisms. In the retina, spontaneous waves of activity are present even before chemical synapse formation, needing gap junctions to propagate. However, as synaptogenesis proceeds, retinal waves become dependent on cholinergic neurotransmission, no longer requiring gap junctions. Later still in development, waves are driven by glutamatergic rather than cholinergic synapses. Here, we asked how retinal activity evolves in the absence of cholinergic transmission by using a conditional mutant in which the gene encoding choline acetyltransferase (ChAT), the sole synthetic enzyme for acetylcholine (ACh), was deleted from large retinal regions. ChAT-negative regions lacked retinal waves for the first few days after birth, but by postnatal day 5 (P5), ACh-independent waves propagated across these regions. Pharmacological analysis of the waves in ChAT knock-out regions revealed a requirement for gap junctions but not glutamate, suggesting that patterned activity may have emerged via restoration of previous gap-junctional networks. Similarly, in P5 wild-type retinas, spontaneous activity recovered after a few hours in nicotinic receptor antagonists, often as local patches of coactive cells but not waves. The rapid recovery of rhythmic spontaneous activity in the presence of cholinergic antagonists and the eventual emergence of waves in ChAT knock-out regions suggest that homeostatic mechanisms regulate retinal output during development.
Collapse
Affiliation(s)
- Rebecca C Stacy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Fosser NS, Brusco A, Ríos H. Darkness induced neuroplastic changes in the serotoninergic system of the chick retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:211-8. [PMID: 16242783 DOI: 10.1016/j.devbrainres.2005.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/26/2005] [Accepted: 09/16/2005] [Indexed: 11/30/2022]
Abstract
Sensory experience is critical for the formation of neuronal circuits and it is well known that neuronal activity plays a crucial role in the formation and maintenance of synapses. In the vertebrate retina, exposure to different environmental conditions results in structural, physiological, neurochemical and pharmacological changes. Serotoninergic (5HT) amacrine cells of the chicken retina are bistratified interneurons whose primary dendrites descend through the inner nuclear layer (INL) to branch in the inner plexiform layer (IPL) forming two plexi, an outer network, localized to sublamina 1, and an inner network, localized to sublamina 4 and 5 of the IPL. Their development is temporally correlated with the establishment of synapses in the retina and with the emergence of the typical adult electroretinogram. It is unknown, however, which role these cells play in processing visual information and whether visual deprivation modifies their phenotype. Here, we show that, in the chicken, red-light rearing from hatching to postnatal day 12 significantly alters the stratification pattern of 5HT amacrine cells, inhibiting their age-dependent pruning measured with morphometric and densitometric procedures; as well as increasing serotonin immunoreactivity measured as relative optical density. This change in dendritic arborization, accompanied by an increase in serotonin concentration in dark adapted conditions, may decrease visual threshold, thus increasing visual sensitivity.
Collapse
Affiliation(s)
- Nicolás Sebastián Fosser
- Institute of Cell Biology and Neuroscience Prof. E. De Robertis, School of Medicine, University of Buenos Aires, Paraguay 2155, 2nd floor, Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | | | | |
Collapse
|
18
|
Lee EJ, Merwine DK, Mann LB, Grzywacz NM. Ganglion cell densities in normal and dark-reared turtle retinas. Brain Res 2005; 1060:40-6. [PMID: 16214118 DOI: 10.1016/j.brainres.2005.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/05/2005] [Accepted: 08/08/2005] [Indexed: 11/25/2022]
Abstract
In dark-reared, neonatal turtle retinas, ganglion cell receptive fields and dendritic trees grow faster than normal. As a result, their areas may become, on average, up to twice as large as in control retinas. This raises the question of whether the coverage factor of dark-reared ganglion cells is larger than normal. Alternatively, dark rearing may lead to smaller-than-normal cell densities by accelerating apoptosis. To test these alternatives, we investigated the effect of light deprivation on densities and soma sizes of turtle retinal ganglion cells. For this purpose, we marked these cells using retrograde labeling of fixed turtle retinas with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate). Control turtles were maintained in a regular 12-h light/dark cycle from hatching until 4 weeks of age, whereas dark-reared turtles were maintained in total darkness for the same period. Ganglion cells in the control and dark-reared retinas were found to be similar in density and soma sizes. These results show that the mean coverage factor of turtle dark-reared ganglion cells is larger than normal.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Biomedical Engineering, Neuroscience Graduate Program, University of Southern California, Denney Research Building 140, Los Angeles, CA 90089-1111, USA
| | | | | | | |
Collapse
|
19
|
Bucci G, Ramoino P, Diaspro A, Usai C. A role for GABAA receptors in the modulation of Paramecium swimming behavior. Neurosci Lett 2005; 386:179-83. [PMID: 16002218 DOI: 10.1016/j.neulet.2005.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 05/25/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The presence in Paramecium of gamma-aminobutyric acid A-type receptors (GABA(A)) and the capability of the protozoon to synthesize and release the GABA neurotransmitter into the environment have already been demonstrated. This study investigates the involvement of the GABA(A) complex in the swimming control of the ciliated protozoon. The GABA(A) receptors were pharmacologically activated by the selective agonist muscimol and the effect on Paramecium primaurelia swimming behavior was analyzed. Paramecium normally swims forward, but the activation of GABA(A) receptors induced a peculiar response, characterized by alternate periods of whirling and forward swim. This effect was inhibited by the GABA(A) selective antagonists bicuculline and picrotoxin in a dose-dependent manner. Moreover, the application of benzodiazepines did not enhance the agonist action but only reduced it. Response to muscimol was also suppressed by nimodipine, a selective antagonist of dihydropyridine-sensitive calcium channels. This inhibition suggests that an inflow of calcium ions through L-type channels mediates the muscimol-induced swimming behavior.
Collapse
Affiliation(s)
- Giovanna Bucci
- Institute of Biophysics, National Research Council, Via De Marini, 6, I-16149 Genoa, Italy
| | | | | | | |
Collapse
|
20
|
Zhang J, Yang Z, Wu SM. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. J Comp Neurol 2005; 484:331-43. [PMID: 15739235 DOI: 10.1002/cne.20470] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present study, we used immunocytochemistry to study the temporal and spatial arrangement of mouse cholinergic amacrine cells during postnatal retinal development under normal light/dark cycles and during visual deprivation. Choline acetyltransferase (ChAT)-immunolabeled cells were detected in the neuroblastic layer (NBL) and in the ganglion cell layer (GCL) at postnatal day 0 (P0). Between P3-5, two characteristic cholinergic bands were clearly identified in the inner plexiform layer (IPL). The signal intensity of somas and processes progressively increased over the first 2 postnatal weeks. Around eye opening at P12, cholinergic neurons were mature-like. This early developmental process was not altered by visual deprivation. After eye opening, the space between the two cholinergic bands increased continuously and the spatial regularity index changed constantly, indicating that the cholinergic neurons possibly underwent refinement during later postnatal development. The changes occurring following eye opening were retarded by visual deprivation. The morphologies of photoreceptors, horizontal cells, recoverin-positive OFF-cone bipolar cells, rod bipolar cells, dopaminergic amacrine cells, and Müller cells appeared normal. Their stratification in the outer plexiform layer (OPL) and the IPL was not affected by visual deprivation. However, glial cells grew vertically across the entire thickness of dark-reared retinas. Our results suggest that the development of cholinergic neurons before eye opening is independent of the lighting conditions. Their development after eye opening is greatly impeded by visual deprivation. This visual activity-dependent phase of development may be a critical period for the maturation and synaptic wiring of cholinergic amacrine cells in the mammalian retina.
Collapse
Affiliation(s)
- Jian Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
21
|
Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong ROL. Laminar circuit formation in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2005; 147:155-69. [PMID: 15581704 DOI: 10.1016/s0079-6123(04)47012-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Neuronal function depends on the accurate wiring between pre- and postsynaptic cells. Determining the mechanisms underlying precision in neuronal connectivity is challenging because of the complexity of the nervous system. In diverse parts of the nervous system, regions of synaptic contact are organized into distinct parallel layers, or laminae, that are correlated with distinct functions. Such an arrangement enables the development of synapse specificity to be more readily investigated. Here, we present an overview of the developmental mechanisms that are thought to underlie the formation of synaptic layers in the vertebrate retina, a highly laminated CNS structure. We will contrast the roles of activity-dependent and activity-independent mechanisms in establishing functionally discrete sublaminae in the inner retina, where circuits involving many subtypes of retinal neurons are assembled precisely. In addition, we will discuss new optical imaging approaches for elucidating how retinal synaptic lamination occurs in vivo.
Collapse
Affiliation(s)
- Jeff S Mumm
- Washington University School of Medicine, Department of Anatomy & Neurobiology, 4566 Scott Avenue, Box 8108, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Embryonic spontaneous activity, in the form of propagating waves, is crucial for refining visual connections. To study what aspects of this correlated activity are instructive, we must first understand how their dynamics change with development and what factors trigger their disappearance after birth. Here we report that in the turtle retina, GABA, rather than glutamate and acetylcholine, influences developmental changes in wave dynamics. Using calcium imaging of the ganglion cell layer, we report how waves switch from fast and broad, when they emerge, to slow and narrow a few days before hatching, coinciding with the emergence of excitatory GABA(A) receptor-mediated activity. Around hatching, waves gradually become stationary patches, whereas GABA(A) shifts from excitatory to inhibitory, coinciding with the upregulation of the cotransporter KCC2, suggesting that changes in intracellular chloride underlie the shift. Dark-rearing from hatching causes correlated spontaneous activity to persist, whereas GABA(A) responses remain excitatory, and KCC2 expression is weaker. We conclude that GABA plays an important regulatory role during the maturation of retinal neural activity. Using a simple and elegant mechanism, namely the switch from excitatory to inhibitory, GABA(A) receptor-mediated activity is necessary and sufficient to cause retinal waves to stop propagating, ultimately leading to the disappearance of correlated spontaneous activity. Moreover, our results suggest that visual experience modulates the GABAergic switch.
Collapse
|
23
|
Sernagor E, Young C, Eglen SJ. Developmental modulation of retinal wave dynamics: shedding light on the GABA saga. J Neurosci 2003; 23:7621-9. [PMID: 12930801 PMCID: PMC6740765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 06/24/2003] [Accepted: 07/02/2003] [Indexed: 03/04/2023] Open
Abstract
Embryonic spontaneous activity, in the form of propagating waves, is crucial for refining visual connections. To study what aspects of this correlated activity are instructive, we must first understand how their dynamics change with development and what factors trigger their disappearance after birth. Here we report that in the turtle retina, GABA, rather than glutamate and acetylcholine, influences developmental changes in wave dynamics. Using calcium imaging of the ganglion cell layer, we report how waves switch from fast and broad, when they emerge, to slow and narrow a few days before hatching, coinciding with the emergence of excitatory GABA(A) receptor-mediated activity. Around hatching, waves gradually become stationary patches, whereas GABA(A) shifts from excitatory to inhibitory, coinciding with the upregulation of the cotransporter KCC2, suggesting that changes in intracellular chloride underlie the shift. Dark-rearing from hatching causes correlated spontaneous activity to persist, whereas GABA(A) responses remain excitatory, and KCC2 expression is weaker. We conclude that GABA plays an important regulatory role during the maturation of retinal neural activity. Using a simple and elegant mechanism, namely the switch from excitatory to inhibitory, GABA(A) receptor-mediated activity is necessary and sufficient to cause retinal waves to stop propagating, ultimately leading to the disappearance of correlated spontaneous activity. Moreover, our results suggest that visual experience modulates the GABAergic switch.
Collapse
Affiliation(s)
- Evelyne Sernagor
- School of Neurology, Neurobiology, and Psychiatry, Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, United Kingdom.
| | | | | |
Collapse
|
24
|
Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci 2003. [PMID: 12684472 DOI: 10.1523/jneurosci.23-07-02851.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the immature retina, correlated spontaneous activity in the form of propagating waves is thought to be necessary for the refinement of connections between the retina and its targets. The continued presence of this activity in the mature retina would interfere with the transmission of information about the visual scene. The mechanisms responsible for the disappearance of retinal waves are not well understood, but one hypothesis is that visual experience is important. To test this hypothesis, we monitored the developmental changes in spontaneous retinal activity of both normal mice and mice reared in the dark. Using multi-electrode array recordings, we found that retinal waves in normally reared mice are present at postnatal day (P) 9 and begin to break down shortly after eye opening, around P15. By P21, waves have disappeared, and synchronous firing is comparable with that observed in the adult (6 weeks). In mice raised in the dark, we found a similar time course for the disappearance of waves. However, at P15, dark-reared retinas occasionally showed abnormally long periods of relative inactivity, not seen in controls. Apart from this quiescence, we found no striking differences between the patterns of spontaneous retinal activity from normal and dark-reared mice. We therefore suggest that visual experience is not required for the loss of synchronous spontaneous activity.
Collapse
|
25
|
Demas J, Eglen SJ, Wong ROL. Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci 2003; 23:2851-60. [PMID: 12684472 PMCID: PMC6742078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
In the immature retina, correlated spontaneous activity in the form of propagating waves is thought to be necessary for the refinement of connections between the retina and its targets. The continued presence of this activity in the mature retina would interfere with the transmission of information about the visual scene. The mechanisms responsible for the disappearance of retinal waves are not well understood, but one hypothesis is that visual experience is important. To test this hypothesis, we monitored the developmental changes in spontaneous retinal activity of both normal mice and mice reared in the dark. Using multi-electrode array recordings, we found that retinal waves in normally reared mice are present at postnatal day (P) 9 and begin to break down shortly after eye opening, around P15. By P21, waves have disappeared, and synchronous firing is comparable with that observed in the adult (6 weeks). In mice raised in the dark, we found a similar time course for the disappearance of waves. However, at P15, dark-reared retinas occasionally showed abnormally long periods of relative inactivity, not seen in controls. Apart from this quiescence, we found no striking differences between the patterns of spontaneous retinal activity from normal and dark-reared mice. We therefore suggest that visual experience is not required for the loss of synchronous spontaneous activity.
Collapse
Affiliation(s)
- Jay Demas
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
26
|
Abstract
In the immature brain, GABA (gamma-aminobutyric acid) is excitatory, and GABA-releasing synapses are formed before glutamatergic contacts in a wide range of species and structures. GABA becomes inhibitory by the delayed expression of a chloride exporter, leading to a negative shift in the reversal potential for choride ions. I propose that this mechanism provides a solution to the problem of how to excite developing neurons to promote growth and synapse formation while avoiding the potentially toxic effects of a mismatch between GABA-mediated inhibition and glutamatergic excitation. As key elements of this cascade are activity dependent, the formation of inhibition adds an element of nurture to the construction of cortical networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM Unit 29, Parc Scientifique de Luminy, 13273 Marseille Cedex 09, France.
| |
Collapse
|